Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The current role of MRI in differentiating multiple sclerosis from its imaging mimics

An Erratum to this article was published on 20 March 2018

This article has been updated

Key Points

  • MRI is crucial in the diagnosis of multiple sclerosis (MS), revealing the dissemination in space and time of white matter lesions (WMLs) and helping to rule out alternative diagnoses

  • WMLs with a distribution similar to that seen in MS can occur in many disorders, from common age-related vascular disease and migraine to neuromyelitis optica spectrum disorders and rarer conditions

  • The distribution of WMLs can help to differentiate MS from antibody-mediated CNS disorders

  • The proportion of lesions that exhibit the central vein sign and the presence of cortical lesions can be useful in differentiating MS from some of its mimics

  • Meningeal enhancement, indistinct (ill-defined) lesions that increase in size over time, macrobleeds and microbleeds, infarcts, cavities, symmetrical lesions that spare U-fibres, siderosis and extensive spinal cord lesions suggest diagnoses other than MS

  • We suggest the mnemonic iMIMICs to remember the atypical MRI features that indicate a diagnosis other than MS

Abstract

MRI red flags proposed over a decade ago by the European Magnetic Resonance Network in MS (MAGNIMS) have guided clinicians in the diagnosis of multiple sclerosis (MS). However, the past 10 years have seen increased recognition that vascular disease can coexist and possibly interact with MS, improvements in the reliability of ways to differentiate MS from novel antibody-mediated CNS disorders (such as anti-aquaporin-4 antibody and myelin-oligodendrocyte glycoprotein antibody-associated diseases) and advances in MRI techniques. In this Review, MAGNIMS updates the imaging features that differentiate the most common mimics of MS, particularly age-related cerebrovascular disease and neuromyelitis optica, from MS itself. We also provide a pragmatic summary of the clinically useful MRI features that distinguish MS from its mimics and discuss the future of nonconventional techniques that have identified promising disease-specific features.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Typical imaging features of multiple sclerosis with conventional MRI and possible differentiating features with nonconventional MRI.
Figure 2: Use of the iMIMICs mnemonic in the differential diagnosis of multiple sclerosis using MRI.
Figure 3: Age-related white matter lesions and cerebrovascular disease lesions.
Figure 4: Neuromyelitis optica spectrum disorder brain lesions.
Figure 5: Imaging features of other multiple sclerosis mimics.

Change history

  • 27 March 2018

    In the version of this article originally published online, the heading of the third column in Table 1 was "Percentage of lesions that meet criteria". This heading should be "Percentage of patients that meet criteria". The error has been corrected in the print and online versions.

References

  1. 1

    Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Filippi, M. et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 15, 292–303 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Aliaga, E. S. et al. MRI mimics of multiple sclerosis. Handb. Clin. Neurol. 122, 291–316 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2017). The most recent MS criteria in which the role of MRI in documenting dissemination in time and space are discussed.

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Toledano, M., Weinshenker, B. G. & Solomon, A. J. A clinical approach to the differential diagnosis of multiple sclerosis. Curr. Neurol. Neurosci. Rep. 15, 57 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Chen, J. J., Carletti, F., Young, V., Mckean, D. & Quaghebeur, G. MRI differential diagnosis of suspected multiple sclerosis. Clin. Radiol. 71, 815–827 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Barkhof, F. et al. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120, 2059–2069 (1997).

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Liu, S. et al. Prevalence of brain magnetic resonance imaging meeting Barkhof and McDonald criteria for dissemination in space among headache patients. Mult. Scler. J. 19, 1101–1105 (2013).

    Article  Google Scholar 

  9. 9

    Seneviratne, U., Chong, W. & Billimoria, P. H. Brain white matter hyperintensities in migraine: Clinical and radiological correlates. Clin. Neurol. Neurosurg. 115, 1040–1043 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Absinta, M. et al. Patients with migraine do not have MRI-visible cortical lesions. J. Neurol. 259, 2695–2698 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Matthews, L. et al. Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology 80, 1330–1337 (2013). This paper describes the brain imaging criteria that were found to be useful in differentiating MS from NMOSD.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Huh, S.-Y. et al. The usefulness of brain MRI at onset in the differentiation of multiple sclerosis and seropositive neuromyelitis optica spectrum disorders. Mult. Scler. 20, 695–704 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Jurynczyk, M. et al. Brain lesion distribution criteria distinguish MS from AQP4-antibody NMOSD and MOG-antibody disease. J. Neurol. Neurosurg. Psychiatry 88, 132–136 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Jarius, S. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J. Neuroinflamm. 13, 280 (2016).

    Article  CAS  Google Scholar 

  15. 15

    Akman-Demir, G. et al. Behçet's disease patients with multiple sclerosis-like features: discriminative value of Barkhof criteria. Clin. Exp. Rheumatol. 33, S80–84 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Kim, S. S., Richman, D. P., Johnson, W. O., Hald, J. K. & Agius, M. A. Limited utility of current MRI criteria for distinguishing multiple sclerosis from common mimickers: primary and secondary CNS vasculitis, lupus and Sjogren's syndrome. Mult. Scler. J. 20, 57–63 (2014).

    Article  Google Scholar 

  17. 17

    Solomon, A. J. et al. The contemporary spectrum of multiple sclerosis misdiagnosis. Neurology 87, 1393–1400 (2016). This article provides a good introduction to the problem of MS misdiagnosis.

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Charil, A. et al. MRI and the diagnosis of multiple sclerosis: expanding the concept of 'no better explanation'. Lancet Neurol. 5, 841–852 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Rovira, À. et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis — clinical implementation in the diagnostic process. Nat. Rev. Neurol. 11, 471–482 (2015). This paper presents key guidelines for the use of MRI in MS diagnosis, including details on MRI protocols.

    Article  Google Scholar 

  20. 20

    Filippi, M. & Rocca, M. A. Conventional MRI in multiple sclerosis. J. Neuroimag. 17, 3S–9S (2007).

    Article  Google Scholar 

  21. 21

    Giorgio, A. & De Stefano, N. Advanced structural and functional brain MRI in multiple sclerosis. Semin. Neurol. 36, 163–176 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Schmidt, R., Enzinger, C., Ropele, S., Schmidt, H. & Fazekas, F. Subcortical vascular cognitive impairment: Similarities and differences with multiple sclerosis. J. Neurol. Sci. 245, 3–7 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Geraldes, R., Esiri, M. M., DeLuca, G. C. & Palace, J. Age-related small vessel disease: A potential contributor to neurodegeneration in multiple sclerosis. Brain Pathol. 27, 707–722 (2016).

    Article  CAS  Google Scholar 

  24. 24

    Solomon, A. J. & Weinshenker, B. G. Misdiagnosis of multiple sclerosis: frequency, causes, effects, and prevention. Curr. Neurol. Neurosci. Rep. 13, 403 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. 25

    Pantoni, L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 9, 689–701 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838 (2013). This article provides a clear outline of the key MRI features of SVD.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Inzitari, D. et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ 339, b2477 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Jokinen, H. et al. Incident lacunes influence cognitive decline: The LADIS study. Neurology 76, 1872–1878 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Schmidt, R. et al. Heterogeneity in age-related white matter changes. Acta Neuropathol. 122, 171–185 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    Keith, J. et al. Collagenosis of the deep medullary veins: an underrecognized pathologic correlate of white matter hyperintensities and periventricular infarction? J. Neuropathol. Exp. Neurol. 76, 299–312 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31

    Rostrup, E. et al. The spatial distribution of age-related white matter changes as a function of vascular risk factors-Results from the LADIS study. Neuroimage 60, 1597–1607 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Duering, M. et al. Incident lacunes preferentially localize to the edge of white matter hyperintensities: insights into the pathophysiology of cerebral small vessel disease. Brain 136, 2717–2726 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Schmidt, R. et al. White matter lesion progression in LADIS: frequency, clinical effects, and sample size calculations. Stroke 43, 2643–2647 (2012).

    Article  Google Scholar 

  34. 34

    Charidimou, A. et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 88, 157–1164 (2017).

    Article  Google Scholar 

  35. 35

    Etemadifar, M. et al. Features of Virchow-Robin spaces in newly diagnosed multiple sclerosis patients. Eur. J. Radiol. 80, e104–108 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Wuerfel, J. et al. Perivascular spaces — MRI marker of inflammatory activity in the brain? Brain 131, 2332–2340 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Rocca, M. A. et al. Brain MRI atrophy quantification in MS: from methods to clinical application. Neurology 88, 403–413 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Confavreux, C. & Vukusic, S. The clinical course of multiple sclerosis. Handb. Clin. Neurol. 122, 343–369 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Marrie, R. a et al. Vascular comorbidity is associated with more rapid disability progression in multiple sclerosis. Neurology 74, 1041–1047 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Marrie, R. A. et al. A systematic review of the incidence and prevalence of cardiac, cerebrovascular, and peripheral vascular disease in multiple sclerosis. Mult. Scler. 21, 318–331 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Kappus, N. et al. Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 87, 181–187 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. 42

    Newton, B. D. et al. Three-dimensional shape and surface features distinguish multiple sclerosis lesions from nonspecific white matter disease. J. Neuroimag. 27, 613–619 (2017).

    Article  Google Scholar 

  43. 43

    Wardlaw, J. M., Smith, C. & Dichgans, M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 12, 483–497 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    Lee, S.-H., Kwon, S.-J., Kim, K. S., Yoon, B.-W. & Roh, J.-K. Cerebral microbleeds in patients with hypertensive stroke. Topographical distribution in the supratentorial area. J. Neurol. 251, 1183–1189 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Rosand, J. et al. Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Ann. Neurol. 58, 459–462 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Zivadinov, R. et al. Cerebral microbleeds in multiple sclerosis evaluated on susceptibility-weighted images and quantitative susceptibility maps: a case-control study. Radiology 281, 884–895 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Eisele, P. et al. Investigation of cerebral microbleeds in multiple sclerosis as a potential marker of blood-brain barrier dysfunction. Mult. Scler. Relat. Disord. 7, 61–64 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48

    Charidimou, A. et al. Prevalence and mechanisms of cortical superficial siderosis in cerebral amyloid angiopathy. Neurology 81, 626–632 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Mistry, N. et al. Imaging central veins in brain lesions with 3-T T2*-weighted magnetic resonance imaging differentiates multiple sclerosis from microangiopathic brain lesions. Mult. Scler. J. 22, 1289–1296 (2016).

    Article  Google Scholar 

  50. 50

    Samaraweera, A. P. R. et al. The central vein sign in multiple sclerosis lesions is present irrespective of the T2* sequence at 3 T. J. Neuroimag. 27, 114–121 (2017).

    Article  Google Scholar 

  51. 51

    Sati, P. et al. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat. Rev. Neurol. 12, 714–722 (2016). A comprehensive review of the central vein sign as a potential MRI feature that discriminates between MS and MS mimics.

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Simon, B. et al. Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla. Eur. Radiol. 20, 1675–1683 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Geurts, J. J. G. et al. Consensus recommendations for MS cortical lesion scoring using double inversion recovery MRI. Neurology 76, 418–424 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Brundel, M., de Bresser, J., van Dillen, J. J., Kappelle, L. J. & Biessels, G. J. Cerebral microinfarcts: a systematic review of neuropathological studies. J. Cereb. Blood Flow Metab. 32, 425–436 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Wang, Z. et al. Risk factors and cognitive relevance of cortical cerebral microinfarcts in patients with ischemic stroke or transient ischemic attack. Stroke 47, 2450–2455 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Hilal, S. et al. Cortical cerebral microinfarcts on 3T MRI: A novel marker of cerebrovascular disease. Neurology 87, 1583–1590 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    Abdel Razek, A. A. K., Alvarez, H., Bagg, S., Refaat, S. & Castillo, M. Imaging spectrum of CNS vasculitis. Radiographics 34, 873–894 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Viana-Baptista, M. Stroke and Fabry disease. J. Neurol. 259, 1019–1028 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59

    Ahmed, R. M. et al. A practical approach to diagnosing adult onset leukodystrophies. J. Neurol. Neurosurg. Psychiatry 85, 770–781 (2014). This article presents a pattern-based approach to the diagnosis of leukodystrophies; characteristic imaging features for each of these rare multiple sclerosis mimics are discussed.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60

    Küker, W. et al. Vessel wall contrast enhancement: a diagnostic sign of cerebral vasculitis. Cerebrovasc. Dis. 26, 23–29 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Thorpe, J. W. et al. Spinal cord MRI using multi-array coils and fast spin echo. I. Technical aspects and findings in healthy adults. Neurology 43, 2625–2631 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62

    Lycklama à Nijeholt, G. J. et al. Spinal cord magnetic resonance imaging in suspected multiple sclerosis. Eur. Radiol. 10, 368–376 (2000).

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63

    Bot, J. C. J. et al. Differentiation of multiple sclerosis from other inflammatory disorders and cerebrovascular disease: value of spinal MR imaging. Radiology 223, 46–56 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64

    Trebst, C. et al. Longitudinal extensive transverse myelitis — it's not all neuromyelitis optica. Nat. Rev. Neurol. 7, 688–698 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65

    Romi, F. Spinal cord infarction in clinical neurology: a review of characteristics and long-term prognosis in comparison to cerebral infarction. Eur. Neurol. 76, 95–98 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66

    Bashir, A., Lipton, R. B., Ashina, S. & Ashina, M. Migraine and structural changes in the brain: a systematic review and meta-analysis. Neurology 81, 1260–1268 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Casini, G. et al. Are periventricular lesions specific for multiple sclerosis? J. Neurol. Neurophysiol. 4, 150 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Solomon, A. J. et al. 'Central vessel sign' on 3T FLAIR* MRI for the differentiation of multiple sclerosis from migraine. Ann. Clin. Transl Neurol. 3, 82–87 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69

    Solomon, A. J. et al. Diagnostic performance of central vein sign for multiple sclerosis with a simplified three-lesion algorithm. Mult. Scler. J. (2017).

  70. 70

    Monteith, T. et al. Migraine, white matter hyperintensities, and subclinical brain infarction in a diverse community: the northern Manhattan study. Stroke 45, 1830–1832 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Rovaris, M., Bozzali, M., Rocca, M. A., Colombo, B. & Filippi, M. An MR study of tissue damage in the cervical cord of patients with migraine. J. Neurol. Sci. 183, 43–46 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Trebst, C. et al. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J. Neurol. 261, 1–16 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Pittock, S. J. Demyelinating disease: NMO spectrum disorders: clinical or molecular classification? Nat. Rev. Neurol. 12, 129–130 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Wingerchuk, D. M. et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85, 177–189 (2015). NMOSD diagnostic criteria, including the additional MRI requirements in antibody-negative patients.

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Kitley, J. et al. Longitudinally extensive transverse myelitis with and without aquaporin 4 antibodies. JAMA Neurol. 70, 1375 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Piccolo, L. et al. Isolated new onset 'atypical' optic neuritis in the NMO clinic: serum antibodies, prognoses and diagnoses at follow-up. J. Neurol. 263, 370–379 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77

    Sato, D. K. et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology 82, 474–481 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Höftberger, R. et al. Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease. Mult. Scler. 21, 866–874 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  79. 79

    Zamvil, S. S. & Slavin, A. J. Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder? Neurol. Neuroimmunol. Neuroinflamm. 2, e62 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Jurynczyk, M. et al. Status of diagnostic approaches to AQP4-IgG seronegative NMO and NMO/MS overlap syndromes. J. Neurol. 263, 140–149 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81

    Baumann, M. et al. Clinical and neuroradiological differences of paediatric acute disseminating encephalomyelitis with and without antibodies to the myelin oligodendrocyte glycoprotein. J. Neurol. Neurosurg. Psychiatry 86, 265–272 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82

    Hennes, E.-M. et al. Prognostic relevance of MOG antibodies in children with an acquired demyelinating syndrome. Neurology 89, 900–908 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83

    Hacohen, Y. et al. Diagnostic algorithm for relapsing acquired demyelinating syndromes in children. Neurology 89, 269–278 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  84. 84

    Spadaro, M. et al. Autoantibodies to MOG in a distinct subgroup of adult multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 3, e257 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85

    Huppke, P. et al. Acute disseminated encephalomyelitis followed by recurrent or monophasic optic neuritis in pediatric patients. Mult. Scler. J. 19, 941–946 (2013).

    Article  Google Scholar 

  86. 86

    Hacohen, Y. et al. Myelin oligodendrocyte glycoprotein antibodies are associated with a non-MS course in children. Neurol. Neuroimmunol. Neuroinflamm. 2, e81 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Jurynczyk, M. et al. Distinct brain imaging characteristics of autoantibody-mediated CNS conditions and multiple sclerosis. Brain 140, 617–627 (2017). An example of a direct comparison between MS and antibody-mediated CNS disorders that identified imaging features that help to differentiate these disorders.

    PubMed  Article  PubMed Central  Google Scholar 

  88. 88

    Kim, H. J. et al. MRI characteristics of neuromyelitis optica spectrum disorder: an international update. Neurology 84, 1165–1173 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Flanagan, E. P. et al. Short myelitis lesions in aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders. JAMA Neurol. 72, 81–87 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  90. 90

    Jurynczyk, M., Craner, M. & Palace, J. Overlapping CNS inflammatory diseases: differentiating features of NMO and MS. J. Neurol. Neurosurg. Psychiatry 86, 20–25 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    Popescu, B. F. G. et al. Neuromyelitis optica unique area postrema lesions: nausea, vomiting, and pathogenic implications. Neurology 76, 1229–1237 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  92. 92

    Ito, S., Mori, M., Makino, T., Hayakawa, S. & Kuwabara, S. Cloud-like enhancement is a magnetic resonance imaging abnormality specific to neuromyelitis optica. Ann. Neurol. 66, 425–428 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Banker, P., Sonni, S., Kister, I., Loh, J. P. & Lui, Y. W. Pencil-thin ependymal enhancement in neuromyelitis optica spectrum disorders. Mult. Scler. J. 18, 1050–1053 (2012).

    Article  Google Scholar 

  94. 94

    Kim, W. et al. Characteristic brain magnetic resonance imaging abnormalities in central nervous system aquaporin-4 autoimmunity. Mult. Scler. 16, 1229–1236 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  95. 95

    Kitley, J. et al. Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies. JAMA Neurol. 71, 276 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  96. 96

    Jarius, S. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: brainstem involvement — frequency, presentation and outcome. J. Neuroinflamm. 13, 281 (2016).

    Article  CAS  Google Scholar 

  97. 97

    Kim, W., Kim, S.-H., Huh, S.-Y. & Kim, H. J. Brain abnormalities in neuromyelitis optica spectrum disorder. Mult. Scler. Int. 2012, 1–10 (2012).

    Article  Google Scholar 

  98. 98

    Asgari, N. et al. Disruption of the leptomeningeal blood barrier in neuromyelitis optica spectrum disorder. Neurol. Neuroimmunol. Neuroinflamm. 4, e343 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  99. 99

    Matthews, L. et al. Imaging surrogates of disease activity in neuromyelitis optica allow distinction from multiple sclerosis. PLoS ONE 10, e0137715 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100

    Calabrese, M. et al. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 135, 2952–2961 (2012).

    Article  Google Scholar 

  101. 101

    Calabrese, M. et al. No MRI evidence of cortical lesions in neuromyelitis optica. Neurology 79, 1671–1676 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  102. 102

    Popescu, B. F. G. et al. Absence of cortical demyelination in neuromyelitis optica. Neurology 75, 2103–2109 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103

    Liu, Y. et al. Differential patterns of spinal cord and brain atrophy in NMO and MS. Neurology 84, 1465–1472 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  104. 104

    Liu, Y. et al. Multimodal quantitative MR imaging of the thalamus in multiple sclerosis and neuromyelitis optica. Radiology 277, 784–792 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  105. 105

    Finke, C. et al. Normal volumes and microstructural integrity of deep gray matter structures in AQP4+ NMOSD. Neurol. Neuroimmunol. Neuroinflamm. 3, e229 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106

    Hyun, J.-W. et al. Deep gray matter atrophy in neuromyelitis optica spectrum disorder and multiple sclerosis. Eur. J. Neurol. 24, 437–445 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  107. 107

    Eshaghi, A. et al. Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest. Neurology 87, 2463–2470 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  108. 108

    Kremer, S. et al. Use of advanced magnetic resonance imaging techniques in neuromyelitis optica spectrum disorder. JAMA Neurol. 72, 815 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  109. 109

    Pichiecchio, A. et al. Advanced magnetic resonance imaging of neuromyelitis optica: a multiparametric approach. Mult. Scler. 18, 817–824 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110

    Yu, C. et al. Pathogenesis of normal-appearing white matter damage in neuromyelitis optica: diffusion-tensor MR imaging. Radiology 246, 222–228 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  111. 111

    Liu, Y. et al. A tract-based diffusion study of cerebral white matter in neuromyelitis optica reveals widespread pathological alterations. Mult. Scler. J. 18, 1013–1021 (2012).

    Article  Google Scholar 

  112. 112

    Cortese, R. The value of the central vein sign at 3T to differentiate MS from seropositive-NMOSD. Neurology https://doi.org/10.1212/WNL.0000000000005256 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  113. 113

    Ciccarelli, O. et al. Low myo-inositol indicating astrocytic damage in a case series of neuromyelitis optica. Ann. Neurol. 74, 301–305 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    de Seze, J. et al. Magnetic resonance spectroscopy evaluation in patients with neuromyelitis optica. J. Neurol. Neurosurg. Psychiatry 81, 409–411 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  115. 115

    Ramanathan, S. et al. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult. Scler. 22, 470–482 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116

    Akaishi, T. et al. MRI and retinal abnormalities in isolated optic neuritis with myelin oligodendrocyte glycoprotein and aquaporin-4 antibodies: a comparative study. J. Neurol. Neurosurg. Psychiatry 87, 446–448 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  117. 117

    Kitley, J. L., Leite, M. I., George, J. S. & Palace, J. A. The differential diagnosis of longitudinally extensive transverse myelitis. Mult. Scler. 18, 271–285 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118

    Yonezu, T. et al. 'Bright spotty lesions' on spinal magnetic resonance imaging differentiate neuromyelitis optica from multiple sclerosis. Mult. Scler. J. 20, 331–337 (2014).

    Article  Google Scholar 

  119. 119

    Pekcevik, Y. et al. Differentiating neuromyelitis optica from other causes of longitudinally extensive transverse myelitis on spinal magnetic resonance imaging. Mult. Scler. 22, 302–311 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120

    Asgari, N. et al. Modifications of longitudinally extensive transverse myelitis and brainstem lesions in the course of neuromyelitis optica (NMO): a population-based, descriptive study. BMC Neurol. 13, 33 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121

    Cassinotto, C. et al. MRI of the spinal cord in neuromyelitis optica and recurrent longitudinal extensive myelitis. J. Neuroradiol. 36, 199–205 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122

    Iorio, R. et al. Distinctive clinical and neuroimaging characteristics of longitudinally extensive transverse myelitis associated with aquaporin-4 autoantibodies. J. Neurol. 260, 2396–2402 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  123. 123

    Murchison, A., Kitley, J., Leite, M. I., Küker, W. & Palace, J. Predictive value of MRI parameters in severity and recovery of first-episode myelitis in aquaporin-4 antibody disease. J. Neurol. Sci. 355, 49–53 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  124. 124

    Zalewski, N. L. et al. Ring-enhancing spinal cord lesions in neuromyelitis optica spectrum disorders. J. Neurol. Neurosurg. Psychiatry 88, 218–225 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  125. 125

    Brownlee, W. J., Hardy, T. A., Fazekas, F. & Miller, D. H. Diagnosis of multiple sclerosis: progress and challenges. Lancet 6736, 292–302 (2016).

    Google Scholar 

  126. 126

    Ratchford, J. N. & Calabresi, P. A. The diagnosis of MS: white spots and red flags. Neurology 70, 1071–1072 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  127. 127

    Miller, D. et al. Differential diagnosis of suspected multiple sclerosis: a consensus approach. Mult. Scler. J. 14, 1157–1174 (2008).

    CAS  Article  Google Scholar 

  128. 128

    Köhler, W., Curiel, J. & Vanderver, A. Adulthood leukodystrophies. Nat. Rev. Neurol. https://doi.org/10.1038/nrneurol.2017.175 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  129. 129

    Köhler, W. Diagnostic algorithm for the differentiation of leukodystrophies in early MS. J. Neurol. 255 (Suppl.), 123–126 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  130. 130

    Tenembaum, S., Chitnis, T., Ness, J. & Hahn, J. S. Acute disseminated encephalomyelitis. Neurology 68, S23–36 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  131. 131

    Kleffner, I. et al. Diagnostic criteria for Susac syndrome. J. Neurol. Neurosurg. Psychiatry 87, 1287–1295 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  132. 132

    Park, S. E. et al. Splenial lesions of the corpus callosum: disease spectrum and MRI findings. Kor. J. Radiol. 18, 710 (2017).

    Article  Google Scholar 

  133. 133

    Bourekas, E. C. et al. Lesions of the corpus callosum: MR imaging and differential considerations in adults and children. Am. J. Roentgenol. 179, 251–257 (2002).

    Article  Google Scholar 

  134. 134

    Spatola, M. et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 88, 1012–1020 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135

    Hodel, J. et al. Punctate pattern:a promising imaging marker for the diagnosis of natalizumab-associated PML. Neurology 86, 1516–1523 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136

    Wattjes, M. P. et al. The chameleon of neuroinflammation: magnetic resonance imaging characteristics of natalizumab-associated progressive multifocal leukoencephalopathy. Mult. Scler. J. 19, 1826–1840 (2013).

    CAS  Article  Google Scholar 

  137. 137

    Wattjes, M. P. et al. Punctate lesion pattern suggestive of perivascular inflammation in acute natalizumab-associated progressive multifocal leukoencephalopathy: productive JC virus infection or preclinical PML-IRIS manifestation? J. Neurol. Neurosurg. Psychiatry 84, 1176–1177 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  138. 138

    Yousry, T. A. et al. Magnetic resonance imaging pattern in natalizumab-associated progressive multifocal leukoencephalopathy. Ann. Neurol. 72, 779–787 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139

    Wattjes, M. P. et al. MRI pattern in asymptomatic natalizumab-associated PML. J. Neurol. Neurosurg. Psychiatry 86, 793–798 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  140. 140

    Wijburg, M. T. et al. MRI criteria differentiating asymptomatic PML from new MS lesions during natalizumab pharmacovigilance. J. Neurol. Neurosurg. Psychiatry 87, 1138–1145 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  141. 141

    Gropman, A. L. Neuroimaging in mitochondrial disorders. Neurotherapeutics 10, 273–285 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  142. 142

    Honce, J. M., Nagae, L. & Nyberg, E. Neuroimaging of natalizumab complications in multiple sclerosis: PML and other associated entities. Mult. Scler. Int. 2015, 809252 (2015).

    PubMed  PubMed Central  Google Scholar 

  143. 143

    Cohen, D. et al. Brain histopathology in patients with systemic lupus erythematosus: identification of lesions associated with clinical neuropsychiatric lupus syndromes and the role of complement. Rheumatology 56, 77–86 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. 144

    Yang, E. & Prabhu, S. P. Imaging manifestations of the leukodystrophies, inherited disorders of white matter. Radiol. Clin. North Am. 52, 279–319 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  145. 145

    Martinez-Saez, E. et al. Adult onset leukodystrophy with neuroaxonal spheroids and demyelinating plaque-like lesions. Neuropathology 32, 285–292 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  146. 146

    Steiner, I. & Kennedy, P. G. E. Acute disseminated encephalomyelitis: current knowledge and open questions. J. Neurovirol. 21, 473–479 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  147. 147

    Hurley, R. A., Filley, C. M. & Taber, K. H. Central pontine myelinolysis: a metabolic disorder of myelin. J. Neuropsychiatry Clin. Neurosci. 23, 369–374 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  148. 148

    Renard, D. et al. Thalamic lesions: a radiological review. Behav. Neurol. 2014, 154631 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  149. 149

    Ayrignac, X. et al. Adult-onset genetic leukoencephalopathies: a MRI pattern-based approach in a comprehensive study of 154 patients. Brain 138, 284–292 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  150. 150

    Manzo, G. et al. MR imaging findings in alcoholic and nonalcoholic acute Wernicke's encephalopathy: a review. Biomed. Res. Int. 2014, 503596 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  151. 151

    Hebel, R., Dubaniewicz-Wybieralska, M. & Dubaniewicz, A. Overview of neurosarcoidosis: recent advances. J. Neurol. 262, 258–267 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  152. 152

    Falini, A., Kesavadas, C., Pontesilli, S., Rovaris, M. & Scotti, G. Differential diagnosis of posterior fossa multiple sclerosis lesions—neuroradiological aspects. Neurol. Sci. 22 (Suppl. 2), S79–S83 (2001).

    PubMed  Article  PubMed Central  Google Scholar 

  153. 153

    Graff-Radford, J., Schwartz, K., Gavrilova, R. H., Lachance, D. H. & Kumar, N. Neuroimaging and clinical features in type II (late-onset) Alexander disease. Neurology 82, 49–56 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  154. 154

    Mignarri, A. et al. The spectrum of magnetic resonance findings in cerebrotendinous xanthomatosis: redefinition and evidence of new markers of disease progression. J. Neurol. 264, 862–874 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  155. 155

    Frederick, M. C. & Cameron, M. H. Tumefactive demyelinating lesions in multiple sclerosis and associated disorders. Curr. Neurol. Neurosci. Rep. 16, 26 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  156. 156

    Kim, D. S. et al. Distinguishing tumefactive demyelinating lesions from glioma or central nervous system lymphoma: added value of unenhanced CT compared with conventional contrast-enhanced MR imaging. Radiology 251, 467–475 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  157. 157

    Blaabjerg, M. et al. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI. Neurol. Neuroimmunol. Neuroinflamm. 3, e226 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  158. 158

    Koedel, U., Fingerle, V. & Pfister, H.-W. Lyme neuroborreliosis-epidemiology, diagnosis and management. Nat. Rev. Neurol. 11, 446–456 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  159. 159

    Dörr, J. et al. Characteristics of Susac syndrome: a review of all reported cases. Nat. Rev. Neurol. 9, 307–316 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  160. 160

    Pichiecchio, A. et al. Bilateral trigeminal enhancement on magnetic resonance imaging in a patient with multiple sclerosis and trigeminal neuralgia. Mult. Scler. 13, 814–816 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  161. 161

    Shah, R., Roberson, G. H. & Curé, J. K. Correlation of MR imaging findings and clinical manifestations in neurosarcoidosis. AJNR Am. J. Neuroradiol. 30, 953–961 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  162. 162

    Absinta, M. et al. Leptomeningeal gadolinium enhancement across the spectrum of chronic neuroinflammatory diseases. Neurology 88, 1439–1444 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  163. 163

    Zalewski, N. L. et al. Central canal enhancement and the trident sign in spinal cord sarcoidosis. Neurology 87, 743–744 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  164. 164

    Flanagan, E. P. et al. Specific pattern of gadolinium enhancement in spondylotic myelopathy. Ann. Neurol. 76, 54–65 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  165. 165

    Bou-Haidar, P., Peduto, A. J. & Karunaratne, N. Differential diagnosis of T2 hyperintense spinal cord lesions: part A. J. Med. Imag. Radiat. Oncol. 52, 535–543 (2008).

    CAS  Article  Google Scholar 

  166. 166

    Bolamperti, L. et al. Myeloneuropathy due to copper deficiency: clinical and MRI findings after copper supplementation. Neurol. Sci. 30, 521–524 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  167. 167

    Kumar, N., Ahlskog, J. E., Klein, C. J. & Port, J. D. Imaging features of copper deficiency myelopathy: a study of 25 cases. Neuroradiology 48, 78–83 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  168. 168

    Sun, H. Y., Lee, J. W., Park, K. S., Wi, J. Y. & Kang, H. S. Spine MR imaging features of subacute combined degeneration patients. Eur. Spine J. 23, 1052–1058 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  169. 169

    Keegan, B. M. et al. Progressive solitary sclerosis: Gradual motor impairment from a single CNS demyelinating lesion. Neurology 87, 1713–1719 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  170. 170

    Kelly, S. B. et al. Using atypical symptoms and red flags to identify non-demyelinating disease. J. Neurol. Neurosurg. Psychiatry 83, 44–48 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  171. 171

    Dalmau, J. et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 127, 1831–1844 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  172. 172

    Wolf, N. I. et al. DARS-associated leukoencephalopathy can mimic a steroid-responsive neuroinflammatory disorder. Neurology 84, 226–230 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ricardo Franca for his help with the design of Figure 2.

Author information

Affiliations

Authors

Consortia

Contributions

R.G., O.C., F.B., C.E., M.H., F.P., P.P., A.R., N.E. and J.P. researched data for the article. R.G., O.C., F.B., M.F., F.P., P.P., A.R., N.E. and J.P. made substantial contributions to discussion of the content. R.G., O.C., F.B., F.P., P.P., N.E. and J.P. wrote the article. All authors reviewed and edited the article before submission.

Corresponding author

Correspondence to Jacqueline Palace.

Ethics declarations

Competing interests

M.H., G.C.D. and F.F. declare no competing interests. R.G. has received support for scientific meetings and courses and honoraria for advisory work from Bayer, Biogen, Merck, Novartis. O.C. serves as a consultant for Biogen, Novartis and General Electric, for which honoraria are all paid to the University College London Institute of Neurology. F.B. serves as a consultant for Biogen, Bayer, Genzyme, Jansen Research, Merck, Novartis, Roche, Synthon BV and Teva. N.D.S. has received honoraria from Biogen, Genzyme, Merck, Novartis, Schering and Teva for consulting services, speaking and travel support. He serves on advisory boards for Biogen, Merck and Novartis. C.E. has received funding for travel and speaker honoraria from Biogen, Bayer, Genzyme, Merck, Novartis, Shire and Teva, funding for research from Biogen, Merck and Teva, and has served on scientific advisory boards for Bayer, Biogen, Merck, Novartis, Roche and Teva. M.F. serves on a scientific advisory board for Teva, has received compensation for consulting services and/or speaking activities from Biogen, Merck, Novartis and Teva, and has received research support from Biogen, Novartis and Teva. F.P. has served on scientific advisory boards for MedImmune and the Novartis OCTIMS study, has received travel funding and/or speaker honoraria from Alexion-Chugai, Bayer, Biogen, MedImmune, Merck, Novartis, Sanofi, Shire Pharmaceuticals and Teva, has consulted for Alexion, Biogen, MedImmune, Sanofi and Shire Pharmaceuticals, and has received research support from Alexion, Bayer, Biogen, Merck, Novartis, Sanofi and Teva. P.P. has received speaker honoraria from Biogen, EXCEMED and Novartis. A.R. serves on scientific advisory boards for Novartis, OLEA Medical and Sanofi, has received speaker honoraria from Bayer, Biogen, Bracco, Merck, Novartis, Roche, Sanofi and Teva, and has research agreements with Siemens AG. L.K.'s institute (University Hospital Basel, Switzerland) has received, and used exclusively for research support, steering committee, advisory board and consultancy fees from Actelion, Addex, Bayer, Biogen, Biotica, Genzyme, Eli-Lilly, Merck, Mitsubishi, Novartis, Ono Pharma, Pfizer, Receptos, Sanofi, Santhera, Siemens, Teva, UCB and XenoPort, speaker fees from Bayer, Biogen, Merck, Novartis, Sanofi and Teva, support of educational activities from Bayer, Biogen, CSL Behring, Genzyme, Merck, Novartis, Sanofi and Teva, royalties from Neurostatus, and grants from Bayer Healthcare, Biogen, Merck, Novartis, Roche and Roche Research Foundations.T.Y. has received consultant, clinical trial or travel fees from Biogen, the European Society of Radiology, GlaxoSmithKline, IXICO, Novartis and Merck. J.F. has served on scientific advisory boards for, and received funding of travel for participation in scientific advisory boards and honoraria from, Biogen, Genzyme, Merck, Novartis, Sanofi, Takeda and Teva. C.G. has received compensation for consulting from Bayer and Biogen, and speaker fees for lectures from Biogen, Bayer, Genzyme, Merck, Novartis and Teva. C.G. has received speaker fees from Bayer, Biogen, Genzyme, Merck and Teva. J.S.-G. has received compensation for serving on scientific advisory boards or on speaker bureaus from Biogen, Merck, Novartis, Sanofi and Teva. N.E. has received honoraria from Biogen, Genzyme and Novartis for consulting services, speaking and travel support. He serves on advisory boards for Biogen, Merck and Novartis. J.P. has received support for scientific meetings and honoraria for advisory work from ABIDE, Alexion, Biogen, Bayer, Chugai Pharma, MedImmune, Merck, Novartis, Roche and Teva, and unrestricted grants from Bayer, Biogen, Merck and Novartis.

PowerPoint slides

Glossary

Dawson fingers

Elongated lesions along the subependymal veins, and thus perpendicular to the walls of the lateral ventricles, that are characteristic of MS.

Lacunae

Small (3–15 mm diameter) round or ovoid subcortical infarcts in the territory of one perforating arteriole with an MRI signal similar to that of CSF.

U-fibres

Short association fibres that connect adjacent gyri of the brain, located within the cortex or immediately beneath it in the outermost parts of the subcortical white matter.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geraldes, R., Ciccarelli, O., Barkhof, F. et al. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nat Rev Neurol 14, 199–213 (2018). https://doi.org/10.1038/nrneurol.2018.14

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing