Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in therapy for spinal muscular atrophy: promises and challenges

Key Points

  • The approval of nusinersen represents an important milestone for spinal muscular atrophy (SMA) research and treatment

  • Promising results from clinical trials indicate that several additional treatment options, such as gene therapy, could be available for patients with SMA in the near future

  • Preclinical research has highlighted the powerful potential of combinatorial targeting of both survival motor neuron protein (SMN)-dependent and SMN-independent pathways ('SMN-plus' therapy) to deliver maximal therapeutic benefits

  • The rapid emergence of many new therapeutic options for SMA raises major issues concerning the coordination of future clinical trials in this small population of patients

  • The development of therapies for SMA has the potential to offer important insights and tools that are applicable to patients with other neuromuscular and neurodegenerative conditions

Abstract

Spinal muscular atrophy (SMA) is a devastating motor neuron disease that predominantly affects children and represents the most common cause of hereditary infant mortality. The condition results from deleterious variants in SMN1, which lead to depletion of the survival motor neuron protein (SMN). Now, 20 years after the discovery of this genetic defect, a major milestone in SMA and motor neuron disease research has been reached with the approval of the first disease-modifying therapy for SMA by US and European authorities — the antisense oligonucleotide nusinersen. At the same time, promising data from early-stage clinical trials of SMN1 gene therapy have indicated that additional therapeutic options are likely to emerge for patients with SMA in the near future. However, the approval of nusinersen has generated a number of immediate and substantial medical, ethical and financial implications that have the potential to resonate beyond the specific treatment of SMA. Here, we provide an overview of the rapidly evolving therapeutic landscape for SMA, highlighting current achievements and future opportunities. We also discuss how these developments are providing important lessons for the emerging second generation of combinatorial ('SMN-plus') therapies that are likely to be required to generate robust treatments that are effective across a patient's lifespan.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetics of SMA.
Figure 2: Cellular pathways and therapeutic targets in SMA.

Similar content being viewed by others

References

  1. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).

    CAS  PubMed  Google Scholar 

  2. Verhaart, I. E. C. et al. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy - a literature review. Orphanet J. Rare Dis. 12, 124 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. Lunn, M. R. & Wang, C. H. Spinal muscular atrophy. Lancet 371, 2120–2133 (2008).

    PubMed  Google Scholar 

  4. Lorson, C. L., Hahnen, E., Androphy, E. J. & Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl Acad. Sci. USA 96, 6307–6311 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Monani, U. R. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum. Mol. Genet. 8, 1177–1183 (1999).

    CAS  PubMed  Google Scholar 

  6. Han, K. J. et al. Ubiquitin-specific protease 9x deubiquitinates and stabilizes the spinal muscular atrophy protein-survival motor neuron. J. Biol. Chem. 287, 43741–43752 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lefebvre, S. et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet. 16, 265–269 (1997).

    CAS  PubMed  Google Scholar 

  8. Battaglia, G., Princivalle, A., Forti, F., Lizier, C. & Zeviani, M. Expression of the SMN gene, the spinal muscular atrophy determining gene, in the mammalian central nervous system. Hum. Mol. Genet. 6, 1961–1971 (1997).

    CAS  PubMed  Google Scholar 

  9. Burlet, P. et al. The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum. Mol. Genet. 7, 1927–1933 (1998).

    CAS  PubMed  Google Scholar 

  10. Coovert, D. D. et al. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet. 6, 1205–1214 (1997).

    CAS  PubMed  Google Scholar 

  11. Lorson, M. A. & Lorson, C. L. SMN-inducing compounds for the treatment of spinal muscular atrophy. Future Med. Chem. 4, 2067–2084 (2012).

    CAS  PubMed  Google Scholar 

  12. Singh, N. N., Howell, M. D., Androphy, E. J. & Singh, R. N. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther. 24, 520–526 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmutz, J. et al. The DNA sequence and comparative analysis of human chromosome 5. Nature 431, 268–274 (2004).

    CAS  PubMed  Google Scholar 

  14. Monani, U. R. et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(−/−) mice and results in a mouse with spinal muscular atrophy. Hum. Mol. Genet. 9, 333–339 (2000).

    CAS  PubMed  Google Scholar 

  15. Wadman, R. I. et al. Association of motor milestones, SMN2 copy and outcome in spinal muscular atrophy types 0–4. J. Neurol. Neurosurg. Psychiatry 88, 365–367 (2017).

    PubMed  Google Scholar 

  16. Crawford, T. O. et al. Evaluation of SMN protein, transcript, and copy number in the biomarkers for spinal muscular atrophy (BforSMA) clinical study. PLoS ONE 7, e33572 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wadman, R. I. et al. A comparative study of SMN protein and mRNA in blood and fibroblasts in patients with spinal muscular atrophy and healthy controls. PLoS ONE 11, e0167087 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Hosseinibarkooie, S. et al. The power of human protective modifiers: PLS3 and CORO1C unravel impaired endocytosis in spinal muscular atrophy and rescue SMA phenotype. Am. J. Hum. Genet. 99, 647–665 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Oprea, G. E. et al. Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science 320, 524–527 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Riessland, M. et al. Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis. Am. J. Hum. Genet. 100, 297–315 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh, R. N., Howell, M. D., Ottesen, E. W. & Singh, N. N. Diverse role of survival motor neuron protein. Biochim. Biophys. Acta 1860, 299–315 (2017).

    CAS  PubMed Central  Google Scholar 

  22. Powis, R. A. & Gillingwater, T. H. Selective loss of alpha motor neurons with sparing of gamma motor neurons and spinal cord cholinergic neurons in a mouse model of spinal muscular atrophy. J. Anat. 228, 443–451 (2016).

    PubMed  Google Scholar 

  23. Fletcher, E. V. et al. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy. Nat. Neurosci. 20, 905–916 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hunter, G., Aghamaleky Sarvestany, A., Roche, S. L., Symes, R. C. & Gillingwater, T. H. SMN-dependent intrinsic defects in Schwann cells in mouse models of spinal muscular atrophy. Hum. Mol. Genet. 23, 2235–2250 (2014).

    CAS  PubMed  Google Scholar 

  25. Mentis, G. Z. et al. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69, 453–467 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou, C., Feng, Z. & Ko, C. P. Defects in motoneuron-astrocyte interactions in spinal muscular atrophy. J. Neurosci. 36, 2543–2553 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tisdale, S. & Pellizzoni, L. Disease mechanisms and therapeutic approaches in spinal muscular atrophy. J. Neurosci. 35, 8691–8700 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fischer, U., Liu, Q. & Dreyfuss, G. The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90, 1023–1029 (1997).

    CAS  PubMed  Google Scholar 

  29. Liu, Q., Fischer, U., Wang, F. & Dreyfuss, G. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90, 1013–1021 (1997).

    CAS  PubMed  Google Scholar 

  30. Pellizzoni, L., Yong, J. & Dreyfuss, G. Essential role for the SMN complex in the specificity of snRNP assembly. Science 298, 1775–1779 (2002).

    CAS  PubMed  Google Scholar 

  31. Donlin-Asp, P. G. et al. The survival of motor neuron protein acts as a molecular chaperone for mRNP assembly. Cell Rep. 18, 1660–1673 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. So, B. R. et al. A U1 snRNP-specific assembly pathway reveals the SMN complex as a versatile hub for RNP exchange. Nat. Struct. Mol. Biol. 23, 225–230 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pellizzoni, L., Baccon, J., Charroux, B. & Dreyfuss, G. The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Curr. Biol. 11, 1079–1088 (2001).

    CAS  PubMed  Google Scholar 

  34. Piazzon, N. et al. Implication of the SMN complex in the biogenesis and steady state level of the signal recognition particle. Nucleic Acids Res. 41, 1255–1272 (2013).

    CAS  PubMed  Google Scholar 

  35. Poole, A. R. & Hebert, M. D. SMN and coilin negatively regulate dyskerin association with telomerase RNA. Biol. Open 5, 726–735 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Baumer, D. et al. Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet. 5, e1000773 (2009).

    PubMed  PubMed Central  Google Scholar 

  37. Zhang, Z. et al. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133, 585–600 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Boyd, P. & Gillingwater, T. H. in Spinal Muscular Atrophy (eds Sumner, C. J., Paushkin, S. & Ko, C. P.) 133–151 (Elsevier, 2016).

    Google Scholar 

  39. Cifuentes-Diaz, C. et al. Neurofilament accumulation at the motor endplate and lack of axonal sprouting in a spinal muscular atrophy mouse model. Hum. Mol. Genet. 11, 1439–1447 (2002).

    CAS  PubMed  Google Scholar 

  40. Kariya, S. et al. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum. Mol. Genet. 17, 2552–2569 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Murray, L. M. et al. Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum. Mol. Genet. 17, 949–962 (2008).

    CAS  PubMed  Google Scholar 

  42. Kong, L. et al. Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J. Neurosci. 29, 842–851 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Murray, L. M. et al. Pre-symptomatic development of lower motor neuron connectivity in a mouse model of severe spinal muscular atrophy. Hum. Mol. Genet. 19, 420–433 (2010).

    CAS  PubMed  Google Scholar 

  44. Martinez-Hernandez, R. et al. Synaptic defects in type I spinal muscular atrophy in human development. J. Pathol. 229, 49–61 (2013).

    CAS  PubMed  Google Scholar 

  45. Wadman, R. I., Vrancken, A. F., van den Berg, L. H. & van der Pol, W. L. Dysfunction of the neuromuscular junction in spinal muscular atrophy types 2 and 3. Neurology 79, 2050–2055 (2012).

    CAS  PubMed  Google Scholar 

  46. Kariya, S. et al. Requirement of enhanced survival motoneuron protein imposed during neuromuscular junction maturation. J. Clin. Invest. 124, 785–800 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gillingwater, T. H. & Wishart, T. M. Mechanisms underlying synaptic vulnerability and degeneration in neurodegenerative disease. Neuropathol. Appl. Neurobiol. 39, 320–334 (2013).

    CAS  PubMed  Google Scholar 

  48. Fuller, H. R. et al. Spinal muscular atrophy patient iPSC-derived motor neurons have reduced expression of proteins important in neuronal development. Front. Cell. Neurosci. 9, 506 (2015).

    PubMed  Google Scholar 

  49. Ramser, J. et al. Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am. J. Hum. Genet. 82, 188–193 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wishart, T. M. et al. Dysregulation of ubiquitin homeostasis and beta-catenin signaling promote spinal muscular atrophy. J. Clin. Invest. 124, 1821–1834 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Powis, R. A. et al. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy. JCI Insight 1, e87908 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. Berger, A. et al. Severe depletion of mitochondrial DNA in spinal muscular atrophy. Acta Neuropathol. 105, 245–251 (2003).

    CAS  PubMed  Google Scholar 

  53. Ripolone, M. et al. Impaired muscle mitochondrial biogenesis and myogenesis in spinal muscular atrophy. JAMA Neurol. 72, 666–675 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Acsadi, G. et al. Mitochondrial dysfunction in a neural cell model of spinal muscular atrophy. J. Neurosci. Res. 87, 2748–2756 (2009).

    CAS  PubMed  Google Scholar 

  55. Miller, N., Shi, H., Zelikovich, A. S. & Ma, Y. C. Motor neuron mitochondrial dysfunction in spinal muscular atrophy. Hum. Mol. Genet. 25, 3395–3406 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu, C. C., Denton, K. R., Wang, Z. B., Zhang, X. & Li, X. J. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy. Dis. Model. Mech. 9, 39–49 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Boyd, P. J. et al. Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy. PLoS Genet. 13, e1006744 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Hosseinibarkooie, S., Schneider, S. & Wirth, B. Advances in understanding the role of disease-associated proteins in spinal muscular atrophy. Expert Rev. Proteom. 14, 581–592 (2017).

    CAS  Google Scholar 

  59. Bowerman, M., Shafey, D. & Kothary, R. Smn depletion alters profilin II expression and leads to upregulation of the RhoA/ROCK pathway and defects in neuronal integrity. J. Mol. Neurosci. 32, 120–131 (2007).

    CAS  PubMed  Google Scholar 

  60. Nolle, A. et al. The spinal muscular atrophy disease protein SMN is linked to the Rho-kinase pathway via profilin. Hum. Mol. Genet. 20, 4865–4878 (2011).

    PubMed  Google Scholar 

  61. Bowerman, M., Beauvais, A., Anderson, C. L. & Kothary, R. Rho-kinase inactivation prolongs survival of an intermediate SMA mouse model. Hum. Mol. Genet. 19, 1468–1478 (2010).

    CAS  PubMed  Google Scholar 

  62. Bowerman, M., Murray, L. M., Boyer, J. G., Anderson, C. L. & Kothary, R. Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy. BMC Med. 10, 24 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kaifer, K. A. et al. Plastin-3 extends survival and reduces severity in mouse models of spinal muscular atrophy. JCI Insight 2, e89970 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Holt, C. E. & Schuman, E. M. The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 80, 648–657 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kapur, M., Monaghan, C. E. & Ackerman, S. L. Regulation of mRNA translation in neurons — a matter of life and death. Neuron 96, 616–637 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Akten, B. et al. Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc. Natl Acad. Sci. USA 108, 10337–10342 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fallini, C., Donlin-Asp, P. G., Rouanet, J. P., Bassell, G. J. & Rossoll, W. Deficiency of the survival of motor neuron protein impairs mRNA localization and local translation in the growth cone of motor neurons. J. Neurosci. 36, 3811–3820 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fallini, C. et al. The survival of motor neuron (SMN) protein interacts with the mRNA-binding protein HuD and regulates localization of poly(A) mRNA in primary motor neuron axons. J. Neurosci. 31, 3914–3925 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hubers, L. et al. HuD interacts with survival motor neuron protein and can rescue spinal muscular atrophy-like neuronal defects. Hum. Mol. Genet. 20, 553–579 (2011).

    CAS  PubMed  Google Scholar 

  70. Rossoll, W. et al. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J. Cell Biol. 163, 801–812 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kye, M. J. et al. SMN regulates axonal local translation via miR-183/mTOR pathway. Hum. Mol. Genet. 23, 6318–6331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sanchez, G. et al. A novel role for CARM1 in promoting nonsense-mediated mRNA decay: potential implications for spinal muscular atrophy. Nucleic Acids Res. 44, 2661–2676 (2016).

    PubMed  Google Scholar 

  73. Sanchez, G. et al. A novel function for the survival motoneuron protein as a translational regulator. Hum. Mol. Genet. 22, 668–684 (2013).

    CAS  PubMed  Google Scholar 

  74. Bernabo, P. et al. In vivo translatome profiling in spinal muscular atrophy reveals a role for SMN protein in ribosome biology. Cell Rep. 21, 953–965 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hua, Y. et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478, 123–126 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou, H. et al. A novel morpholino oligomer targeting ISS-N1 improves rescue of severe spinal muscular atrophy transgenic mice. Hum. Gene Ther. 24, 331–342 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chiriboga, C. A. et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 86, 890–897 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Finkel, R. S. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388, 3017–3026 (2016).

    CAS  PubMed  Google Scholar 

  79. Finkel, R. S. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017).

    CAS  PubMed  Google Scholar 

  80. Hammond, S. M. et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc. Natl Acad. Sci. USA 113, 10962–10967 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Naryshkin, N. A. et al. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345, 688–693 (2014).

    CAS  PubMed  Google Scholar 

  82. Abera, M. B. et al. ML372 blocks SMN ubiquitination and improves spinal muscular atrophy pathology in mice. JCI Insight 1, e88427 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Avila, A. M. et al. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J. Clin. Invest. 117, 659–671 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Farooq, F. et al. Prolactin increases SMN expression and survival in a mouse model of severe spinal muscular atrophy via the STAT5 pathway. J. Clin. Invest. 121, 3042–3050 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kwon, D. Y. et al. The E3 ubiquitin ligase mind bomb 1 ubiquitinates and promotes the degradation of survival of motor neuron protein. Mol. Biol. Cell 24, 1863–1871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Riessland, M. et al. SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Hum. Mol. Genet. 19, 1492–1506 (2010).

    CAS  PubMed  Google Scholar 

  87. Kissel, J. T. et al. SMA CARNIVAL TRIAL PART II: a prospective, single-armed trial of L-carnitine and valproic acid in ambulatory children with spinal muscular atrophy. PLoS ONE 6, e21296 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Renusch, S. R. et al. Spinal muscular atrophy biomarker measurements from blood samples in a clinical trial of valproic acid in ambulatory adults. J. Neuromuscul. Dis. 2, 119–130 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. Krosschell, K. J. et al. Clinical trial of L-carnitine and valproic acid in spinal muscular atrophy type I. Muscle Nerve https://doi.org/10.1002/mus.25776 (2017).

    Google Scholar 

  90. Dominguez, E. et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum. Mol. Genet. 20, 681–693 (2011).

    CAS  PubMed  Google Scholar 

  91. Foust, K. D. et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat. Biotechnol. 28, 271–274 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Passini, M. A. et al. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J. Clin. Invest. 120, 1253–1264 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Valori, C. F. et al. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci. Transl Med. 2, 35ra42 (2010).

    PubMed  Google Scholar 

  94. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    CAS  PubMed  Google Scholar 

  95. Bertini, E. et al. Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 16, 513–522 (2017).

    CAS  PubMed  Google Scholar 

  96. Hwee, D. T. et al. The small-molecule fast skeletal troponin activator, CK-2127107, improves exercise tolerance in a rat model of heart failure. J. Pharmacol. Exp. Ther. 353, 159–168 (2015).

    CAS  PubMed  Google Scholar 

  97. Christie-Brown, V., Mitchell, J. & Talbot, K. The SMA Trust: the role of a disease-focused research charity in developing treatments for SMA. Gene Ther. 24, 544–546 (2017).

    CAS  PubMed  Google Scholar 

  98. Gillingwater, T. H. Dawn of a new therapeutic era for spinal muscular atrophy. Lancet 388, 2964–2965 (2016).

    PubMed  Google Scholar 

  99. Aartsma-Rus, A. FDA approval of nusinersen for spinal muscular atrophy makes 2016 the year of splice modulating oligonucleotides. Nucleic Acid. Ther. 27, 67–69 (2017).

    CAS  PubMed  Google Scholar 

  100. van der Ploeg, A. T. The dilemma of two innovative therapies for spinal muscular atrophy. N. Engl. J. Med. 377, 1786–1787 (2017).

    PubMed  Google Scholar 

  101. Hache, M. et al. Intrathecal injections in children with spinal muscular atrophy: nusinersen clinical trial experience. J. Child Neurol. 31, 899–906 (2016).

    PubMed  PubMed Central  Google Scholar 

  102. Farrar, M. A. et al. Emerging therapies and challenges in spinal muscular atrophy. Ann. Neurol. 81, 355–368 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Dobrowolski, S. F. et al. Newborn screening for spinal muscular atrophy by calibrated short-amplicon melt profiling. Clin. Chem. 58, 1033–1039 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Taylor, J. L. et al. Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency. Clin. Chem. 61, 412–419 (2015).

    CAS  PubMed  Google Scholar 

  105. Lin, P. J., Yeh, W. S. & Neumann, P. J. Willingness to pay for a newborn screening test for spinal muscular atrophy. Pediatr. Neurol. 66, 69–75 (2017).

    PubMed  Google Scholar 

  106. Bevan, A. K. et al. Early heart failure in the SMNDelta7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery. Hum. Mol. Genet. 19, 3895–3905 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Deguise, M. O. et al. Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice. Hum. Mol. Genet. 26, 801–819 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Somers, E. et al. Vascular defects and spinal cord hypoxia in spinal muscular atrophy. Ann. Neurol. 79, 217–230 (2016).

    CAS  PubMed  Google Scholar 

  109. Szunyogova, E. et al. Survival Motor Neuron (SMN) protein is required for normal mouse liver development. Sci. Rep. 6, 34635 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Thomson, A. K. et al. Survival of motor neurone protein is required for normal postnatal development of the spleen. J. Anat. 230, 337–346 (2017).

    CAS  PubMed  Google Scholar 

  111. Wijngaarde, C. A. et al. Cardiac pathology in spinal muscular atrophy: a systematic review. Orphanet J. Rare Dis. 12, 67 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hamilton, G. & Gillingwater, T. H. Spinal muscular atrophy: going beyond the motor neuron. Trends Mol. Med. 19, 40–50 (2013).

    CAS  PubMed  Google Scholar 

  113. McGraw, S. et al. A qualitative study of perceptions of meaningful change in spinal muscular atrophy. BMC Neurol. 17, 68 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. King, N. M. P. & Bishop, C. E. New treatments for serious conditions: ethical implications. Gene Ther. 24, 534–538 (2017).

    CAS  PubMed  Google Scholar 

  115. Friedmann, T. Gene therapy for spinomuscular atrophy: a biomedical advance, a missed opportunity for more equitable drug pricing. Gene Ther. 24, 503–505 (2017).

    CAS  PubMed  Google Scholar 

  116. Young, K. E., Soussi, I., Hemels, M. & Toumi, M. A comparative study of orphan drug prices in Europe. J. Mark. Access Health Policy 5, 1297886 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Gammie, T., Lu, C. Y. & Babar, Z. U. Access to orphan drugs: a comprehensive review of legislations, regulations and policies in 35 countries. PLoS ONE 10, e0140002 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. Penington, R. & Stubbings, J. A. Evaluation of specialty drug price trends using data from retrospective pharmacy sales transactions. J. Manag. Care Spec. Pharm. 22, 1010–1017 (2016).

    PubMed  Google Scholar 

  119. Qian, Y. et al. Understanding the experiences and needs of individuals with Spinal Muscular Atrophy and their parents: a qualitative study. BMC Neurol. 15, 217 (2015).

    PubMed  PubMed Central  Google Scholar 

  120. Armstrong, E. P. et al. The economic burden of spinal muscular atrophy. J. Med. Econ. 19, 822–826 (2016).

    PubMed  Google Scholar 

  121. Gillingwater, T. H. Counting the cost of spinal muscular atrophy. J. Med. Econ. 19, 827–828 (2016).

    PubMed  Google Scholar 

  122. Klug, C. et al. Disease burden of spinal muscular atrophy in Germany. Orphanet J. Rare Dis. 11, 58 (2016).

    PubMed  PubMed Central  Google Scholar 

  123. Montes, J. et al. Spinal muscular atrophy functional composite score: A functional measure in spinal muscular atrophy. Muscle Nerve 52, 942–947 (2015).

    PubMed  Google Scholar 

  124. Pera, M. C. et al. Content validity and clinical meaningfulness of the HFMSE in spinal muscular atrophy. BMC Neurol. 17, 39 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Ramsey, D. et al. Revised Hammersmith Scale for spinal muscular atrophy: A SMA specific clinical outcome assessment tool. PLoS One 12, e0172346 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. Tizzano, E. F. & Finkel, R. S. Spinal muscular atrophy: a changing phenotype beyond the clinical trials. Neuromuscul. Disord. 27, 883–889 (2017).

    PubMed  Google Scholar 

  127. Groen, E. J. & Gillingwater, T. H. UBA1: at the crossroads of ubiquitin homeostasis and neurodegeneration. Trends Mol. Med. 21, 622–632 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Groen, E. J. et al. ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN. Hum. Mol. Genet. 22, 3690–3704 (2013).

    CAS  PubMed  Google Scholar 

  129. Perera, N. D. et al. Enhancing survival motor neuron expression extends lifespan and attenuates neurodegeneration in mutant TDP-43 mice. Hum. Mol. Genet. 25, 4080–4093 (2016).

    CAS  PubMed  Google Scholar 

  130. Rodriguez-Muela, N. et al. Single-cell analysis of SMN reveals its broader role in neuromuscular disease. Cell Rep. 18, 1484–1498 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Sun, S. et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat. Commun. 6, 6171 (2015).

    CAS  PubMed  Google Scholar 

  132. Yamazaki, T. et al. FUS-SMN protein interactions link the motor neuron diseases ALS and SMA. Cell Rep. 2, 799–806 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research, discussion, writing and revision of the manuscript.

Corresponding author

Correspondence to Thomas H. Gillingwater.

Ethics declarations

Competing interests

T.H.G. and K.T. serve as Chair of the Scientific and Clinical Advisory Board and Trustee of the SMA Trust, respectively.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groen, E., Talbot, K. & Gillingwater, T. Advances in therapy for spinal muscular atrophy: promises and challenges. Nat Rev Neurol 14, 214–224 (2018). https://doi.org/10.1038/nrneurol.2018.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2018.4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing