Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adulthood leukodystrophies

Key Points

  • Leukodystrophies are a heterogeneous group of inherited disorders with highly variable clinical manifestations and pathogenetic background

  • Leukodystrophies are characterized by primary glial cell and myelin sheath pathology of variable aetiology; secondary axonal pathology can emerge as the disease progresses

  • Around 20 distinct disorders are currently defined as adulthood leukodystrophies; additional involvement of grey matter structures or non-cerebral organs distinguishes these conditions from other genetic leukoencephalopathies

  • Increasing numbers of individual leukodystrophies are being treated using metabolic treatment strategies, enzyme replacement or cell-based options such as allogeneic haematopoietic stem cell transplantation and gene therapy

Abstract

The leukodystrophies are a group of inherited white matter disorders with a heterogeneous genetic background, considerable phenotypic variability and disease onset at all ages. This Review focuses on leukodystrophies with major prevalence or primary onset in adulthood. We summarize 20 leukodystrophies with adult presentations, providing information on the underlying genetic mutations and on biochemical assays that aid diagnosis, where available. Definitions, clinical characteristics, age of onset, MRI findings and treatment options are all described, providing a comprehensive overview of the current knowledge of the various adulthood leukodystrophies. We highlight the distinction between adult-onset leukodystrophies and other inherited disorders with white matter involvement, and we propose a diagnostic pathway for timely recognition of adulthood leukodystrophies in a routine clinical setting. In addition, we provide detailed clinical information on selected adult-onset leukodystrophies, including X-linked adrenoleukodystrophy, metachromatic leukodystrophy, cerebrotendinous xanthomatosis, hereditary diffuse leukoencephalopathy with axonal spheroids, autosomal dominant adult-onset demyelinating leukodystrophy, adult polyglucosan body disease, and leukoencephalopathy with vanishing white matter. Ultimately, this Review aims to provide helpful suggestions to identify treatable adulthood leukodystrophies at an early stage in the disease course.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2: Characteristic MRI features of adult leukodystrophies.

References

  1. 1

    Vanderver, A. et al. Case definition and classification of leukodystrophies and leukoencephalopathies. Mol. Genet. Metab. 114, 494–500 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Parikh, S. et al. A clinical approach to the diagnosis of patients with leukodystrophies and genetic leukoencephelopathies. Mol. Genet. Metab. 114, 501–515 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Ahmed, R. M. et al. A practical approach to diagnosing adult onset leukodystrophies. J. Neurol. Neurosurg. Psychiatry 85, 770–781 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Kohlschutter, A. & Eichler, F. Childhood leukodystrophies: a clinical perspective. Expert Rev. Neurother. 11, 1485–1496 (2011).

    Article  Google Scholar 

  5. 5

    Van der Knaap, M. S. & Buguani, M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol. 134, 351–182 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Schiffmann, R. & van der Knaap, M. S. Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 72, 750–759 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Pouwels, P. J. et al. Hypomyelinating leukodystrophies: translational research progress and prospects. Ann. Neurol. 76, 15–19 (2014).

    Article  Google Scholar 

  8. 8

    Steenweg, M. E. et al. Magnetic resonance imaging pattern recognition in hypomyelinating disorders. Brain 133, 2971–2982 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Di Rocco, M., Doria-Lamba, L. & Caruso, U. Monozygotic twins with X-linked adrenoleukodystrophy and different phenotypes. Ann. Neurol. 50, 424 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Moser, H. W. Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain 120, 1485–1508 (1997).

    Article  Google Scholar 

  11. 11

    Hellmann, M. A. et al. Frequent misdiagnosis of adult polyglucosan body disease. J. Neurol. 262, 2346–2351 (2015).

    Article  Google Scholar 

  12. 12

    von Figura, K., Steckel, F., Conary, J., Hasilik, A. & Shaw, E. Heterogeneity in late-onset metachromatic leukodystrophy. Effect of inhibitors of cysteine proteinases. Am. J. Hum. Genet. 39, 371–382 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Lopez-Hernandez, T. et al. Mutant GlialCAM causes megalencephalic leukoencephalopathy with subcortical cysts, benign familial macrocephaly, and macrocephaly with retardation and autism. Am. J. Hum. Genet. 88, 422–432 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Schmahmann, J. D., Smith, E. E., Eichler, F. S. & Filley, C. M. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann. NY Acad. Sci. 1142, 266–309 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Adang, L. A. et al. Revised consensus statement on the preventive and symptomatic care of patients with leukodystrophies. Mol. Genet. Metab. 122, 18–32 (2017).

    CAS  Article  Google Scholar 

  16. 16

    Heim, P. et al. Leukodystrophy incidence in Germany. Am. J. Med. Genet. 71, 475–478 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Bonkowsky, J. L. et al. The burden of inherited leukodystrophies in children. Neurology 75, 718–725 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Bezman, L. et al. Adrenoleukodystrophy: incidence, new mutation rate, and results of extended family screening. Ann. Neurol. 49, 512–517 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Vanderver, A., Hussey, H., Schmidt, J. L., Pastor, W. & Hoffman, H. J. Relative incidence of inherited white matter disorders in childhood to acquired pediatric demyelinating disorders. Semin. Pediatr. Neurol. 19, 219–223 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Ayrignac, X. et al. Adult-onset genetic leukoencephalopathies: a MRI pattern-based approach in a comprehensive study of 154 patients. Brain 138, 284–292 (2015).

    Article  Google Scholar 

  21. 21

    van der Knaap, M. S., Breiter, S. N., Naidu, S., Hart, A. A. & Valk, J. Defining and categorizing leukoencephalopathies of unknown origin: MR imaging approach. Radiology 213, 121–133 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E. & Bousser, M. G. CADASIL Lancet Neurol. 8, 643–653 (2009).

    Article  Google Scholar 

  23. 23

    Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Loes, D. J. et al. Adrenoleukodystrophy: a scoring method for brain MR observations. AJNR Am. J. Neuroradiol. 15, 1761–1766 (1994).

    CAS  Google Scholar 

  25. 25

    Vanderver, A. et al. Whole exome sequencing in patients with white matter abnormalities. Ann. Neurol. 79, 1031–1037 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Kevelam, S. H. et al. Update on leukodystrophies: a historical perspective and adapted definition. Neuropediatrics 47, 349–354 (2016).

    Article  Google Scholar 

  27. 27

    Mosser, J. et al. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361, 726–730 (1993).

    CAS  Article  Google Scholar 

  28. 28

    Moser, H. W. et al. Adrenoleukodystrophy: elevated C26 fatty acid in cultured skin fibroblasts. Ann. Neurol. 7, 542–549 (1980).

    CAS  Article  Google Scholar 

  29. 29

    Berger, J., Forss-Petter, S. & Eichler, F. S. Pathophysiology of X-linked adrenoleukodystrophy. Biochimie 98, 135–142 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Kemp, S., Huffnagel, I. C., Linthorst, G. E., Wanders, R. J. & Engelen, M. Adrenoleukodystrophy — neuroendocrine pathogenesis and redefinition of natural history. Nat. Rev. Endocrinol. 12, 606–615 (2016).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Peters, C. et al. Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood 104, 881–888 (2004).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Kühl, J. S. et al. Long-term outcomes of allogeneic haematopoietic stem cell transplantation for adult cerebral X-linked adrenoleukodystrophy. Brain 140, 953–966 (2017).

    PubMed  Article  Google Scholar 

  33. 33

    van Geel, B. M. et al. Hematopoietic cell transplantation does not prevent myelopathy in X-linked adrenoleukodystrophy: a retrospective study. J. Inherit. Metab. Dis. 38, 359–361 (2015).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Cartier, N. et al. Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy. Methods Enzymol. 507, 187–198 (2012).

    CAS  Article  Google Scholar 

  35. 35

    Eichler, F. et al. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N. Engl. J. Med. 377, 1630–1638 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Engelen, M. Optimizing treatment for cerebral adrenoleukodystrophy in the era of gene therapy. N. Engl. J. Med. 377, 1682–1684 (2017).

    PubMed  Article  Google Scholar 

  37. 37

    Semmler, A., Kohler, W., Jung, H. H., Weller, M. & Linnebank, M. Therapy of X-linked adrenoleukodystrophy. Expert Rev. Neurother. 8, 1367–1379 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Sedel, F., Bernard, D., Mock, D. M. & Tourbah, A. Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis. Neuropharmacology 110, 644–653 (2016).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Morato, L. et al. Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy. Brain 136, 2432–2443 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Hubbard, W. C. et al. Newborn screening for X-linked adrenoleukodystrophy (X-ALD): validation of a combined liquid chromatography-tandem mass spectrometric (LC-MS/MS) method. Mol. Genet. Metab. 97, 212–220 (2009).

    CAS  Article  Google Scholar 

  41. 41

    Theda, C. et al. Newborn screening for X-linked adrenoleukodystrophy: further evidence high throughput screening is feasible. Mol. Genet. Metab. 111, 55–57 (2014).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Baumann, N. et al. Adult forms of metachromatic leukodystrophy: clinical and biochemical approach. Dev. Neurosci. 13, 211–215 (1991).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Betts, T. A., Smith, W. T. & Kelly, R. E. Adult metachromatic leukodystrophy (sulphatide lipidosis) simulating acute schizophrenia. Report of a case. Neurology 18, 1140–1142 (1968).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Gieselmann, V., Fluharty, A. L., Tonnesen, T. & Von Figura, K. Mutations in the arylsulfatase A pseudodeficiency allele causing metachromatic leukodystrophy. Am. J. Hum. Genet. 49, 407–413 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    van Rappard, D. F. et al. Gallbladder and the risk of polyps and carcinoma in metachromatic leukodystrophy. Neurology 87, 103–111 (2016).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Cesani, M. et al. Mutation update of ARSA and PSAP genes causing metachromatic leukodystrophy. Hum. Mutat. 37, 16–27 (2016).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Matthes, F. et al. Efficacy of enzyme replacement therapy in an aggravated mouse model of metachromatic leukodystrophy declines with age. Hum. Mol. Genet. 21, 2599–2609 (2012).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01510028?term=NCT01510028&rank=1 (2017).

  49. 49

    Krivit, W., Peters, C. & Shapiro, E. G. Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux–Lamy, and Sly syndromes, and Gaucher disease type III. Curr. Opin. Neurol. 12, 167–176 (1999).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Sevin, C., Aubourg, P. & Cartier, N. Enzyme, cell and gene-based therapies for metachromatic leukodystrophy. J. Inherit. Metab. Dis. 30, 175–183 (2007).

    CAS  Article  Google Scholar 

  51. 51

    Bredius, R. G. et al. Early marrow transplantation in a pre-symptomatic neonate with late infantile metachromatic leukodystrophy does not halt disease progression. Bone Marrow Transplant. 39, 309–310 (2007).

    CAS  Article  Google Scholar 

  52. 52

    van Egmond, M. E. et al. Improvement of white matter changes on neuroimaging modalities after stem cell transplant in metachromatic leukodystrophy. JAMA Neurol. 70, 779–782 (2013).

    Article  Google Scholar 

  53. 53

    van Rappard, D. F., Boelens, J. J. & Wolf, N. I. Metachromatic leukodystrophy: disease spectrum and approaches for treatment. Best Pract. Res. Clin. Endocrinol. Metab. 29, 261–273 (2015).

    Article  Google Scholar 

  54. 54

    Boucher, A. A. et al. Long-term outcomes after allogeneic hematopoietic stem cell transplantation for metachromatic leukodystrophy: the largest single-institution cohort report. Orphanet J. Rare Dis. 10, 94 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Groeschel, S. et al. Long-term Outcome of allogeneic hematopoietic stem cell transplantation in patients with juvenile metachromatic leukodystrophy compared with nontransplanted control patients. JAMA Neurol. 73, 1133–1140 (2016).

    Article  Google Scholar 

  56. 56

    Sessa, M. et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet 388, 476–487 (2016).

    CAS  Article  Google Scholar 

  57. 57

    Dotti, M. T., Rufa, A. & Federico, A. Cerebrotendinous xanthomatosis: heterogeneity of clinical phenotype with evidence of previously undescribed ophthalmological findings. J. Inherit. Metab. Dis. 24, 696–706 (2001).

    CAS  Article  Google Scholar 

  58. 58

    Verrips, A. et al. Spinal xanthomatosis: a variant of cerebrotendinous xanthomatosis. Brain 122, 1589–1595 (1999).

    Article  Google Scholar 

  59. 59

    Bjorkhem, I. et al. Role of the 26-hydroxylase in the biosynthesis of bile acids in the normal state and in cerebrotendinous xanthomatosis. An in vivo study. J. Clin. Invest. 71, 142–148 (1983).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Koopman, B. J. et al. Cerebrotendinous xanthomatosis: a review of biochemical findings of the patient population in The Netherlands. J. Inherit. Metab. Dis. 11, 56–75 (1988).

    CAS  Article  Google Scholar 

  61. 61

    Federico, A., Dotti, M. T. & Gallus, G. N. Cerebrotendinous xanthomatosis. GeneReviews http://www.ncbi.nlm.nih.gov/books/NBK1409/ (updated 14 April 2016).

  62. 62

    Nie, S., Chen, G., Cao, X. & Zhang, Y. Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J. Rare Dis. 9, 179 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Freeman, S. H. et al. Adult onset leukodystrophy with neuroaxonal spheroids: clinical, neuroimaging and neuropathologic observations. Brain Pathol. 19, 39–47 (2009).

    Article  Google Scholar 

  64. 64

    Sundal, C. et al. Parkinsonian features in hereditary diffuse leukoencephalopathy with spheroids (HDLS) and CSF1R mutations. Parkinsonism Relat. Disord. 19, 869–877 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Rademakers, R. et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat. Genet. 44, 200–205 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66

    Sundal, C. et al. Hereditary diffuse leukoencephalopathy with spheroids with phenotype of primary progressive multiple sclerosis. Eur. J. Neurol. 22, 328–333 (2015).

    Article  Google Scholar 

  67. 67

    Eichler, F. S. et al. CSF1R mosaicism in a family with hereditary diffuse leukoencephalopathy with spheroids. Brain 139, 1666–1672 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Padiath, Q. S. et al. Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat. Genet. 38, 1114–1123 (2006).

    CAS  Article  Google Scholar 

  69. 69

    Schuster, J. et al. Genomic duplications mediate overexpression of lamin B1 in adult-onset autosomal dominant leukodystrophy (ADLD) with autonomic symptoms. Neurogenetics 12, 65–72 (2011).

    CAS  Article  Google Scholar 

  70. 70

    Eldridge, R. et al. Hereditary adult-onset leukodystrophy simulating chronic progressive multiple sclerosis. N. Engl. J. Med. 311, 948–953 (1984).

    CAS  Article  Google Scholar 

  71. 71

    van der Knaap, M. S. et al. A new leukoencephalopathy with vanishing white matter. Neurology 48, 845–855 (1997).

    CAS  Article  Google Scholar 

  72. 72

    Schiffmann, R. et al. Childhood ataxia with diffuse central nervous system hypomyelination. Ann. Neurol. 35, 331–340 (1994).

    CAS  Article  Google Scholar 

  73. 73

    van der Knaap, M. S., Pronk, J. C. & Scheper, G. C. Vanishing white matter disease. Lancet Neurol. 5, 413–423 (2006).

    CAS  Article  Google Scholar 

  74. 74

    Labauge, P. et al. Natural history of adult-onset eIF2B-related disorders: a multi-centric survey of 16 cases. Brain 132, 2161–2169 (2009).

    Article  Google Scholar 

  75. 75

    Fogli, A. et al. Ovarian failure related to eukaryotic initiation factor 2B mutations. Am. J. Hum. Genet. 72, 1544–1550 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Mochel, F. et al. Adult polyglucosan body disease: natural history and key magnetic resonance imaging findings. Ann. Neurol. 72, 433–441 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Klein, C. J. Adult polyglucosan body disease. GeneReviews http://www.ncbi.nlm.nih.gov/books/NBK5300/ (updated 2 April 2009).

  78. 78

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00947960?term=NCT00947960&rank=1 (2016).

  79. 79

    Roe, C. R., Bottiglieri, T., Wallace, M., Arning, E. & Martin, A. Adult polyglucosan body disease (APBD): anaplerotic diet therapy (triheptanoin) and demonstration of defective methylation pathways. Mol. Genet. Metab. 101, 246–252 (2010).

    CAS  Article  Google Scholar 

  80. 80

    Helman, G. et al. Disease specific therapies in leukodystrophies and leukoencephalopathies. Mol. Genet. Metab. 114, 527–536 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    van der Knaap, M. S. et al. New syndrome characterized by hypomyelination with atrophy of the basal ganglia and cerebellum. AJNR Am. J. Neuroradiol. 23, 1466–1474 (2002).

    Google Scholar 

  82. 82

    Garbern, J. Y. et al. Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain 125, 551–561 (2002).

    Article  Google Scholar 

  83. 83

    Uhlenberg, B. et al. Mutations in the gene encoding gap junction protein α12 (connexin 46.6) cause Pelizaeus–Merzbacher-like disease. Am. J. Hum. Genet. 75, 251–260 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Wolf, N. I. et al. Clinical spectrum of 4H leukodystrophy caused by POLR3A and POLR3B mutations. Neurology 83, 1898–1905 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85

    Dallabona, C. et al. Novel (ovario) leukodystrophy related to AARS2 mutations. Neurology 82, 2063–2071 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Balbi, P. et al. The clinical spectrum of late-onset Alexander disease: a systematic literature review. J. Neurol. 257, 1955–1962 (2010).

    Article  Google Scholar 

  87. 87

    Jeworutzki, E. et al. GlialCAM, a protein defective in a leukodystrophy, serves as a ClC-2 Cl channel auxiliary subunit. Neuron 73, 951–961 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88

    Depienne, C. et al. Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study. Lancet Neurol. 12, 659–668 (2013).

    CAS  Article  Google Scholar 

  89. 89

    Edvardson, S. et al. Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am. J. Hum. Genet. 83, 643–648 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90

    Graziano, A. C. & Cardile, V. History, genetic, and recent advances on Krabbe disease. Gene 555, 2–13 (2015).

    CAS  Article  Google Scholar 

  91. 91

    van Berge, L. et al. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation: clinical and genetic characterization and target for therapy. Brain 137, 1019–1029 (2014).

    Article  Google Scholar 

  92. 92

    Lossos, A. et al. Phenotypic variability among adult siblings with Sjogren–Larsson syndrome. Arch. Neurol. 63, 278–280 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  93. 93

    Onodera, O., Nozaki, H. & Fukutake, T. CARASIL. GeneReviews http://www.ncbi.nlm.nih.gov/books/NBK32533/ (updated 11 September 2014).

  94. 94

    Choi, J. C. Genetics of cerebral small vessel disease. J. Stroke 17, 7–16 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Bottcher, T. et al. Fabry disease — underestimated in the differential diagnosis of multiple sclerosis? PLoS ONE 8, e71894 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96

    Kolar, G. R. et al. Neuropathology and genetics of cerebroretinal vasculopathies. Brain Pathol. 24, 510–518 (2014).

    CAS  Article  Google Scholar 

  97. 97

    Paloneva, J., Autti, T., Hakola, P. & Haltia, M. J. Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL). GeneReviews http://www.ncbi.nlm.nih.gov/books/NBK1197/ (updated 12 March 2015).

  98. 98

    Girard, J. M., Turnbull, J., Ramachandran, N. & Minassian, B. A. Progressive myoclonus epilepsy. Handb. Clin. Neurol. 113, 1731–1736 (2013).

    Article  Google Scholar 

  99. 99

    Hagerman, P. J. & Hagerman, R. J. Fragile X-associated tremor/ataxia syndrome. Ann. NY Acad. Sci. 1338, 58–70 (2015).

    CAS  Article  Google Scholar 

  100. 100

    Aronson, N. N. Jr. Aspartylglycosaminuria: biochemistry and molecular biology. Biochim. Biophys. Acta 1455, 139–154 (1999).

    CAS  Article  Google Scholar 

  101. 101

    Baumgartner, M. R. et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J. Rare Dis. 9, 130 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  102. 102

    Borgwardt, L. et al. Alpha-mannosidosis: correlation between phenotype, genotype and mutant MAN2B1 subcellular localisation. Orphanet J. Rare Dis. 10, 70 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103

    Sedel, F. et al. Psychiatric manifestations revealing inborn errors of metabolism in adolescents and adults. J. Inherit. Metab. Dis. 30, 631–641 (2007).

    CAS  Article  Google Scholar 

  104. 104

    Verheijen, F. W. et al. A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nat. Genet. 23, 462–465 (1999).

    CAS  Article  Google Scholar 

  105. 105

    Rubio-Agusti, I. et al. Movement disorders in adult patients with classical galactosemia. Mov. Disord. 28, 804–810 (2013).

    Article  Google Scholar 

  106. 106

    Yoshida, K. et al. GM1 gangliosidosis in adults: clinical and molecular analysis of 16 Japanese patients. Ann. Neurol. 31, 328–332 (1992).

    CAS  Article  Google Scholar 

  107. 107

    Argov, Z. & Navon, R. Clinical and genetic variations in the syndrome of adult GM2 gangliosidosis resulting from hexosaminidase A deficiency. Ann. Neurol. 16, 14–20 (1984).

    CAS  Article  Google Scholar 

  108. 108

    Wilcken, B. Leukoencephalopathies associated with disorders of cobalamin and folate metabolism. Semin. Neurol. 32, 68–74 (2012).

    Article  Google Scholar 

  109. 109

    Lossos, A. et al. Severe methylenetetrahydrofolate reductase deficiency: clinical clues to a potentially treatable cause of adult-onset hereditary spastic paraplegia. JAMA Neurol. 71, 901–904 (2014).

    Article  Google Scholar 

  110. 110

    Skovby, F., Gaustadnes, M. & Mudd, S. H. A revisit to the natural history of homocystinuria due to cystathionine beta-synthase deficiency. Mol. Genet. Metab. 99, 1–3 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111

    Ding, X. Q. et al. MRI abnormalities in normal-appearing brain tissue of treated adult PKU patients. J. Magn. Reson. Imag. 27, 998–1004 (2008).

    Article  Google Scholar 

  112. 112

    Marcel, C. et al. L-2-hydroxyglutaric aciduria diagnosed in a young adult with progressive cerebellar ataxia and facial dyskinesia. Rev. Neurol. (Paris) 168, 187–191 (2012).

    CAS  Article  Google Scholar 

  113. 113

    Reimao, S. et al. 3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency: initial presentation in a young adult. J. Inherit. Metab. Dis. 32 (Suppl. 1), 49–52 (2009).

    Article  Google Scholar 

  114. 114

    Bandmann, O., Weiss, K. H. & Kaler, S. G. Wilson's disease and other neurological copper disorders. Lancet Neurol. 14, 103–113 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and their families for their long-lasting confidence and abundance of patience while waiting for relief from the disease burden and new treatment options. The authors also acknowledge many years of constant support and inspiration from family organizations such as the European Leukodystrophy Association, the Myelin Project, the Adrenoleukodystrophy (ALD) Charity, the Stop ALD Foundation and the United Leukodystrophy Foundation. W.K. received funding from the German Ministry of Education and Research as part of the German LEUKONET Network.

Author information

Affiliations

Authors

Contributions

W.K. researched data for the article and wrote the text. All three authors made substantial contributions to discussions of the content, and W.K. and A.V. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Wolfgang Köhler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Inherited childhood leukodystrophies (DOC 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Köhler, W., Curiel, J. & Vanderver, A. Adulthood leukodystrophies. Nat Rev Neurol 14, 94–105 (2018). https://doi.org/10.1038/nrneurol.2017.175

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing