Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging and fluid biomarkers in frontotemporal dementia

Key Points

  • Most of the validated biomarkers in frontotemporal dementia (FTD) are used to differentiate patients with FTD from patients with Alzheimer disease or from control individuals

  • Currently validated biomarkers in FTD include grey matter atrophy, alterations in brain metabolism as detected by 18F-fluorodeoxyglucose-PET and cerebrospinal fluid levels of amyloid-β1–42, phospho-tau181 and total-tau.

  • New imaging biomarkers, detected via techniques such as arterial spin labelling and diffusion tensor imaging, are sensitive to the subtle changes that precede grey matter atrophy in FTD, potentially enabling use in diagnosis and disease monitoring

  • Promising fluid biomarkers include neurofilament light chain (for staging, monitoring and prognosis in all FTD subtypes) and dipeptide-repeat proteins and progranulin (for target engagement in gene-specific forms of FTD)

  • Reliable biomarkers that differentiate between tau pathology and TDP-43 pathology are still needed, to facilitate trials of disease-modifying treatments

  • Future research should focus on the multimodal combination of fluid and imaging biomarkers, as well as the harmonization of biomarker collection and analysis protocols

Abstract

Frontotemporal dementia (FTD), the second most common type of presenile dementia, is a heterogeneous neurodegenerative disease characterized by progressive behavioural and/or language problems, and includes a range of clinical, genetic and pathological subtypes. The diagnostic process is hampered by this heterogeneity, and correct diagnosis is becoming increasingly important to enable future clinical trials of disease-modifying treatments. Reliable biomarkers will enable us to better discriminate between FTD and other forms of dementia and to predict disease progression in the clinical setting. Given that different underlying pathologies probably require specific pharmacological interventions, robust biomarkers are essential for the selection of patients with specific FTD subtypes. This Review emphasizes the increasing availability and potential applications of structural and functional imaging biomarkers, and cerebrospinal fluid and blood fluid biomarkers in sporadic and genetic FTD. The relevance of new MRI modalities — such as voxel-based morphometry, diffusion tensor imaging and arterial spin labelling — in the early stages of FTD is discussed, together with the ability of these modalities to classify FTD subtypes. We highlight promising new fluid biomarkers for staging and monitoring of FTD, and underline the importance of large, multicentre studies of individuals with presymptomatic FTD. Harmonization in the collection and analysis of data across different centres is crucial for the implementation of new biomarkers in clinical practice, and will become a great challenge in the next few years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical, pathological and genetic spectrum of FTD.
Figure 2: Grey matter atrophy in FTD.
Figure 3: Imaging abnormalities in the presymptomatic stage of genetic FTD.
Figure 4: Cerebrospinal fluid levels of neurofilament light chain.
Figure 5: Gene-specific fluid biomarkers.

Similar content being viewed by others

References

  1. Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lashley, T., Rohrer, J. D., Mead, S. & Revesz, T. Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol. Appl. Neurobiol. 41, 858–881 (2015).

    Article  PubMed  Google Scholar 

  4. Josephs, K. A. et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 122, 137–153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pottier, C., Ravenscroft, T. A., Sanchez-Contreras, M. & Rademakers, R. Genetics of FTLD: overview and what else we can expect from genetic studies. J. Neurochem. 138, 32–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. The Ronald and Nancy Reagan Research Institute of the Alzheimer's Association and the National Institute on Aging Working Group. Consensus report of the Working Group on: “molecular and biochemical markers of Alzheimer's disease”. Neurobiol. Aging 19, 109–116 (1998).

  7. Gordon, E., Rohrer, J. D. & Fox, N. C. Advances in neuroimaging in frontotemporal dementia. J. Neurochem. 138, 193–210 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Rohrer, J. D. & Rosen, H. J. Neuroimaging in frontotemporal dementia. Int. Rev. Psychiatry 25, 221–229 (2013).

    Article  PubMed  Google Scholar 

  9. Whitwell, J. L. & Josephs, K. A. Neuroimaging in frontotemporal lobar degeneration — predicting molecular pathology. Nat. Rev. Neurol. 8, 131–142 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Diehl-Schmid, J., Onur, O. A., Kuhn, J., Gruppe, T. & Drzezga, A. Imaging frontotemporal lobar degeneration. Curr. Neurol. Neurosci. Rep. 14, 489 (2014).

    Article  PubMed  Google Scholar 

  11. Harper, L. et al. MRI visual rating scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. Brain 139, 1211–1225 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schroeter, M. L. et al. Conceptualizing neuropsychiatric diseases with multimodal data-driven meta-analyses — the case of behavioral variant frontotemporal dementia. Cortex 57, 22–37 (2014).

    Article  PubMed  Google Scholar 

  13. Pan, P. L. et al. Gray matter atrophy in behavioral variant frontotemporal dementia: a meta-analysis of voxel-based morphometry studies. Dement. Geriatr. Cogn. Disord. 33, 141–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Seeley, W. W. et al. Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Arch. Neurol. 65, 249–255 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Whitwell, J. L. et al. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain 132, 2932–2946 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Whitwell, J. L. et al. Neuroimaging signatures of frontotemporal dementia genetics: C9orf72, tau, progranulin and sporadics. Brain 135, 794–806 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schroeter, M. L., Raczka, K., Neumann, J. & von Cramon, D. Y. Towards a nosology for frontotemporal lobar degenerations-a meta-analysis involving 267 subjects. Neuroimage 36, 497–510 (2007).

    Article  PubMed  Google Scholar 

  18. Gorno-Tempini, M. et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann. Neurol. 55, 335–346 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rogalski, E. et al. Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology 76, 1804–1810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumfor, F. et al. On the right side? A longitudinal study of left- versus right-lateralized semantic dementia. Brain 139, 986–998 (2016).

    Article  PubMed  Google Scholar 

  21. Rohrer, J. D. et al. Rates of hemispheric and lobar atrophy in the language variants of frontotemporal lobar degeneration. J. Alzheimer' Dis. 30, 407–411 (2012).

    Article  Google Scholar 

  22. Rohrer, J. D. et al. Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology 72, 1562–1569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rohrer, J. D. et al. Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations. Neuroimage 53, 1070–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Deters, K. D. et al. Cerebral hypometabolism and grey matter density in MAPT intron 10 + 3 mutation carriers. Am. J. Neurodegener. Dis. 3, 103–114 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Sha, S. J. et al. Frontotemporal dementia due to C9orf72 mutations: clinical and imaging features. Neurology 79, 1002–1011 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee, S. E. et al. Altered network connectivity in frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. Brain 137, 3047–3060 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Seelaar, H. et al. Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration. J. Neurol. 257, 747–753 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Josephs, K. A. et al. Caudate atrophy on MRI is a characteristic feature of FTLD-FUS. Eur. J. Neurol. 17, 969–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Whitwell, J. L. et al. Brain atrophy over time in genetic and sporadic frontotemporal dementia: a study of 198 serial magnetic resonance images. Eur. J. Neurol. 22, 745–752 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rohrer, J. D. et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet. Neurol. 14, 253–262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Caroppo, P. et al. Lateral temporal lobe: an early imaging marker of the presymptomatic GRN disease? J. Alzheimer' Dis. 47, 751–759 (2015).

    Article  CAS  Google Scholar 

  32. Lu, P. H. et al. Regional differences in white matter breakdown between frontotemporal dementia and early-onset Alzheimer's disease. J. Alzheimer' Dis. 39, 261–269 (2014).

    Article  Google Scholar 

  33. Agosta, F. et al. MRI signatures of the frontotemporal lobar degeneration continuum. Hum. Brain Mapp. 36, 2602–2614 (2015).

    Article  PubMed  Google Scholar 

  34. Mahoney, C. J. et al. Profiles of white matter tract pathology in frontotemporal dementia. Hum. Brain Mapp. 35, 4163–4179 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lam, B. Y., Halliday, G. M., Irish, M., Hodges, J. R. & Piguet, O. Longitudinal white matter changes in frontotemporal dementia subtypes. Hum. Brain Mapp. 35, 3547–3557 (2014).

    Article  PubMed  Google Scholar 

  36. Mahoney, C. J. et al. White matter tract signatures of the progressive aphasias. Neurobiol. Aging 34, 1687–1699 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dopper, E. G. P. et al. Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia. Neurology 83, e19–e26 (2014).

    Article  PubMed  Google Scholar 

  38. Schwindt, G. C. et al. Whole-brain white matter disruption in semantic and nonfluent variants of primary progressive aphasia. Hum. Brain Mapp. 34, 973–984 (2013).

    Article  PubMed  Google Scholar 

  39. Zhang, Y. et al. White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI. Brain 132, 2579–2592 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. McMillan, C. T. et al. White matter imaging contributes to the multimodal diagnosis of frontotemporal lobar degeneration. Neurology 78, 1761–1768 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mahoney, C. J. et al. Longitudinal diffusion tensor imaging in frontotemporal dementia. Ann. Neurol. 77, 33–46 (2015).

    Article  PubMed  Google Scholar 

  42. Zhang, Y. et al. MRI signatures of brain macrostructural atrophy and microstructural degradation in frontotemporal lobar degeneration subtypes. J. Alzheimer' Dis. 33, 431–444 (2013).

    Article  Google Scholar 

  43. Tu, S., Leyton, C. E., Hodges, J. R., Piguet, O. & Hornberger, M. Divergent longitudinal propagation of white matter degradation in logopenic and semantic variants of primary progressive aphasia. J. Alzheimer' Dis. 49, 853–861 (2016).

    Article  Google Scholar 

  44. Agosta, F. et al. White matter damage in frontotemporal lobar degeneration spectrum. Cereb. Cortex 22, 2705–2714 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Mcmillan, C. T. et al. The power of neuroimaging biomarkers for screening frontotemporal dementia. Hum. Brain Mapp. 35, 4827–4840 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. McMillan, C. T. et al. White matter imaging helps dissociate tau from TDP-43 in frontotemporal lobar degeneration. J. Neurol. Neurosurg. Psychiatry 84, 949–955 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Borroni, B. et al. Brain magnetic resonance imaging structural changes in a pedigree of asymptomatic progranulin mutation carriers. Rejuven. Res. 11, 585–595 (2008).

    Article  CAS  Google Scholar 

  48. Brewer, J. B. Fully-automated volumetric MRI with normative ranges: translation to clinical practice. Behav. Neurol. 21, 21–28 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jack, C. R. et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 9, 119–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morbelli, S. et al. Mapping brain morphological and functional conversion patterns in predementia late-onset bvFTD. Eur. J. Nucl. Med. Mol. Imag. 43, 1337–1347 (2016).

    Article  Google Scholar 

  51. Verfaillie, S. C. et al. Cerebral perfusion and glucose metabolism in Alzheimer's disease and frontotemporal dementia: two sides of the same coin? Eur. Radiol. 25, 3050–3059 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dukart, J. et al. Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS ONE 6, e18111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tosun, D. et al. Diagnostic utility of ASL-MRI and FDG-PET in the behavioral variant of FTD and AD. Ann. Clin. Transl Neurol. 3, 740–751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vijverberg, E. G. et al. Diagnostic accuracy of MRI and additional [18F]FDG-PET for behavioral variant frontotemporal dementia in patients with late onset behavioral changes. J. Alzheimer' Dis. 53, 1287–1297 (2016).

    Article  Google Scholar 

  55. Buhour, M.-S. et al. Pathophysiology of the behavioral variant of frontotemporal lobar degeneration: a study combining MRI and FDG-PET. Brain Imag. Behav. 1, 240–252 (2017).

    Article  Google Scholar 

  56. Diehl-Schmid, J. et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol. Aging 28, 42–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Cerami, C. et al. The role of single-subject brain metabolic patterns in the early differential diagnosis of primary progressive aphasias and in prediction of progression to dementia. J. Alzheimers. Dis. 55, 183–197 (2017).

    Article  PubMed  Google Scholar 

  58. Diehl-Schmid, J. et al. Longitudinal changes of cerebral glucose metabolism in semantic dementia. Dement. Geriatr. Cogn. Disord. 22, 346–351 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Jacova, C. et al. Anterior brain glucose hypometabolism predates dementia in progranulin mutation carriers. Neurology 81, 1322–1331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cistaro, A. et al. The metabolic signature of C9orf72-related ALS: FDG PET comparison with nonmutated patients. Eur. J. Nucl. Med. Mol. Imag. 41, 844–852 (2014).

    Article  CAS  Google Scholar 

  61. Alsop, D. C. et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the european consortium for ASL in dementia. Magn. Reson. Med. 73, 102–116 (2015).

    Article  PubMed  Google Scholar 

  62. Dopper, E. G. et al. Cerebral blood flow in presymptomatic MAPT and GRN mutation carriers: a longitudinal arterial spin labeling study. NeuroImage. Clin. 12, 460–465 (2016).

    Google Scholar 

  63. Steketee, R. M. et al. Early-stage differentiation between presenile Alzheimer's disease and frontotemporal dementia using arterial spin labeling MRI. Eur. Radiol. 26, 244–253 (2016).

    Article  PubMed  Google Scholar 

  64. Binnewijzend, M. A. et al. Distinct perfusion patterns in Alzheimer's disease, frontotemporal dementia and dementia with Lewy bodies. Eur. Radiol. 24, 2326–2333 (2014).

    Article  PubMed  Google Scholar 

  65. Du, A. T. et al. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 67, 1215–1220 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Premi, E. et al. Multimodal FMRI resting-state functional connectivity in granulin mutations: the case of fronto-parietal dementia. PLoS ONE 9, e106500 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Whitwell, J. L. et al. Altered functional connectivity in asymptomatic MAPT subjects: a comparison to bvFTD. Neurology 77, 866–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou, J. et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain 133, 1352–1367 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Filippi, M. et al. Functional network connectivity in the behavioral variant of frontotemporal dementia. Cortex 49, 2389–2401 (2013).

    Article  PubMed  Google Scholar 

  70. Day, G. S. et al. Salience Network Resting-State Activity. JAMA Neurol. 70, 1249–1253 (2013).

    PubMed  Google Scholar 

  71. Seeley, W. W. et al. Divergent social functioning in behavioral variant frontotemporal dementia and Alzheimer disease: reciprocal networks and neuronal evolution. Alzheimer Dis. Assoc. Disord. 21, S50–S57 (2007).

    Article  PubMed  Google Scholar 

  72. Rytty, R. et al. GroupICA dual regression analysis of resting state networks in a behavioral variant of frontotemporal dementia. Front. Hum. Neurosci. 7, 461 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hafkemeijer, A. et al. Resting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer's disease. Front. Hum. Neurosci. 9, 474 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Farb, N. A. S. et al. Abnormal network connectivity in frontotemporal dementia: evidence for prefrontal isolation. Cortex 49, 1856–1873 (2013).

    Article  PubMed  Google Scholar 

  75. Pievani, M., de Haan, W., Wu, T., Seeley, W. W. & Frisoni, G. B. Functional network disruption in the degenerative dementias. Lancet Neurol. 10, 829–843 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Guo, C. C. et al. Anterior temporal lobe degeneration produces widespread network-driven dysfunction. Brain 136, 2979–2991 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Agosta, F. et al. Disrupted brain connectome in semantic variant of primary progressive aphasia. Neurobiol. Aging 35, 2646–2655 (2014).

    Article  PubMed  Google Scholar 

  78. Borroni, B. et al. Granulin mutation drives brain damage and reorganization from preclinical to symptomatic FTLD. Neurobiol. Aging 33, 2506–2520 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Premi, E. et al. Looking for neuroimaging markers in frontotemporal lobar degeneration clinical trials: a multi-voxel pattern analysis study in granulin disease. J. Alzheimers. Dis. 51, 249–262 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Ishii, K. PET approaches for diagnosis of dementia. Am. J. Neuroradiol. 35, 2030–2038 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Laforce, R. et al. Parallel ICA of FDG-PET and PiB-PET in three conditions with underlying Alzheimer's pathology. NeuroImage Clin. 4, 508–516 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rabinovici, G. D. et al. Aβ amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann. Neurol. 64, 388–401 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Matías-Guiu, J. A. et al. Amyloid and FDG-PET study of logopenic primary progressive aphasia: evidence for the existence of two subtypes. J. Neurol. 262, 1463–1472 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Whitwell, J. L. et al. Clinical and neuroimaging biomarkers of amyloid-negative logopenic primary progressive aphasia. Brain Lang. 142, 45–53 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Leyton, C. E., Ballard, K. J., Piguet, O. & Hodges, J. R. Phonologic errors as a clinical marker of the logopenic variant of PPA. Neurology 82, 1620–1627 (2014).

    Article  PubMed  Google Scholar 

  86. Villemagne, V. L., Fodero-Tavoletti, M. T., Masters, C. L. & Rowe, C. C. Tau imaging: early progress and future directions. Lancet Neurol. 14, 114–124 (2015).

    Article  PubMed  Google Scholar 

  87. Smith, R. et al. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers. Brain 139, 2372–2379 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Smith, R. et al. Tau neuropathology correlates with FDG-PET, but not AV-1451-PET, in progressive supranuclear palsy. Acta Neuropathol. 133, 149–151 (2017).

    Article  PubMed  Google Scholar 

  89. Marquié, M. et al. Pathologic correlations of [F-18]-AV-1451 imaging in non-Alzheimer tauopathies. Ann. Neurol. 1, 1–29 (2016).

    Google Scholar 

  90. Ono, M. et al. Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain 140, 764–780 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Ishiki, A. et al. Tau imaging with [18F]THK-5351 in progressive supranuclear palsy. Eur. J. Neurol. 24, 130–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Kikuchi, A. et al. In vivo visualization of tau deposits in corticobasal syndrome by 18 F-THK5351 PET. Neurology 87, 2309–2316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bron, E. E. et al. Multiparametric computer-aided differential diagnosis of Alzheimer's disease and frontotemporal dementia using structural and advanced MRI. Eur. Radiol. http://dx.doi.org/10.1007/s00330-016-4691-x (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tahmasian, M. et al. Based on the network degeneration hypothesis: separating individual patients with different neurodegenerative syndromes in a preliminary hybrid PET/MR study. J. Nucl. Med. 57, 410–415 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Olsson, B. et al. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. Lancet Neurol. 4422, 1–12 (2016).

    Google Scholar 

  96. Rivero-Santana, A. et al. Cerebrospinal fluid biomarkers for the differential diagnosis between Alzheimer's disease and frontotemporal lobar degeneration: systematic review, HSROC analysis, and confounding factors. J. Alzheimers. Dis. 55, 625–644 (2017).

    Article  PubMed  Google Scholar 

  97. Struyfs, H. et al. Diagnostic accuracy of cerebrospinal fluid amyloid-β isoforms for early and differential dementia diagnosis. J. Alzheimers. Dis. 45, 813–822 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Janelidze, S. et al. CSF Aβ42/Aβ40 and Aβ42/Aβ38 ratios: better diagnostic markers of Alzheimer disease. Ann. Clin. Transl Neurol. 3, 154–165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Santangelo, R. et al. Cerebrospinal fluid biomarkers can play a pivotal role in the diagnostic work up of primary progressive aphasia. J. Alzheimers. Dis. 43, 1429–1440 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Hu, W. T. et al. Multimodal predictors for Alzheimer disease in nonfluent primary progressive aphasia. Neurology 75, 595–602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Teichmann, M. et al. Deciphering logopenic primary progressive aphasia: a clinical, imaging and biomarker investigation. Brain 136, 3474–3488 (2013).

    Article  PubMed  Google Scholar 

  102. Paraskevas, G. P. et al. Cerebrospinal fluid biomarkers as a diagnostic tool of the underlying pathology of primary progressive aphasia. J. Alzheimers. Dis. 55, 1453–1461 (2017).

    Article  PubMed  Google Scholar 

  103. Toledo, J. B. et al. CSF biomarkers cutoffs: The importance of coincident neuropathological diseases. Acta Neuropathol. 124, 23–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kamalainen, A. et al. Cerebrospinal fluid biomarkers for Alzheimer's disease in patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis with the C9orf72 repeat expansion. Dement Geriatr. Cogn. Disord. 39, 287–293 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Wallon, D. et al. Definite behavioral variant of frontotemporal dementia with C9orf72 expansions despite positive Alzheimer's disease cerebrospinal fluid biomarkers. J. Alzheimer' Dis. 32, 19–22 (2012).

    Article  CAS  Google Scholar 

  106. Carecchio, M. et al. Cerebrospinal fluid biomarkers in progranulin mutations carriers. J. Alzheimer' Dis. 27, 781–790 (2011).

    Article  CAS  Google Scholar 

  107. Rosso, S. M. et al. Total tau and phosphorylated tau 181 levels in the cerebrospinal fluid of patients with frontotemporal dementia due to P301L and G272V tau mutations. Arch. Neurol. 60, 1209–1213 (2003).

    Article  PubMed  Google Scholar 

  108. Bian, H. et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 70, 1827–1835 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hu, W. T. et al. Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP. Neurology 81, 1945–1952 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Borroni, B. et al. CSF p-tau181/tau ratio as biomarker for TDP pathology in frontotemporal dementia. Amyotroph. Lateral Scler. Frontotemporal Degener. 16, 86–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Pijnenburg, Y. A., Verwey, N. A., van der Flier, W. M., Scheltens, P. & Teunissen, C. E. Discriminative and prognostic potential of cerebrospinal fluid phosphoTau/tau ratio and neurofilaments for frontotemporal dementia subtypes. Alzheimers Dement. (Amst.) 1, 505–512 (2015).

    Google Scholar 

  112. Kuiperij, H. B. et al. Tau rather than TDP-43 proteins are potential cerebrospinal fluid biomarkers for frontotemporal lobar degeneration subtypes: a pilot study. J. Alzheimers. Dis. 55, 585–595 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Yuan, A. et al. Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo. Mol. Psychiatry 20, 986–994 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Scherling, C. S. et al. Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann. Neurol. 75, 116–126 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Meeter, L. H. et al. Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Ann. Clin. Transl Neurol. 3, 623–636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rohrer, J. D. et al. Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology 87, 1329–1336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Skillback, T. et al. CSF neurofilament light differs in neurodegenerative diseases and predicts severity and survival. Neurology 83, 1945–1953 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Landqvist Waldö, M. et al. Cerebrospinal fluid neurofilament light chain protein levels in subtypes of frontotemporal dementia. BMC Neurol. 13, 54 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wilke, C. et al. Neurofilament light chain in FTD is elevated not only in cerebrospinal fluid, but also in serum. J. Neurol. Neurosurg. Psychiatry 87, 1270–1272 (2016).

    Article  PubMed  Google Scholar 

  120. Lu, C.-H. et al. Neurofilament light chain: A prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84, 2247–2257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rojas, J. C. et al. Plasma neurofilament light chain predicts progression in progressive supranuclear palsy. Ann. Clin. Transl Neurol. 3, 216–225 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hansson, O. et al. Blood-based NfL: A biomarker for differential diagnosis of parkinsonian disorder. Neurology 88, 930–937 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Steinacker, P. et al. Diagnostic and prognostic significance of neurofilament light chain NF-L, but not progranulin and S100B, in the course of amyotrophic lateral sclerosis: data from the German MND-net. Amyotroph. Lateral Scler. Front. Degener. 18, 112–119 (2017).

    Article  CAS  Google Scholar 

  124. Bacioglu, M. et al. Neurofilament light chain in blood and CSF as marker of disease progression in mouse models and in neurodegenerative diseases. Neuron 91, 56–66 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Van Damme, P. et al. Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J. Cell Biol. 181, 37–41 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Finch, N. et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 132, 583–591 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ghidoni, R. et al. Optimal plasma progranulin cutoff value for predicting null progranulin mutations in neurodegenerative diseases: a multicenter Italian study. Neurodegener. Dis. 9, 121–127 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Meeter, L. H. et al. Progranulin levels in plasma and cerebrospinal fluid in granulin mutation carriers. Dement. Geriatr. Cogn. Dis. Extra 6, 330–340 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cenik, B. et al. Suberoylanilide hydroxamic acid (vorinostat) up-regulates progranulin transcription: rational therapeutic approach to frontotemporal dementia. J. Biol. Chem. 286, 16101–16108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Feneberg, E. et al. Progranulin as a candidate biomarker for therapeutic trial in patients with ALS and FTLD. J. Neural Transm. 123, 289–296 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Mori, K. et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Jiang, J. et al. Gain of toxicity from ALS/FTD-linked repeat expansions in C9orf72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90, 535–550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Su, Z. et al. Discovery of a biomarker and lead small molecules to target r(GGGGCC)-Associated Defects in c9FTD/ALS. Neuron 83, 1043–1050 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gendron, T. F. et al. Poly(GP) proteins are a useful pharmacodynamic marker for C9orf72 -associated amyotrophic lateral sclerosis. Sci. Transl Med. 9, eaai7866 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Suárez-Calvet, M. et al. Plasma phosphorylated TDP-43 levels are elevated in patients with frontotemporal dementia carrying a C9orf72 repeat expansion or a GRN mutation. J. Neurol. Neurosurg. Psychiatry 43, 1–8 (2013).

    Google Scholar 

  137. Goossens, J. et al. TDP-43 as a possible biomarker for frontotemporal lobar degeneration: a systematic review of existing antibodies. Acta Neuropathol. Commun. 3, 15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Heneka, M. T., Kummer, M. P. & Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 14, 463–477 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Kleinberger, G. et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl Med. 6, 243ra86 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Teunissen, C. E. et al. Novel diagnostic cerebrospinal fluid biomarkers for pathologic subtypes of frontotemporal dementia identified by proteomics. Alzheimers Dement. (Amst.) 2, 86–94 (2016).

    Google Scholar 

  141. Janelidze, S. et al. Cerebrospinal fluid neurogranin and YKL-40 as biomarkers of Alzheimer's disease. Ann. Clin. Transl Neurol. 3, 12–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Alcolea, D. et al. Relationship between β-secretase, inflammation and core cerebrospinal fluid biomarkers for Alzheimer's disease. J. Alzheimers. Dis. 42, 157–167 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Ishiki, A. et al. Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer's disease, dementia with Lewy bodies, and frontotemporal lobar degeneration. J. Neurochem. 136, 258–261 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hu, W. T. et al. Novel CSF biomarkers for frontotemporal lobar degenerations. Neurology 75, 2079–2086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Galimberti, D. et al. Intrathecal levels of IL-6, IL-11 and LIF in Alzheimer's disease and frontotemporal lobar degeneration. J. Neurol. 255, 539–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Rentzos, M. et al. Interleukin-12 is reduced in cerebrospinal fluid of patients with Alzheimer's disease and frontotemporal dementia. J. Neurol. Sci. 249, 110–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Galimberti, D. et al. Intrathecal chemokine levels in Alzheimer disease and frontotemporal lobar degeneration. Neurology 66, 146–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Gibbons, L. et al. Plasma levels of progranulin and interleukin-6 in frontotemporal lobar degeneration. Neurobiol. Aging 36, 1603.e1–4 (2015).

    Article  CAS  Google Scholar 

  150. Galimberti, D. et al. Inflammatory molecules in frontotemporal dementia: cerebrospinal fluid signature of progranulin mutation carriers. Brain. Behav. Immun. 49, 182–187 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Oeckl, P., Steinacker, P., Feneberg, E. & Otto, M. Cerebrospinal fluid proteomics and protein biomarkers in frontotemporal lobar degeneration: Current status and future perspectives. Biochim. Biophys. Acta - Proteins Proteom. 1854, 757–768 (2015).

    Article  CAS  Google Scholar 

  152. Goetzl, E. J. et al. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer's disease. FASEB J. 30, 4141–4148 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Eitan, C. & Hornstein, E. Vulnerability of microRNA biogenesis in FTD-ALS. Brain Res. 1647, 105–111 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Fourier, A. et al. Pre-analytical and analytical factors influencing Alzheimer's disease cerebrospinal fluid biomarker variability. Clin. Chim. Acta 449, 9–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Lista, S. et al. Biomarkers in sporadic and familial Alzheimer's disease. J. Alzheimer' Dis. 47, 291–317 (2015).

    Article  Google Scholar 

  156. Coyle-gilchrist, I. T. S. et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 86, 1736–1743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nilsson, C., Waldö, M. L., Nilsson, K., Santillo, A. & Vestberg, S. Age-related incidence and family history in frontotemporal dementia: data from the Swedish dementia registry. PLoS ONE 9, 4–9 (2014).

    Google Scholar 

Download references

Acknowledgements

We would like to thank S. A. Rombouts, M. W. Vernooij, and R. M. Steketee for their constructive comments on subsections of this Review. We thank C. Scherling and A. L. Boxer for the raw NfL data used to assemble Figure. 4, and T. F. Gendron and L. Petrucelli for the consent to use the poly(GP) figures. L.H.M., L.D.K. and J.C.v.S. received funding from a Memorable grant from Deltaplan Dementie (The Netherlands Organisation for Health Research and Development, and the Netherlands Alzheimer Foundation, grant number 70-73305-98-105), and the European Joint Programme — Neurodegenerative Disease Research (JPND, PreFrontALS). L.H.M. is supported by Alzheimer Nederland (grant number WE.09-2014-04). J.C.v.S. is supported by the Dioraphte Foundation. L.D.K. is supported by The Bluefield Project. J.D.R. is supported by an Medical Research Council Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the National Institute for Health Research Rare Disease Translational Research Collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. van Swieten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Primary progressive aphasia

A progressive clinical syndrome with predominant language impairment.

Progressive supranuclear palsy

A progressive atypical parkinsonism characterized by vertical supranuclear gaze palsy and postural instability with falls, often accompanied by behavioural changes.

Corticobasal syndrome

A progressive atypical parkinsonism characterized by asymmetrical cortical features (such as myoclonus, apraxia and cortical sensory deficits) and extrapyramidal features (such as rigidity and dystonia).

Frontotemporal lobar degeneration

The pathological term for a group of neurodegenerative disorders affecting the frontal and/or temporal lobes accompanied by protein inclusions (such as tau, TDP-43 or FUS).

Diffusion tensor imaging

An MRI technique that analyses microstructural white matter integrity by measuring diffusivity in different directions: axial diffusivity correlates with axonal injury, radial diffusivity with myelin breakdown, and fractional anisotropy is a composite measure that represents general white matter integrity.

Resting-state functional MRI

An MRI technique that measures functional connectivity between brain regions.

Single molecule array technology

A digital form of enzyme-linked immunosorbent assay that runs highly sensitive immunoassays to measure molecules (for example proteins) in biofluids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meeter, L., Kaat, L., Rohrer, J. et al. Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol 13, 406–419 (2017). https://doi.org/10.1038/nrneurol.2017.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.75

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research