Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human induced pluripotent stem cells for modelling neurodevelopmental disorders

Key Points

  • Human induced pluripotent stem cells (hiPSCs) are essentially equivalent to embryonic stem cells (ESCs) in that they can differentiate into any adult cell; however, unlike ESCs, hiPSCs can be derived from any somatic cell

  • hiPSCs retain the unique genetic signature of the patient whose somatic cell they were derived from and, therefore, enable us to recapitulate the patient's early development in a dish

  • In the context of neurodevelopmental disorders, hiPSCs enable us to re-enact the altered trajectory of brain development in an individual with disease and simultaneously compare it with normal brain development

  • hiPSC models of neurodevelopmental disorders have not only confirmed the results of pre-existing pathological and genetic studies, they have also elucidated previously unknown facets of these disorders' underlying biology

  • In studying abnormal brain development, hiPSCs can be differentiated into cortical neurons, dopaminergic neurons, astrocytes, etc.; one can even derive 3D organoids in which several brain cell types and tissue layers develop from precursor cells

  • The holy grail of hiPSC models would be to use them as a drug discovery and/or screening platform for neurodevelopmental disorders; promisingly, studies have already made progress towards this goal

Abstract

We currently have a poor understanding of the pathogenesis of neurodevelopmental disorders, owing to the fact that postmortem and imaging studies can only measure the postnatal status quo and offer little insight into the processes that give rise to the observed outcomes. Human induced pluripotent stem cells (hiPSCs) should, in principle, prove powerful for elucidating the pathways that give rise to neurodevelopmental disorders. hiPSCs are embryonic-stem-cell-like cells that can be derived from somatic cells. They retain the unique genetic signature of the individual from whom they were derived, and thus enable researchers to recapitulate that individual's idiosyncratic neural development in a dish. In the case of individuals with disease, we can re-enact the disease-altered trajectory of brain development and examine how and why phenotypic and molecular abnormalities arise in these diseased brains. Here, we review hiPSC biology and possible experimental designs when using hiPSCs to model disease. We then discuss existing hiPSC models of neurodevelopmental disorders. Our hope is that, as some studies have already shown, hiPSCs will illuminate the pathophysiology of developmental disorders of the CNS and lead to therapeutic options for the millions that are affected by these conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental workflow for hiPSC models of neurodevelopmental disorders.

Similar content being viewed by others

References

  1. Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009).

    PubMed  PubMed Central  Google Scholar 

  2. Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383–388 (1995).

    CAS  PubMed  Google Scholar 

  3. Spooren, W., Lindemann, L., Ghosh, A. & Santarelli, L. Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends Pharmacol. Sci. 33, 669–684 (2012).

    CAS  PubMed  Google Scholar 

  4. Ghosh, A., Michalon, A., Lindemann, L., Fontoura, P. & Santarelli, L. Drug discovery for autism spectrum disorder: challenges and opportunities. Nat. Rev. Drug Discov. 12, 777–790 (2013). A review from the perspective of the pharmaceutical industry on drug discovery and development in autism spectrum disorders.

    CAS  PubMed  Google Scholar 

  5. Dragunow, M. The adult human brain in preclinical drug development. Nat. Rev. Drug Discov. 7, 659–666 (2008).

    CAS  PubMed  Google Scholar 

  6. Dolmetsch, R. & Geschwind, D. H. The human brain in a dish: the promise of iPSC-derived neurons. Cell 145, 831–834 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Johnson, M. B. et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62, 494–509 (2009). One of the first comprehensive investigations of the transcriptome in the developing human brain.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ronald, A. & Hoekstra, R. A. Autism spectrum disorders and autistic traits: a decade of new twin studies. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B, 255–274 (2011).

  9. Ozonoff, S. et al. Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics 128, e488–e495 (2011).

    PubMed  PubMed Central  Google Scholar 

  10. Hallmayer, J. et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry 68, 1095–1102 (2011).

    PubMed  PubMed Central  Google Scholar 

  11. Greenwood, T. A. et al. Initial heritability analyses of endophenotypic measures for schizophrenia: the consortium on the genetics of schizophrenia. Arch. Gen. Psychiatry 64, 1242–1250 (2007).

    PubMed  Google Scholar 

  12. Xu, B. et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat. Genet. 43, 864–868 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  14. Schizophrenia Psychiatric Genome-Wide Association Study Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011).

  15. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ripke, S. et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 45, 1150–1159 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. O'Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. O'Roak, B. J. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338, 1619–1622 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. O'Roak, B. J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43, 585–589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. International Schizophrenia Consortium et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

  21. Bakkaloglu, B. et al. Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am. J. Hum. Genet. 82, 165–173 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ardhanareeswaran, K., Coppola, G. & Vaccarino, F. The use of stem cells to study autism spectrum disorder. Yale J. Biol. Med. 88, 5–16 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Colantuoni, C. et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478, 519–523 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fussner, E. et al. Constitutive heterochromatin reorganization during somatic cell reprogramming. EMBO J. 30, 1778–1789 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    CAS  PubMed  Google Scholar 

  26. Mattout, A., Biran, A. & Meshorer, E. Global epigenetic changes during somatic cell reprogramming to iPS cells. J. Mol. Cell Biol. 3, 341–350 (2011).

    PubMed  Google Scholar 

  27. Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang, G. & Zhang, Y. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res. 23, 49–69 (2013). A review of the epigenetic aspects of pluripotency and stem cells.

    CAS  PubMed  Google Scholar 

  29. Anokye-Danso, F. et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8, 376–388 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Carey, B. W. et al. Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell 9, 588–598 (2011).

    CAS  PubMed  Google Scholar 

  31. Buganim, Y., Faddah, D. A. & Jaenisch, R. Mechanisms and models of somatic cell reprogramming. Nat. Rev. Genet. 14, 427–439 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Choi, J. et al. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat. Biotechnol. 33, 1173–1181 (2015). The transcriptome and methylome of genetically matched hESC and hiPSC lines were compared, leading to the conclusion that hESCs and hiPSCs are molecularly and functionally equivalent.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009). The dual SMAD inhibition method was developed to induce rapid and uniform neural conversion of human pluripotent cells under adherent culture conditions.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480, 547–551 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Maroof, A. M. et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559–572 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi, Y., Kirwan, P., Smith, J., Robinson, H. P. & Livesey, F. J. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat. Neurosci. 15, 477–486 (2012).

    CAS  PubMed  Google Scholar 

  38. Shi, Y. et al. A human stem cell model of early Alzheimer's disease pathology in Down syndrome. Sci. Transl Med. 4, 124ra29 (2012).

    PubMed  PubMed Central  Google Scholar 

  39. Yoon, K. J. et al. Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell 15, 79–91 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. DeRosa, B. A. et al. Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells. Neurosci. Lett. 516, 9–14 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu, D. X. et al. Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Rep. 2, 295–310 (2014).

    CAS  Google Scholar 

  42. Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008). 3D cortical tissues were generated from mouse and human embryonic stem cells. These 3D cortical tissues have the ability to self-organize in distinct neural layers with apico-basal polarity, mimicking the early aspects of corticogenesis.

    CAS  PubMed  Google Scholar 

  43. Mariani, J. et al. Modeling human cortical development in vitro using induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 109, 12770–12775 (2012).

    CAS  PubMed  Google Scholar 

  44. Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl Acad. Sci. USA 110, 20284–20289 (2013).

    CAS  PubMed  Google Scholar 

  45. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013). Cerebral organoids in vitro system was developed containing various and discrete brain regions, such as cerebral cortex, brainstem and retina.

    CAS  PubMed  Google Scholar 

  46. Mariani, J. et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162, 375–390 (2015). Telencephalic organoids derived from hiPSCs of patients with ASD have an overproduction of GABAergic inhibitory neurons, caused by overexpression of the FOXG1 gene.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bhutani, K. et al. Whole-genome mutational burden analysis of three pluripotency induction methods. Nat. Commun. 7, 10536 (2016). Mutagenicity of three reprogramming approaches were compared: retroviral vectors, Sendai virus and synthetic mRNAs. No significant differences were detected.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng, L. et al. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell 10, 337–344 (2012). iPSC lines generated by the episomal reprogramming method were analysed. The method was found to not be mutagenic.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gore, A. et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 471, 63–67 (2011). Exomes of iPSC lines reprogrammed by five methods were studied. Few mutations observed in iPSC lines were present in founder cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Abyzov, A. et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492, 438–442 (2012). Copy number variations in iPS lines reprogrammed by two methods were studied. Few copy number variants were found in each iPSC line. These variants were found to arise from the fibroblast founder cell.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Stein, J. L. et al. A quantitative framework to evaluate modeling of cortical development by neural stem cells. Neuron 83, 69–86 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011). Postmortem brain tissue samples from patients with ASD were compared with control brains. Transcriptional alterations and splicing dysregulation in ASD suggested abnormalities in cortical patterning.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fillman, S. G. et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol. Psychiatry 18, 206–214 (2013). The transcriptome of postmortem tissue samples from the dorsolateral prefrontal cortex of individuals with schizophrenia was compared with that of matched controls. Altered inflammatory response were identified as key changes.

    CAS  PubMed  Google Scholar 

  55. Lennington, J. B. et al. Transcriptome analysis of the human striatum in Tourette syndrome. Biol. Psychiatry 79, 372–382 (2016).

    CAS  PubMed  Google Scholar 

  56. Topol, A. et al. Increased abundance of translation machinery in stem cell-derived neural progenitor cells from four schizophrenia patients. Transl Psychiatry 5, e662 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rohani, L., Johnson, A. A., Arnold, A. & Stolzing, A. The aging signature: a hallmark of induced pluripotent stem cells? Aging Cell 13, 2–7 (2014).

    CAS  PubMed  Google Scholar 

  58. Lapasset, L. et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 25, 2248–2253 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. O'Shea, K. S. & McInnis, M. G. Neurodevelopmental origins of bipolar disorder: iPSC models. Mol. Cell. Neurosci. 73, 63–83 (2016).

    CAS  PubMed  Google Scholar 

  61. Mertens, J. et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527, 95–99 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Madison, J. M. et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol. Psychiatry 20, 703–717 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, H. M. et al. Transcripts involved in calcium signaling and telencephalic neuronal fate are altered in induced pluripotent stem cells from bipolar disorder patients. Transl Psychiatry 4, e375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Neul, J. L. et al. Rett syndrome: revised diagnostic criteria and nomenclature. Ann. Neurol. 68, 944–950 (2010).

    PubMed  PubMed Central  Google Scholar 

  65. Armstrong, D. D. Neuropathology of Rett syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 8, 72–76 (2002).

    PubMed  Google Scholar 

  66. Armstrong, D. D. Neuropathology of Rett syndrome. J. Child Neurol. 20, 747–753 (2005).

    PubMed  Google Scholar 

  67. Jellinger, K. A. Rett Syndrome — an update. J. Neural. Transm. (Vienna) 110, 681–701 (2003).

    CAS  Google Scholar 

  68. Colantuoni, C. et al. Gene expression profiling in postmortem Rett syndrome brain: differential gene expression and patient classification. Neurobiol. Dis. 8, 847–865 (2001).

    CAS  PubMed  Google Scholar 

  69. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    CAS  PubMed  Google Scholar 

  70. Yogev, S. & Shen, K. Cellular and molecular mechanisms of synaptic specificity. Annu. Rev. Cell Dev. Biol. 30, 417–437 (2014).

    CAS  PubMed  Google Scholar 

  71. Caroni, P., Donato, F. & Muller, D. Structural plasticity upon learning: regulation and functions. Nat. Rev. Neurosci. 13, 478–490 (2012).

    CAS  PubMed  Google Scholar 

  72. Shen, K. & Scheiffele, P. Genetics and cell biology of building specific synaptic connectivity. Annu. Rev. Neurosci. 33, 473–507 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hotta, A. et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat. Methods 6, 370–376 (2009).

    CAS  PubMed  Google Scholar 

  74. Marchetto, M. C. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010). One of the first hiPSC models of Rett syndrome to undergo extensive phenotype characterization.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu, Z. et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 530, 98–102 (2016).

    CAS  PubMed  Google Scholar 

  76. Nageshappa, S. et al. Altered neuronal network and rescue in a human MECP2 duplication model. Mol. Psychiatry 21, 178–188 (2016).

    CAS  PubMed  Google Scholar 

  77. Han, S. S., Williams, L. A. & Eggan, K. C. Constructing and deconstructing stem cell models of neurological disease. Neuron 70, 626–644 (2011).

    CAS  PubMed  Google Scholar 

  78. Ross, W. N. Understanding calcium waves and sparks in central neurons. Nat. Rev. Neurosci. 13, 157–168 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Burgoyne, R. D. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat. Rev. Neurosci. 8, 182–193 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Budde, T., Meuth, S. & Pape, H. C. Calcium-dependent inactivation of neuronal calcium channels. Nat. Rev. Neurosci. 3, 873–883 (2002).

    CAS  PubMed  Google Scholar 

  81. Bading, H. Nuclear calcium signalling in the regulation of brain function. Nat. Rev. Neurosci. 14, 593–608 (2013).

    CAS  PubMed  Google Scholar 

  82. Ananiev, G., Williams, E. C., Li, H. & Chang, Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS ONE 6, e25255 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim, K. Y., Hysolli, E. & Park, I. H. Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proc. Natl Acad. Sci. USA 108, 14169–14174 (2011).

    CAS  PubMed  Google Scholar 

  84. Cheung, A. Y. et al. Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum. Mol. Genet. 20, 2103–2115 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Muotri, A. R. et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443–446 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tang, X. et al. KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome. Proc. Natl Acad. Sci. USA 113, 751–756 (2016).

    CAS  PubMed  Google Scholar 

  87. Livide, G. et al. GluD1 is a common altered player in neuronal differentiation from both MECP2-mutated and CDKL5-mutated iPS cells. Eur. J. Hum. Genet. 23, 195–201 (2015).

    CAS  PubMed  Google Scholar 

  88. Djuric, U. et al. MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPS cells. Neurobiol. Dis. 76, 37–45 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ben-Ari, Y., Khalilov, I., Kahle, K. T. & Cherubini, E. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18, 467–486 (2012).

    PubMed  Google Scholar 

  90. Amenduni, M. et al. iPS cells to model CDKL5-related disorders. Eur. J. Hum. Genet. 19, 1246–1255 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Patriarchi, T. et al. Imbalance of excitatory/inhibitory synaptic protein expression in iPSC-derived neurons from FOXG1 patients and in foxg1 mice. Eur. J. Hum. Genet. 24, 871–880 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Ricciardi, S. et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat. Cell Biol. 14, 911–923 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Delepine, C. et al. Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes. Hum. Mol. Genet. 25, 146–157 (2016).

    CAS  PubMed  Google Scholar 

  94. Williams, E. C. et al. Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum. Mol. Genet. 23, 2968–2980 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Cheung, A. Y., Horvath, L. M., Carrel, L. & Ellis, J. X-Chromosome inactivation in Rett syndrome human induced pluripotent stem cells. Front. Psychiatry 3, 24 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bagni, C., Tassone, F., Neri, G. & Hagerman, R. Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J. Clin. Invest. 122, 4314–4322 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zoghbi, H. Y. & Bear, M. F. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 4, a009886 (2012).

    PubMed  PubMed Central  Google Scholar 

  98. Crawford, D. C., Acuna, J. M. & Sherman, S. L. FMR1 and the fragile X syndrome: human genome epidemiology review. Genet. Med. 3, 359–371 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Willemsen, R., Oostra, B. A., Bassell, G. J. & Dictenberg, J. The fragile X syndrome: from molecular genetics to neurobiology. Ment. Retard. Dev. Disabil. Res. Rev. 10, 60–67 (2004).

    PubMed  Google Scholar 

  100. Wang, T., Bray, S. M. & Warren, S. T. New perspectives on the biology of fragile X syndrome. Curr. Opin. Genet. Dev. 22, 256–263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sidorov, M. S., Auerbach, B. D. & Bear, M. F. Fragile X mental retardation protein and synaptic plasticity. Mol. Brain 6, 15 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Eiges, R. et al. Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1, 568–577 (2007).

    CAS  PubMed  Google Scholar 

  103. Urbach, A., Bar-Nur, O., Daley, G. Q. & Benvenisty, N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6, 407–411 (2010). One of the first hiPSC models of fragile X syndrome to undergo extensive phenotype characterization.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Doers, M. E. et al. iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth. Stem Cells Dev. 23, 1777–1787 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sheridan, S. D. et al. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS ONE 6, e26203 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Uutela, M. et al. Reduction of BDNF expression in Fmr1 knockout mice worsens cognitive deficits but improves hyperactivity and sensorimotor deficits. Genes Brain Behav. 11, 513–523 (2012).

    CAS  PubMed  Google Scholar 

  107. Louhivuori, V. et al. BDNF and TrkB in neuronal differentiation of Fmr1-knockout mouse. Neurobiol. Dis. 41, 469–480 (2011).

    CAS  PubMed  Google Scholar 

  108. Castren, M. et al. Altered differentiation of neural stem cells in fragile X syndrome. Proc. Natl Acad. Sci. USA 102, 17834–17839 (2005).

    CAS  PubMed  Google Scholar 

  109. Halevy, T., Czech, C. & Benvenisty, N. Molecular mechanisms regulating the defects in fragile X syndrome neurons derived from human pluripotent stem cells. Stem Cell Rep. 4, 37–46 (2015).

    CAS  Google Scholar 

  110. Kaufmann, M. et al. High-throughput screening using iPSC-derived neuronal progenitors to identify compounds counteracting epigenetic gene silencing in fragile X syndrome. J. Biomol. Screen. 20, 1101–1111 (2015).

    CAS  PubMed  Google Scholar 

  111. Kumari, D. et al. High-throughput screening to identify compounds that increase fragile X mental retardation protein expression in neural stem cells differentiated from fragile X syndrome patient-derived induced pluripotent stem cells. Stem Cells Transl Med. 4, 800–808 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, M. et al. Establishment of reporter lines for detecting fragile X mental retardation (FMR1) gene reactivation in human neural cells. Stem Cells 35, 158–169 (2017).

    CAS  PubMed  Google Scholar 

  113. Bar-Nur, O., Caspi, I. & Benvenisty, N. Molecular analysis of FMR1 reactivation in fragile-X induced pluripotent stem cells and their neuronal derivatives. J. Mol. Cell Biol. 4, 180–183 (2012).

    PubMed  Google Scholar 

  114. Park, C. Y. et al. Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell Rep. 13, 234–241 (2015).

    CAS  PubMed  Google Scholar 

  115. Pasca, S. P. et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat. Med. 17, 1657–1662 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Tian, Y. et al. Alteration in basal and depolarization induced transcriptional network in iPSC derived neurons from Timothy syndrome. Genome Med. 6, 75 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. Krey, J. F. et al. Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat. Neurosci. 16, 201–209 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kay, S. R., Fiszbein, A. & Opler, L. A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276 (1987).

    CAS  PubMed  Google Scholar 

  119. Malkki, H. Neurodevelopmental disorders. Altered epigenetic regulation in early development associated with schizophrenia. Nat. Rev. Neurol. 12, 1 (2016).

    PubMed  Google Scholar 

  120. Gulsuner, S. et al. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154, 518–529 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Jaffe, A. E. et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat. Neurosci. 19, 40–47 (2016).

    CAS  PubMed  Google Scholar 

  122. Goldman-Rakic, P. S. & Selemon, L. D. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr. Bull. 23, 437–458 (1997).

    CAS  PubMed  Google Scholar 

  123. Selemon, L. D. & Goldman-Rakic, P. S. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol. Psychiatry 45, 17–25 (1999).

    CAS  PubMed  Google Scholar 

  124. Rajkowska, G., Selemon, L. D. & Goldman-Rakic, P. S. Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch. Gen. Psychiatry 55, 215–224 (1998).

    CAS  PubMed  Google Scholar 

  125. Brennand, K. J. & Gage, F. H. Beyond phenotype: the promise of hiPSC-based studies of schizophrenia. Stem Cells 29, 1915–1922 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wong, A. H. & Van Tol, H. H. Schizophrenia: from phenomenology to neurobiology. Neurosci. Biobehav. Rev. 27, 269–306 (2003).

    PubMed  Google Scholar 

  127. Javitt, D. C. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int. Rev. Neurobiol. 78, 69–108 (2007).

    CAS  PubMed  Google Scholar 

  128. Javitt, D. C. Glutamatergic theories of schizophrenia. Isr. J. Psychiatry Relat. Sci. 47, 4–16 (2010).

    PubMed  Google Scholar 

  129. Moghaddam, B., Adams, B., Verma, A. & Daly, D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci. 17, 2921–2927 (1997).

    CAS  PubMed  Google Scholar 

  130. Brennand, K. J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 (2011). One of the first hiPSC models of idiopathic schizophrenia to undergo extensive phenotype characterization.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Brennand, K. et al. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol. Psychiatry 20, 361–368 (2015).

    CAS  PubMed  Google Scholar 

  132. Zhao, D. et al. MicroRNA Profiling of neurons generated using induced pluripotent stem cells derived from patients with schizophrenia and schizoaffective disorder, and 22q11.2 del. PLoS ONE 10, e0132387 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. Wen, Z. et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 515, 414–418 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Robicsek, O. et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol. Psychiatry 18, 1067–1076 (2013).

    CAS  PubMed  Google Scholar 

  135. Bundo, M. et al. Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81, 306–313 (2014).

    CAS  PubMed  Google Scholar 

  136. Hook, V. et al. Human iPSC neurons display activity-dependent neurotransmitter secretion: aberrant catecholamine levels in schizophrenia neurons. Stem Cell Rep. 3, 531–538 (2014).

    CAS  Google Scholar 

  137. Parikshak, N. N. et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155, 1008–1021 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Willsey, A. J. et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155, 997–1007 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 (2002).

    CAS  PubMed  Google Scholar 

  140. Tang, G. et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83, 1131–1143 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Casanova, M. F. et al. Minicolumnar abnormalities in autism. Acta Neuropathol. 112, 287–303 (2006).

    PubMed  Google Scholar 

  142. Stoner, R. et al. Patches of disorganization in the neocortex of children with autism. N. Engl. J. Med. 370, 1209–1219 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Casanova, M. F. et al. Focal cortical dysplasias in autism spectrum disorders. Acta Neuropathol. Commun. 1, 67 (2013).

    PubMed  PubMed Central  Google Scholar 

  144. Marchetto, M. C. et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2016.95 (2016).

  145. Chenn, A. & Walsh, C. A. Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. Cereb. Cortex 13, 599–606 (2003).

    PubMed  Google Scholar 

  146. Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    CAS  PubMed  Google Scholar 

  147. Bernier, R. et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158, 263–276 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Cotney, J. et al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat. Commun. 6, 6404 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sugathan, A. et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc. Natl Acad. Sci. USA 111, e4468–e4477 (2014).

    CAS  PubMed  Google Scholar 

  150. Griesi-Oliveira, K. et al. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol. Psychiatry 20, 1350–1365 (2015).

    CAS  PubMed  Google Scholar 

  151. Wang, P. et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Mol. Autism 6, 55 (2015).

    PubMed  PubMed Central  Google Scholar 

  152. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Marshall, C. R. et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82, 477–488 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Levy, D. et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 70, 886–897 (2011).

    CAS  PubMed  Google Scholar 

  156. Glessner, J. T. et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459, 569–573 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Chailangkarn, T. et al. A human neurodevelopmental model for Williams syndrome. Nature 536, 338–343 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Khattak, S. et al. Human induced pluripotent stem cell derived neurons as a model for Williams–Beuren syndrome. Mol. Brain 8, 77 (2015).

    PubMed  PubMed Central  Google Scholar 

  160. Tang, H. et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18, 587–590 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhang, F. et al. Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Res. 44, 8610–8620 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Simonin, Y. et al. Zika virus strains potentially display different infectious profiles in human neural cells. EBioMedicine 12, 161–169 (2016).

    PubMed  PubMed Central  Google Scholar 

  163. Liang, Q. et al. Zika virus NS4A and NS4B proteins deregulate Akt–mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19, 663–671 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Garcez, P. P. et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 352, 816–818 (2016).

    CAS  PubMed  Google Scholar 

  165. Dang, J. et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19, 258–265 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Cugola, F. R. et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534, 267–271 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Brault, J. B. et al. Comparative analysis between flaviviruses reveals specific neural stem cell tropism for Zika virus in the mouse developing neocortex. EBioMedicine 10, 71–76 (2016).

    PubMed  PubMed Central  Google Scholar 

  168. Ming, G. L., Tang, H. & Song, H. Advances in Zika virus research: stem cell models, challenges, and opportunities. Cell Stem Cell 19, 690–702 (2016). A highly topical review demonstrating the power of hiPSCs in modelling environmental disorders such as Zika virus infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. von Bartheld, C. S., Bahney, J. & Herculano-Houzel, S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol. 524, 3865–3895 (2016).

    PubMed  PubMed Central  Google Scholar 

  170. Lee, G. et al. Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat. Biotechnol. 30, 1244–1248 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Fattahi, F. et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531, 105–109 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Egawa, N. et al. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl Med. 4, 145ra104 (2012).

    PubMed  Google Scholar 

  173. Xu, X. et al. Prevention of beta-amyloid induced toxicity in human iPS cell-derived neurons by inhibition of Cyclin-dependent kinases and associated cell cycle events. Stem Cell Res. 10, 213–227 (2013).

    CAS  PubMed  Google Scholar 

  174. Hoing, S. et al. Discovery of inhibitors of microglial neurotoxicity acting through multiple mechanisms using a stem-cell-based phenotypic assay. Cell Stem Cell 11, 620–632 (2012).

    PubMed  Google Scholar 

  175. Kimbrel, E. A. & Lanza, R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat. Rev. Drug Discov. 14, 681–692 (2015).

    CAS  PubMed  Google Scholar 

  176. Xu, R. H. et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20, 1261–1264 (2002).

    CAS  PubMed  Google Scholar 

  177. Chin, M. H., Pellegrini, M., Plath, K. & Lowry, W. E. Molecular analyses of human induced pluripotent stem cells and embryonic stem cells. Cell Stem Cell 7, 263–269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Guenther, M. G. et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7, 249–257 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Efroni, S. et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2, 437–447 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Meshorer, E. & Misteli, T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat. Rev. Mol. Cell Biol. 7, 540–546 (2006).

    CAS  PubMed  Google Scholar 

  181. Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996).

    CAS  Google Scholar 

  183. Papp, B. & Plath, K. Epigenetics of reprogramming to induced pluripotency. Cell 152, 1324–1343 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Tchieu, J. et al. Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7, 329–342 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Mekhoubad, S. et al. Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell 10, 595–609 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Sander, J. D. & Joung, J. K. CRISPR–Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Heidenreich, M. & Zhang, F. Applications of CRISPR–Cas systems in neuroscience. Nat. Rev. Neurosci. 17, 36–44 (2016).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote the article and reviewed and/or edited the manuscript before submission. F.M.V. and K.A. made substantial contributions to discussion of the content.

Corresponding author

Correspondence to Flora M. Vaccarino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

hiPSC models of Rett syndrome (PDF 227 kb)

Supplementary information S2 (table)

hiPSC models of fragile X syndrome (PDF 204 kb)

Supplementary information S3 (table)

hiPSC models of Timothy syndrome (PDF 137 kb)

Supplementary information S4 (table)

hiPSC models of autism spectrum disorder (PDF 177 kb)

Supplementary information S5 (table)

hiPSC models of schizophrenia (PDF 206 kb)

PowerPoint slides

Glossary

Preimplantation genetic diagnosis

Screening test used in embryos produced by in vitro fertilization to detect genetic and/or chromosomal disorders.

Somatic cell

Any cell that is not a germ cell (sperm or oocyte) or a one-cell embryo (zygote).

Dual SMAD inhibition method

Method to achieve efficient neural induction of pluripotent stem cells by the synergistic action of two inhibitors of SMAD signalling: Noggin, an inhibitor of bone morphogenetic protein, and SB compound, an inhibitor of lefty–activin–TGFβ pathways.

Isogenic controls

Controls with identical genetic backgrounds as the experimental sample, except for the gene under investigation.

L1 retrotranspositions

Phenomena in which a segment of DNA (known as a retrotransposon) is transcribed into RNA and subsequently reverse-transcribed back into the original DNA sequence, which can be newly inserted into other parts of the genome.

Non-cell-autonomous disorder

A disorder in which mutant cells cause nonmutant cells to exhibit a mutant phenotype.

Tyrosine hydroxylase

An enzyme that converts the amino acid tyrosine to the dopamine precursor, DOPA.

PSD95-protein

Postsynaptic density protein 95 (involved in signalling).

Macrocephaly

An abnormally large head circumference as a result of increased brain size; one of the most consistently replicated phenotypes in ASD, and associated with more-severe symptoms and poorer outcomes.

Canonical β-catenin–BRN2 cascade

Intracellular signalling pathway triggered by the binding of Wnt (Wingless-related integration site) protein to its receptor, culminating with the translocation of the protein β-catenin into the nucleus to act as a transcriptional co-activator of transcription factors that belong to the TCF/LEF family; the gene BRN2 is thought to be a transcriptional target for β-catenin.

Balanced translocation

Chromosomal abnormality in which two nonhomologous chromosomes exchange material in equal amounts (as opposed to unbalanced translocation where the amount of material exchanged is unequal).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardhanareeswaran, K., Mariani, J., Coppola, G. et al. Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nat Rev Neurol 13, 265–278 (2017). https://doi.org/10.1038/nrneurol.2017.45

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.45

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing