RESEARCH HIGHLIGHTS

CONNECTIVE TISSUE DISEASES

Oral anti-CD3 antibodies for SLE

Defects in the number and function of regulatory T (T_{REG}) cells are thought to have a key role in the pathogenesis of systemic lupus erythematosus (SLE). Research by Howard Weiner and colleagues shows that oral administration of anti-CD3 antibodies to lupus-prone SNF1 mice results in the development of an inducible subset of CD4⁺CD25⁻LAP⁺ T_{REG} cells, and blocks disease development and progression in this animal model.

Mice that received anti-CD3 antibodies developed less-severe glomerulonephritis and produced lower levels of pathogenic autoantibodies targeting double-stranded DNA (dsDNA) than control mice. In addition, this treatment led to increased numbers of suppressive CD4⁺CD25⁻ LAP⁺ T_{REG} cells, which produced more transforming growth factor β than comparable cells from control mice. Reduced numbers of inflammatory IL-17⁺CD4⁺ICOS⁺CXCR5⁺ follicular helper T cells, CD138⁺ plasma cells and CD73⁺ mature memory B cells were detected in anti-CD3-treated mice in comparison with control mice. In animals with established disease, anti-CD3 treatment reduced the levels of anti-dsDNA autoantibodies and improved survival.

"Clinically applicable strategies to generate inducible T_{REG} cells *in vivo* could have beneficial effects in the treatment of SLE," explains Henry Yim Wu, the corresponding author. "Our positive results in animals with ongoing disease raise the possibility that oral anti-CD3 antibodies might be an effective immunomodulatory therapy for SLE that could be easily and rapidly applied to human subjects."

Jenny Buckland

Original article Wu, H. *et al.* Suppression of murine SLE by oral anti-CD3: inducible CD4*CD25*LAP* regulatory T cells control the expansion of IL-17* follicular helperT cells. *Lupus* **18**, 586–596 (2009).