Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies

Key Points

  • Alzheimer disease belongs to the group of proteinopathies; it is characterized by deposition of the peptide amyloid-β (Aβ) as amyloid plaques and of the protein tau as neurofibrillary tangles

  • Aβ neurotoxicity is attributable to specific types of Aβ, generated as a consequence of proteolytic cleavage and post-translational modifications, which are susceptible to aggregation into different assembly states

  • Similar to Aβ, tau exists as multiple brain isoforms that undergo aggregation and is subject to a host of post-translational modifications, including phosphorylation and acetylation

  • Impairment of multiple cellular functions by Aβ and tau has been demonstrated in cellular and transgenic models, and crosstalk between these molecules has been demonstrated, particularly at the synapse

  • Assessment of Aβ and tau pathology is being facilitated by increasingly sensitive methods, which have clinical relevance in diagnosis and in the validation of therapeutic interventions in disease

  • A prerequisite for personalized medicine is the identification of distinct Aβ and tau species that are suitable for use as biomarkers in cerebrospinal fluid, blood, urine and saliva

Abstract

Most neurodegenerative diseases are proteinopathies, which are characterized by the aggregation of misfolded proteins. Although many proteins have an intrinsic propensity to aggregate, particularly when cellular clearance systems start to fail in the context of ageing, only a few form fibrillar aggregates. In Alzheimer disease, the peptide amyloid-β (Aβ) and the protein tau aggregate to form plaques and tangles, respectively, which comprise the histopathological hallmarks of this disease. This Review discusses the complexity of Aβ biogenesis, trafficking, post-translational modifications and aggregation states. Tau and its various isoforms, which are subject to a vast array of post-translational modifications, are also explored. The methodological advances that revealed this complexity are described. Finally, the toxic effects of distinct species of tau and Aβ are discussed, as well as the concept of protein 'strains', and how this knowledge can facilitate the development of early disease biomarkers for stratifying patients and validating new therapies. By targeting distinct species of Aβ and tau for therapeutic intervention, the way might be paved for personalized medicine and more-targeted treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of amyloid precursor protein processing and amyloid-β generation.
Figure 2: Different tau species attack neuronal physiology at various levels.
Figure 3: Crosstalk between amyloid-β and tau.

Similar content being viewed by others

References

  1. Brookmeyer, R., Johnson, E., Ziegler-Graham, K. & Arrighi, H. M. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement. 3, 186–191 (2007).

    Article  PubMed  Google Scholar 

  2. Ballard, C. et al. Alzheimer's disease. Lancet 377, 1019–1031 (2011).

    Article  PubMed  Google Scholar 

  3. Jahn, T. R. et al. The common architecture of cross-β amyloid. J. Mol. Biol. 395, 717–727 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nat. Med. 10 (Suppl.), S10–S17 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Cacace, R., Sleegers, K. & Van Broeckhoven, C. Molecular genetics of early-onset Alzheimer's disease revisited. Alzheimers Dement. 12, 733–748 (2016).

    Article  PubMed  Google Scholar 

  6. Götz, J. & Ittner, L. M. Animal models of Alzheimer's disease and frontotemporal dementia. Nat. Rev. Neurosci. 9, 532–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Shariati, S. A. & De Strooper, B. Redundancy and divergence in the amyloid precursor protein family. FEBS Lett. 587, 2036–2045 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Muller, U. C., Deller, T. & Korte, M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat. Rev. Neurosci. 18, 281–298 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Puig, K. L. & Combs, C. K. Expression and function of APP and its metabolites outside the central nervous system. Exp. Gerontol. 48, 608–611 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, A., Das, P., Switzer, R. C. 3rd, Golde, T. E. & Jankowsky, J. L. Robust amyloid clearance in a mouse model of Alzheimer's disease provides novel insights into the mechanism of amyloid-β immunotherapy. J. Neurosci. 31, 4124–4136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kogel, D., Deller, T. & Behl, C. Roles of amyloid precursor protein family members in neuroprotection, stress signaling and aging. Exp. Brain Res. 217, 471–479 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Klevanski, M. et al. Differential role of APP and APLPs for neuromuscular synaptic morphology and function. Mol. Cell. Neurosci. 61, 201–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Ludewig, S. & Korte, M. Novel insights into the physiological function of the APP (gene) family and its proteolytic fragments in synaptic plasticity. Front. Mol. Neurosci. 9, 161 (2016).

    PubMed  Google Scholar 

  14. Hefter, D. et al. Amyloid precursor protein protects neuronal network function after hypoxia via control of voltage-gated calcium channels. J. Neurosci. 36, 8356–8371 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grimm, M. O. et al. Intracellular APP domain regulates serine-palmitoyl-CoA transferase expression and is affected in Alzheimer's disease. Int. J. Alzheimers Dis. 2011, 695413 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. Li, X. et al. Neuronal activity and secreted amyloid β lead to altered amyloid β precursor protein and presenilin 1 interactions. Neurobiol. Dis. 50, 127–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, T. et al. Human LilrB2 is a β-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer's model. Science 341, 1399–1404 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Umeda, T., Mori, H., Zheng, H. & Tomiyama, T. Regulation of cholesterol efflux by amyloid β secretion. J. Neurosci. Res. 88, 1985–1994 (2010).

    CAS  PubMed  Google Scholar 

  19. Chew, Y. L., Fan, X., Götz, J. & Nicholas, H. R. Protein with tau-like repeats regulates neuronal integrity and lifespan in C. elegans. J. Cell Sci. 126, 2079–2091 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morris, M. et al. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat. Neurosci. 18, 1183–1189 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Y. & Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 17, 5–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Pooler, A. M., Phillips, E. C., Lau, D. H., Noble, W. & Hanger, D. P. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 14, 389–394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamada, K. et al. Neuronal activity regulates extracellular tau in vivo. J. Exp. Med. 211, 387–393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fa, M. et al. Extracellular tau oligomers produce an immediate impairment of LTP and memory. Sci. Rep. 6, 19393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Violet, M. et al. A major role for tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front. Cell. Neurosci. 8, 84 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma, Q. L. et al. Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris water maze with aging. J. Neurosci. 34, 7124–7136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. DeVos, S. L. et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl Med. 9, eaag0481 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, C., Song, X., Nisbet, R. & Götz, J. Co-immunoprecipitation with tau isoform-specific antibodies reveals distinct protein interactions, and highlights a putative role for 2N tau in disease. J. Biol. Chem. 291, 161–174 (2016).

    Google Scholar 

  29. Del Turco, D. et al. Region-specific differences in amyloid precursor protein expression in the mouse hippocampus. Front. Mol. Neurosci. 9, 134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Szodorai, A. et al. APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. J. Neurosci. 29, 14534–14544 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilhelm, B. G. et al. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344, 1023–1028 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Hoey, S. E., Williams, R. J. & Perkinton, M. S. Synaptic NMDA receptor activation stimulates α-secretase amyloid precursor protein processing and inhibits amyloid-β production. J. Neurosci. 29, 4442–4460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Prox, J. et al. Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions. J. Neurosci. 33, 12915–12928 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Corbett, G. T., Gonzalez, F. J. & Pahan, K. Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP. Proc. Natl Acad. Sci. USA 112, 8445–8450 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Takagi-Niidome, S. et al. Cooperative roles of hydrophilic loop 1 and the C-terminus of presenilin 1 in the substrate-gating mechanism of γ-secretase. J. Neurosci. 35, 2646–2656 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vassar, R. et al. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J. Neurochem. 130, 4–28 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takami, M. et al. γ-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment. J. Neurosci. 29, 13042–13052 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Portelius, E. et al. A novel pathway for amyloid precursor protein processing. Neurobiol. Aging 32, 1090–1098 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Das, U. et al. Activity-induced convergence of APP and BACE-1 in acidic microdomains via an endocytosis-dependent pathway. Neuron 79, 447–460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yan, R. & Vassar, R. Targeting the β secretase BACE1 for Alzheimer's disease therapy. Lancet Neurol. 13, 319–329 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sannerud, R. et al. Restricted location of PSEN2/γ-secretase determines substrate specificity and generates an intracellular Aβ pool. Cell 166, 193–208 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Kanatsu, K. et al. Decreased CALM expression reduces Aβ42 to total Aβ ratio through clathrin-mediated endocytosis of γ-secretase. Nat. Commun. 5, 3386 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Area-Gomez, E. et al. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am. J. Pathol. 175, 1810–1816 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Area-Gomez, E. et al. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106–4123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. DeBoer, S. R., Dolios, G., Wang, R. & Sisodia, S. S. Differential release of β-amyloid from dendrite-versus axon-targeted APP. J. Neurosci. 34, 12313–12327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Niederst, E. D., Reyna, S. M. & Goldstein, L. S. Axonal amyloid precursor protein and its fragments undergo somatodendritic endocytosis and processing. Mol. Biol. Cell 26, 205–217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nhan, H. S., Chiang, K. & Koo, E. H. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta Neuropathol. 129, 1–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Andrew, R. J., Kellett, K. A., Thinakaran, G. & Hooper, N. M. A. Greek tragedy: the growing complexity of alzheimer amyloid precursor protein proteolysis. J. Biol. Chem. 291, 19235–19244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kummer, M. P. & Heneka, M. T. Truncated and modified amyloid-β species. Alzheimers Res. Ther. 6, 28 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Barnham, K. J. et al. Neurotoxic, redox-competent Alzheimer's β-amyloid is released from lipid membrane by methionine oxidation. J. Biol. Chem. 278, 42959–42965 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Hou, L., Kang, I., Marchant, R. E. & Zagorski, M. G. Methionine 35 oxidation reduces fibril assembly of the amyloid Aβ1–42 peptide of Alzheimer's disease. J. Biol. Chem. 277, 40173–40176 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Wirths, O. et al. Intraneuronal pyroglutamate-Aβ3–42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol. 118, 487–496 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alexandru, A. et al. Selective hippocampal neurodegeneration in transgenic mice expressing small amounts of truncated Aβ is induced by pyroglutamate-Aβ formation. J. Neurosci. 31, 12790–12801 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. He, W. & Barrow, C. J. The Aβ 3-pyroglutamyl and 11-pyroglutamyl peptides found in senile plaque have greater β-sheet forming and aggregation propensities in vitro than full-length Aβ. Biochemistry 38, 10871–10877 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Nussbaum, J. M. et al. Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β. Nature 485, 651–655 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schilling, S. et al. Glutaminyl cyclase inhibition attenuates pyroglutamate Aβ and Alzheimer's disease-like pathology. Nat. Med. 14, 1106–1111 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Kumar, S. et al. Extracellular phosphorylation of the amyloid β-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer's disease. EMBO J. 30, 2255–2265 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kumar, S. et al. Phosphorylation of amyloid-β peptide at serine 8 attenuates its clearance via insulin-degrading and angiotensin-converting enzymes. J. Biol. Chem. 287, 8641–8651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kummer, M. P. et al. Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron 71, 833–844 (2011).

    Article  CAS  Google Scholar 

  60. Halim, A. et al. Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid β-peptides in human cerebrospinal fluid. Proc. Natl Acad. Sci. USA 108, 11848–11853 (2011).

    Article  PubMed  Google Scholar 

  61. Chromy, B. A. et al. Self-assembly of Aβ1–42 into globular neurotoxins. Biochemistry 42, 12749–12760 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, P. et al. Quaternary structure defines a large class of amyloid-β oligomers neutralized by sequestration. Cell Rep. 11, 1760–1771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kayed, R. et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol. Neurodegener. 2, 18 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Friedrich, R. P. et al. Mechanism of amyloid plaque formation suggests an intracellular basis of Aβ pathogenicity. Proc. Natl Acad. Sci. USA 107, 1942–1947 (2010).

    Article  PubMed  Google Scholar 

  67. Dickson, D. W. et al. Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol. Aging 16, 285–298 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Beach, T. G. et al. Striatal amyloid plaque density predicts Braak neurofibrillary stage and clinicopathological Alzheimer's disease: implications for amyloid imaging. J. Alzheimers Dis. 28, 869–876 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nelson, P. T. et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71, 362–381 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bezprozvanny, I. Amyloid goes global. Sci. Signal. 2, e16 (2009).

    Article  Google Scholar 

  71. Catalano, S. M. et al. The role of amyloid-β derived diffusible ligands (ADDLs) in Alzheimer's disease. Curr. Top. Med. Chem. 6, 597–608 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Lesne, S. E. et al. Brain amyloid-β oligomers in ageing and Alzheimer's disease. Brain 136, 1383–1398 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Murray, M. M. et al. Amyloid β protein: Aβ40 inhibits Aβ42 oligomerization. J. Am. Chem. Soc. 131, 6316–6317 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Al-Hilaly, Y. K. et al. A central role for dityrosine crosslinking of amyloid-β in Alzheimer's disease. Acta Neuropathol. Commun. 1, 83 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Thiabaud, G. et al. Heme binding induces dimerization and nitration of truncated β-amyloid peptide Aβ16 under oxidative stress. Angew. Chem. Int. Ed. Engl. 52, 8041–8044 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Shimizu, T., Fukuda, H., Murayama, S., Izumiyama, N. & Shirasawa, T. Isoaspartate formation at position 23 of amyloid β peptide enhanced fibril formation and deposited onto senile plaques and vascular amyloids in Alzheimer's disease. J. Neurosci. Res. 70, 451–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Fonseca, M. I., Head, E., Velazquez, P., Cotman, C. W. & Tenner, A. J. The presence of isoaspartic acid in β-amyloid plaques indicates plaque age. Exp. Neurol. 157, 277–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Jawhar, S. et al. Overexpression of glutaminyl cyclase, the enzyme responsible for pyroglutamate Aβ formation, induces behavioral deficits, and glutaminyl cyclase knock-out rescues the behavioral phenotype in 5XFAD mice. J. Biol. Chem. 286, 4454–4460 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Solforosi, L., Milani, M., Mancini, N., Clementi, M. & Burioni, R. A closer look at prion strains: characterization and important implications. Prion 7, 99–108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Lu, J. X. et al. Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue. Cell 154, 1257–1268 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Qiang, W., Yau, W. M., Lu, J. X., Collinge, J. & Tycko, R. Structural variation in amyloid-β fibrils from Alzheimer's disease clinical subtypes. Nature 541, 217–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cohen, M. L. et al. Rapidly progressive Alzheimer's disease features distinct structures of amyloid-β. Brain 138, 1009–1022 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Selkoe, D. J. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav. Brain Res. 192, 106–113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Cerpa, W., Dinamarca, M. C. & Inestrosa, N. C. Structure-function implications in Alzheimer's disease: effect of Aβ oligomers at central synapses. Curr. Alzheimer Res. 5, 233–243 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Tu, S., Okamoto, S., Lipton, S. A. & Xu, H. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer's disease. Mol. Neurodegener. 9, 48 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee, L. et al. Regulation of synaptic plasticity and cognition by SUMO in normal physiology and Alzheimer's disease. Sci. Rep. 4, 7190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Reddy, P. H. Mitochondrial dysfunction in aging and Alzheimer's disease: strategies to protect neurons. Antioxid. Redox Signal. 9, 1647–1658 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Grimm, A., Friedland, K. & Eckert, A. Mitochondrial dysfunction: the missing link between aging and sporadic Alzheimer's disease. Biogerontology 17, 281–296 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Rhein, V. et al. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc. Natl Acad. Sci. USA 106, 20057–20062 (2009).

    Article  PubMed  Google Scholar 

  93. Eckert, A. et al. Oligomeric and fibrillar species of β-amyloid (Aβ42) both impair mitochondrial function in P301L tau transgenic mice. J. Mol. Med. 86, 1255–1267 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Orrenius, S. Reactive oxygen species in mitochondria-mediated cell death. Drug Metab. Rev. 39, 443–455 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Smith, D. G., Cappai, R. & Barnham, K. J. The redox chemistry of the Alzheimer's disease amyloid β peptide. Biochim. Biophys. Acta 1768, 1976–1990 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Serra-Batiste, M. et al. Aβ42 assembles into specific β-barrel pore-forming oligomers in membrane-mimicking environments. Proc. Natl Acad. Sci. USA 113, 10866–10871 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Esposito, C. et al. Exploring interaction of β-amyloid segment (25–35) with membrane models through paramagnetic probes. J. Pept. Sci. 12, 766–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Lau, T. L. et al. Membrane interactions and the effect of metal ions of the amyloidogenic fragment Aβ25–35 in comparison to Aβ1–42 . Biochim. Biophys. Acta 1768, 2400–2408 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Arispe, N., Diaz, J. C. & Simakova, O. Aβ ion channels. Prospects for treating Alzheimer's disease with Aβ channel blockers. Biochim. Biophys. Acta 1768, 1952–1965 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Heneka, M. T. et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 14, 388–405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sondag, C. M., Dhawan, G. & Combs, C. K. β amyloid oligomers and fibrils stimulate differential activation of primary microglia. J. Neuroinflamm. 6, 1 (2009).

    Article  CAS  Google Scholar 

  102. Pan, X. D. et al. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease. Mol. Neurodegener. 6, 45 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Buee, L. & Delacourte, A. Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick's disease. Brain Pathol. 9, 681–693 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Lacovich, V. et al. Tau isoforms imbalance impairs the axonal transport of the amyloid precursor protein in human neurons. J. Neurosci. 37, 58–69 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ishigaki, S. et al. Altered tau isoform ratio caused by loss of FUS and SFPQ function leads to FTLD-like phenotypes. Cell Rep. 18, 1118–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Ittner, L. M. et al. Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc. Natl Acad. Sci. USA 105, 15997–16002 (2008).

    Article  PubMed  Google Scholar 

  108. Li, C. & Götz, J. Somatodendritic accumulation of tau in Alzheimer's disease is promoted by Fyn-mediated local protein translation. EMBO J. 36, 3120–3138 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kopke, E. et al. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J. Biol. Chem. 268, 24374–24384 (1993).

    CAS  PubMed  Google Scholar 

  110. Li, B., Chohan, M. O., Grundke-Iqbal, I. & Iqbal, K. Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol. 113, 501–511 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hoover, B. R. et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68, 1067–1081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xia, D., Li, C. & Götz, J. Pseudophosphorylation of tau at distinct epitopes or the presence of the P301L mutation targets the microtubule-associated protein tau to dendritic spines. Biochim. Biophys. Acta 1852, 913–924 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Lee, G., Newman, S. T., Gard, D. L., Band, H. & Panchamoorthy, G. Tau interacts with src-family non-receptor tyrosine kinases. J. Cell. Sci. 111, 3167–3177 (1998).

    CAS  PubMed  Google Scholar 

  114. Ittner, L. M. et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell 142, 387–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Usardi, A. et al. Tyrosine phosphorylation of tau regulates its interactions with Fyn SH2 domains, but not SH3 domains, altering the cellular localization of tau. FEBS J. 278, 2927–2937 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Novak, M., Jakes, R., Edwards, P. C., Milstein, C. & Wischik, C. M. Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51. Proc. Natl Acad. Sci. USA 88, 5837–5841 (1991).

    Article  CAS  PubMed  Google Scholar 

  117. Wei, Y. et al. Ribosylation triggering Alzheimer's disease-like tau hyperphosphorylation via activation of CaMKII. Aging Cell 14, 754–763 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Reyes, J. F., Fu, Y., Vana, L., Kanaan, N. M. & Binder, L. I. Tyrosine nitration within the proline-rich region of tau in Alzheimer's disease. Am. J. Pathol. 178, 2275–2285 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, Z. et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer's disease. Nat. Med. 20, 1254–1262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Thomas, S. N. et al. Dual modification of Alzheimer's disease PHF-tau protein by lysine methylation and ubiquitylation: a mass spectrometry approach. Acta Neuropathol. 123, 105–117 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. von Bergen, M., Barghorn, S., Biernat, J., Mandelkow, E. M. & Mandelkow, E. Tau aggregation is driven by a transition from random coil to β sheet structure. Biochim. Biophys. Acta 1739, 158–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Ganguly, P. et al. Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3. J. Phys. Chem. B 119, 4582–4593 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Stöhr, J. et al. A 31-residue peptide induces aggregation of tau's microtubule-binding region in cells. Nat. Chem. 9, 874–881 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fagan, T. Monomeric seeds and oligomeric clouds — proteopathy news from AAIC (Alzheimer's Association International Conference) 2017. Alzforum: Networking for a cure http://www.alzforum.org/news/conference-coverage/monomeric-seeds-and-oligomeric-clouds-proteopathy-news-aaic (2017).

    Google Scholar 

  125. Soeda, Y. et al. Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups. Nat. Commun. 6, 10216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Usenovic, M. et al. Internalized tau oligomers cause neurodegeneration by inducing accumulation of pathogenic tau in human neurons derived from induced pluripotent stem cells. J. Neurosci. 35, 14234–14250 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lasagna-Reeves, C. A. et al. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol. Neurodegener. 6, 39 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Castillo-Carranza, D. L. et al. Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J. Neurosci. 34, 4260–4272 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Merino-Serrais, P. et al. The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer's disease. Brain 136, 1913–1928 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nakamura, K. et al. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer's disease. Cell 149, 232–244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kondo, A. et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523, 431–436 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bodea, L. G. et al. Accelerated aging exacerbates a pre-existing pathology in a tau transgenic mouse model. Aging Cell 16, 377–386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Braak, H. & Braak, E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol. Aging 16, 271–278 (1995).

    Article  CAS  PubMed  Google Scholar 

  135. Holmes, B. B. & Diamond, M. I. Prion-like properties of tau protein: the importance of extracellular tau as a therapeutic target. J. Biol. Chem. 289, 19855–19861 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Calafate, S. et al. Synaptic contacts enhance cell-to-cell tau pathology propagation. Cell Rep. 11, 1176–1183 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Mirbaha, H., Holmes, B. B., Sanders, D. W., Bieschke, J. & Diamond, M. I. Tau trimers are the minimal propagation unit spontaneously internalized to seed intracellular aggregation. J. Biol. Chem. 290, 14893–14903 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lasagna-Reeves, C. A. et al. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci. Rep. 2, 700 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wu, J. W. et al. Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J. Biol. Chem. 288, 1856–1870 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Jackson, S. J. et al. Short fibrils constitute the major species of seed-competent tau in the brains of mice transgenic for human P301S tau. J. Neurosci. 36, 762–772 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Takeda, S. et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nat. Commun. 6, 8490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Polanco, J. C., Scicluna, B. J., Hill, A. F. & Götz, J. Extracellular vesicles isolated from the brains of rTg4510 mice seed tau protein aggregation in a threshold-dependent manner. J. Biol. Chem. 291, 12445–12466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, Y. et al. The release and trans-synaptic transmission of tau via exosomes. Mol. Neurodegener. 12, 5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pickett, E. K. et al. Spread of tau down neural circuits precedes synapse and neuronal loss in the rTgTauEC mouse model of early Alzheimer's disease. Synapse 71, e21965 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  145. Hu, W. et al. Hyperphosphorylation determines both the spread and the morphology of tau pathology. Alzheimers Dement. 12, 1066–1077 (2016).

    Article  PubMed  Google Scholar 

  146. Sanders, D. W. et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82, 1271–1288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kaufman, S. K. et al. Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92, 796–812 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013).

    Article  PubMed  Google Scholar 

  149. Polydoro, M. et al. Soluble pathological tau in the entorhinal cortex leads to presynaptic deficits in an early Alzheimer's disease model. Acta Neuropathol. 127, 257–270 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Zhou, L. et al. Tau association with synaptic vesicles causes presynaptic dysfunction. Nat. Commun. 8, 15295 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Hatch, R. J., Wei, Y., Xia, D. & Götz, J. Hyperphosphorylated tau causes reduced hippocampal CA1 excitability by relocating the axon initial segment. Acta Neuropathol. 133, 717–730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Regan, P. et al. Tau phosphorylation at serine 396 residue is required for hippocampal LTD. J. Neurosci. 35, 4804–4812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ittner, A. et al. Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer's mice. Science 354, 904–908 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Min, S. W. et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67, 953–966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cohen, T. J. et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun. 2, 252 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Irwin, D. J. et al. Acetylated tau, a novel pathological signature in Alzheimer's disease and other tauopathies. Brain 135, 807–818 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Min, S. W. et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med. 21, 1154–1162 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tracy, T. E. et al. Acetylated tau obstructs KIBRA-mediated signaling in synaptic plasticity and promotes tauopathy-related memory loss. Neuron 90, 245–260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhao, X. et al. Caspase-2 cleavage of tau reversibly impairs memory. Nat. Med. 22, 1268–1276 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Quintanilla, R. A., Matthews-Roberson, T. A., Dolan, P. J. & Johnson, G. V. Caspase-cleaved tau expression induces mitochondrial dysfunction in immortalized cortical neurons: implications for the pathogenesis of Alzheimer disease. J. Biol. Chem. 284, 18754–18766 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Amadoro, G. et al. AD-linked, toxic NH2 human tau affects the quality control of mitochondria in neurons. Neurobiol. Dis. 62, 489–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Frost, B., Hemberg, M., Lewis, J. & Feany, M. B. Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17, 357–366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mansuroglu, Z. et al. Loss of tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin. Sci. Rep. 6, 33047 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    Article  CAS  Google Scholar 

  165. Maphis, N. et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain 138, 1738–1755 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Sanchez-Mejias, E. et al. Soluble phospho-tau from Alzheimer's disease hippocampus drives microglial degeneration. Acta Neuropathol. 132, 897–916 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Frandemiche, M. L. et al. Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-β oligomers. J. Neurosci. 34, 6084–6097 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Li, X. et al. Novel diffusion barrier for axonal retention of tau in neurons and its failure in neurodegeneration. EMBO J. 30, 4825–4837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sohn, P. D. et al. Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment. Mol. Neurodegener. 11, 47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cochran, J. N., Hall, A. M. & Roberson, E. D. The dendritic hypothesis for Alzheimer's disease pathophysiology. Brain Res. Bull. 103, 18–28 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Mairet-Coello, G. et al. The CAMKK2–AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through tau phosphorylation. Neuron 78, 94–108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Amar, F. et al. The amyloid-β oligomer Aβ*56 induces specific alterations in neuronal signaling that lead to tau phosphorylation and aggregation. Sci. Signal. 10, aal2021 (2017).

    Article  CAS  Google Scholar 

  173. Shipton, O. A. et al. Tau protein is required for amyloid β-induced impairment of hippocampal long-term potentiation. J. Neurosci. 31, 1688–1692 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zempel, H. et al. Amyloid-β oligomers induce synaptic damage via tau-dependent microtubule severing by TTLL6 and spastin. EMBO J. 32, 2920–2937 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Perez, M. J., Vergara-Pulgar, K., Jara, C., Cabezas-Opazo, F. & Quintanilla, R. A. Caspase-cleaved tau impairs mitochondrial dynamics in Alzheimer's disease. Mol. Neurobiol. http://dx.doi.org/10.1007/s12035-017-0385-x (2017).

  176. Manczak, M. & Reddy, P. H. Abnormal interaction of VDAC1 with amyloid β and phosphorylated tau causes mitochondrial dysfunction in Alzheimer's disease. Hum. Mol. Genet. 21, 5131–5146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Vossel, K. A. et al. Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β. J. Cell Biol. 209, 419–433 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Dubois, B. et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol. 13, 614–629 (2014).

    Article  PubMed  Google Scholar 

  179. Roberts, B. R. et al. Biochemically-defined pools of amyloid-β in sporadic Alzheimer's disease: correlation with amyloid PET. Brain 140, 1486–1498 (2017).

    Article  PubMed  Google Scholar 

  180. Bodea, L. G., Eckert, A., Ittner, L. M., Piguet, O. & Götz, J. Tau physiology and pathomechanisms in frontotemporal lobar degeneration. J. Neurochem. 138 (Suppl. 1), 71–94 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Aho, L., Pikkarainen, M., Hiltunen, M., Leinonen, V. & Alafuzoff, I. Immunohistochemical visualization of amyloid-β protein precursor and amyloid-β in extra- and intracellular compartments in the human brain. J. Alzheimers Dis. 20, 1015–1028 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Demattos, R. B. et al. A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer's disease mice. Neuron 76, 908–920 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Götz, J. et al. Animal models reveal role for tau phosphorylation in human disease. Biochim. Biophys. Acta 1802, 860–871 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Luk, C. et al. Development and assessment of sensitive immuno-PCR assays for the quantification of cerebrospinal fluid three- and four-repeat tau isoforms in tauopathies. J. Neurochem. 123, 396–405 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Liu, C. & Götz, J. Profiling murine tau with 0N, 1N and 2N isoform-specific antibodies in brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform being enriched in the nucleus. PLoS ONE 8, e84849 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wolk, D. A. et al. Amyloid imaging in Alzheimer's disease: comparison of florbetapir and Pittsburgh compound-B positron emission tomography. J. Neurol. Neurosurg. Psychiatry 83, 923–926 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Clark, C. M. et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol. 11, 669–678 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Pontecorvo, M. J. et al. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain 140, 748–763 (2017).

    PubMed  PubMed Central  Google Scholar 

  189. Khatoon, S., Chalbot, S., Bolognin, S., Puolivali, J. & Iqbal, K. Elevated tau level in aged rat cerebrospinal fluid reduced by treatment with a neurotrophic compound. J. Alzheimers Dis. 47, 557–564 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Lleo, A. et al. Cerebrospinal fluid biomarkers in trials for Alzheimer and Parkinson diseases. Nat. Rev. Neurol. 11, 41–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Huynh, R. A. & Mohan, C. Alzheimer's disease: biomarkers in the genome, blood, and cerebrospinal fluid. Front. Neurol. 8, 102 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Ewers, M. et al. CSF biomarkers for the differential diagnosis of Alzheimer's disease: a large-scale international multicenter study. Alzheimers Dement. 11, 1306–1315 (2015).

    Article  PubMed  Google Scholar 

  193. Vos, S. J. et al. Prediction of Alzheimer disease in subjects with amnestic and nonamnestic MCI. Neurology 80, 1124–1132 (2013).

    Article  PubMed  Google Scholar 

  194. Chouraki, V. et al. Plasma amyloid-β and risk of Alzheimer's disease in the Framingham Heart Study. Alzheimers Dement. 11, 249–257.e1 (2015).

    Article  PubMed  Google Scholar 

  195. Rembach, A. et al. Changes in plasma amyloid β in a longitudinal study of aging and Alzheimer's disease. Alzheimers Dement. 10, 53–61 (2014).

    Article  PubMed  Google Scholar 

  196. Olsson, B. et al. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. Lancet Neurol. 15, 673–684 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Kim, C. B., Choi, Y. Y., Song, W. K. & Song, K. B. Antibody-based magnetic nanoparticle immunoassay for quantification of Alzheimer's disease pathogenic factor. J. Biomed. Opt. 19, 051205 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Shi, M. et al. Salivary tau species are potential biomarkers of Alzheimer's disease. J. Alzheimers Dis. 27, 299–305 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Carro, E. et al. Early diagnosis of mild cognitive impairment and Alzheimer's disease based on salivary lactoferrin. Alzheimers Dement. 8, 131–138 (2017).

    Google Scholar 

  200. Hampel, H. et al. Precision medicine — the golden gate for detection, treatment and prevention of Alzheimer's disease. J. Prev. Alzheimers Dis. 3, 243–259 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Takata, M. et al. Detection of amyloid β protein in the urine of Alzheimer's disease patients and healthy individuals. Neurosci. Lett. 435, 126–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Zhou, Y. et al. Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of β-amyloid oligomers. Sci. Rep. 6, 35186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wang, S. X. et al. Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor. Biosens. Bioelectron. 92, 482–488 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Tiiman, A., Jarvet, J., Graslund, A. & Vukojevic, V. Heterogeneity and turnover of intermediates during amyloid-β (Aβ) peptide aggregation studied by fluorescence correlation spectroscopy. Biochemistry 54, 7203–7211 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. Ly, S. et al. Binding of apolipoprotein E inhibits the oligomer growth of amyloid-β peptide in solution as determined by fluorescence cross-correlation spectroscopy. J. Biol. Chem. 288, 11628–11635 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Pujol-Pina, R. et al. SDS-PAGE analysis of Aβ oligomers is disserving research into Alzheimer's disease: appealing for ESI-IM-MS. Sci. Rep. 5, 14809 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Mair, W. et al. FLEXItau: quantifying post-translational modifications of tau protein in vitro and in human disease. Anal. Chem 88, 3704–3714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Buividas, R. et al. Statistically quantified measurement of an Alzheimer's marker by surface-enhanced Raman scattering. J. Biophoton. 8, 567–574 (2015).

    Article  CAS  Google Scholar 

  209. Schedin-Weiss, S., Caesar, I., Winblad, B., Blom, H. & Tjernberg, L. O. Super-resolution microscopy reveals γ-secretase at both sides of the neuronal synapse. Acta Neuropathol. Commun. 4, 29 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhang, W. I. et al. Super-resolution microscopy of cerebrospinal fluid biomarkers as a tool for Alzheimer's disease diagnostics. J. Alzheimers Dis. 46, 1007–1020 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Bolmont, T. et al. Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy. J. Neurosci. 32, 14548–14556 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Tam, J. H., Seah, C. & Pasternak, S. H. The amyloid precursor protein is rapidly transported from the Golgi apparatus to the lysosome where it is processed into β-amyloid. Mol. Brain 7, 54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Xia, D., Gutmann, J. M. & Götz, J. Mobility and subcellular localization of endogenous, gene-edited tau differs from that of over-expressed human wild-type and P301L mutant tau. Sci. Rep. 6, 29074 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Godin, A. G. et al. Spatial intensity distribution analysis reveals abnormal oligomerization of proteins in single cells. Biophys. J. 109, 710–721 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Dorosh, L. & Stepanova, M. Probing oligomerization of amyloid β peptide in silico. Mol. Biosyst. 13, 165–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  216. Proctor, C. J., Boche, D., Gray, D. A. & Nicoll, J. A. Investigating interventions in Alzheimer's disease with computer simulation models. PLoS ONE 8, e73631 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer's disease. Nature 547, 185–190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Abbott, A. & Dolgin, E. Failed Alzheimer's trial does not kill leading theory of disease. Nature 540, 15–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  219. Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature 537, 50–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  220. Jonsson, T. et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 488, 96–99 (2012).

    Article  CAS  Google Scholar 

  221. McDade, E. & Bateman, R. J. Stop Alzheimer's before it starts. Nature 547, 153–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  222. Kanodia, J. S. et al. Prospective design of anti-transferrin receptor bispecific antibodies for optimal delivery into the human brain. CPT Pharmacometr. Syst. Pharmacol. 5, 283–291 (2016).

    Article  CAS  Google Scholar 

  223. Lee, C. C. et al. Design and optimization of anti-amyloid domain antibodies specific for β-amyloid and islet amyloid polypeptide. J. Biol. Chem. 291, 2858–2873 (2016).

    Article  CAS  PubMed  Google Scholar 

  224. Debie, P. et al. Effect of dye and conjugation chemistry on the biodistribution profile of near-infrared-labeled nanobodies as tracers for image-guided surgery. Mol. Pharm. 14, 1145–1153 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Leinenga, G., Langton, C., Nisbet, R. & Götz, J. Ultrasound treatment of neurological diseases — current and emerging applications. Nat. Rev. Neurol. 12, 161–174 (2016).

    Article  PubMed  Google Scholar 

  226. Jordao, J. F. et al. Amyloid-β plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound. Exp. Neurol. 248, 16–29 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Leinenga, G. & Götz, J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer's disease mouse model. Sci. Transl. Med. 7, 278ra33 (2015).

    Article  CAS  PubMed  Google Scholar 

  228. Nisbet, R. M. et al. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain 140, 1220–1230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Meredith, S. C. Protein denaturation and aggregation: cellular responses to denatured and aggregated proteins. Ann. NY Acad. Sci. 1066, 181–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  230. Scheper, W., Nijholt, D. A. & Hoozemans, J. J. The unfolded protein response and proteostasis in Alzheimer disease: preferential activation of autophagy by endoplasmic reticulum stress. Autophagy 7, 910–911 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Martin, S. et al. Increased polyubiquitination and proteasomal degradation of a Munc18-1 disease-linked mutant causes temperature-sensitive defect in exocytosis. Cell Rep. 9, 206–218 (2014).

    Article  CAS  PubMed  Google Scholar 

  232. Forloni, G., Artuso, V., La Vitola, P. & Balducci, C. Oligomeropathies and pathogenesis of Alzheimer and Parkinson's diseases. Mov. Disord. 31, 771–781 (2016).

    Article  CAS  PubMed  Google Scholar 

  233. Oikawa, T. et al. α-Synuclein fibrils exhibit gain of toxic function, promoting tau aggregation and inhibiting microtubule assembly. J. Biol. Chem. 291, 15046–15056 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Baker, S. & Götz, J. What we can learn from animal models about cerebral multi-morbidity. Alzheimers Res. Ther. 7, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Chai, Y. J. et al. Munc18-1 is a molecular chaperone for α-synuclein, controlling its self-replicating aggregation. J. Cell Biol. 214, 705–718 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Harper, J. D., Wong, S. S., Lieber, C. M. & Lansbury, P. T. Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125 (1997).

    Article  CAS  PubMed  Google Scholar 

  237. Rosen, R. F. et al. Exogenous seeding of cerebral β-amyloid deposition in βAPP-transgenic rats. J. Neurochem. 120, 660–666 (2012).

    Article  CAS  PubMed  Google Scholar 

  238. Nath, S. et al. Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid. J. Neurosci. 32, 8767–8777 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Domert, J. et al. Spreading of amyloid-β peptides via neuritic cell-to-cell transfer is dependent on insufficient cellular clearance. Neurobiol. Dis. 65, 82–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  240. Clavaguera, F. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909–913 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Guo, J. L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  242. Rutherford, N. J. et al. Comparison of the in vivo induction and transmission of α-synuclein pathology by mutant α-synuclein fibril seeds in transgenic mice. Hum. Mol. Genet. http://dx.doi.org/10.1093/hmg/ddx371 (2017).

  243. Sano, K. et al. Prion-like seeding of misfolded α-synuclein in the brains of dementia with Lewy body patients in RT-QUIC. Mol. Neurobiol. http://dx.doi.org/10.1007/s12035-017-0624-1 (2017).

  244. Aulic, S. et al. α-Synuclein amyloids hijack prion protein to gain cell entry, facilitate cell-to-cell spreading and block prion replication. Sci. Rep. 7, 10050 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Peled, S. et al. Single cell imaging and quantification of TDP-43 and α-synuclein intercellular propagation. Sci. Rep. 7, 544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Braak, H. & Del Tredici, K. Neuropathological staging of brain pathology in sporadic Parkinson's disease: separating the wheat from the chaff. J. Parkinsons Dis. 7, S73–S87 (2017).

    Google Scholar 

  247. Munch, C., O'Brien, J. & Bertolotti, A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc. Natl Acad. Sci. USA 108, 3548–3553 (2011).

    Article  PubMed  Google Scholar 

  248. Furukawa, Y., Kaneko, K., Watanabe, S., Yamanaka, K. & Nukina, N. A seeding reaction recapitulates intracellular formation of sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions. J. Biol. Chem. 286, 18664–18672 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Smethurst, P. et al. In vitro prion-like behaviour of TDP-43 in ALS. Neurobiol. Dis. 96, 236–247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Nonaka, T. et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 4, 124–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  251. Brettschneider, J. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. 74, 20–38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Feuillette, S. et al. Neuron-to-neuron transfer of FUS in Drosophila primary neuronal culture is enhanced by ALS-associated mutations. J. Mol. Neurosci. 62, 114–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  253. Tan, Z. et al. Huntington's disease cerebrospinal fluid seeds aggregation of mutant huntingtin. Mol. Psychiatry 20, 1286–1293 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Serpionov, G. V., Alexandrov, A. I., Antonenko, Y. N. & Ter-Avanesyan, M. D. A protein polymerization cascade mediates toxicity of non-pathological human huntingtin in yeast. Sci. Rep. 5, 18407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Ren, P. H. et al. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat. Cell Biol. 11, 219–225 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Babcock, D. T. & Ganetzky, B. Transcellular spreading of huntingtin aggregates in the Drosophila brain. Proc. Natl Acad. Sci. USA 112, E5427–E5433 (2015).

    Article  CAS  PubMed  Google Scholar 

  257. Pecho-Vrieseling, E. et al. Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat. Neurosci. 17, 1064–1072 (2014).

    Article  CAS  PubMed  Google Scholar 

  258. Come, J. H., Fraser, P. E. & Lansbury, P. T. Jr. A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc. Natl Acad. Sci. USA 90, 5959–5963 (1993).

    Article  CAS  PubMed  Google Scholar 

  259. Peden, A. H. et al. Sensitive and specific detection of sporadic Creutzfeldt–Jakob disease brain prion protein using real-time quaking-induced conversion. J. Gen. Virol. 93, 438–449 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Silveira, J. R. et al. The most infectious prion protein particles. Nature 437, 257–261 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Buyukmihci, N., Goehring-Harmon, F. & Marsh, R. F. Neural pathogenesis of experimental scrapie after intraocular inoculation of hamsters. Exp. Neurol. 81, 396–406 (1983).

    Article  CAS  PubMed  Google Scholar 

  262. Fraser, H. Neuronal spread of scrapie agent and targeting of lesions within the retino-tectal pathway. Nature 295, 149–150 (1982).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.G. is supported by the Estate of Clem Jones AO, the Australian Research Council (grant DP160103812) and the National Health and Medical Research Council of Australia (NHMRC; grants GNT1037746 and GNT1127999). F.A.M. is supported by the Australian Research Council (grants DP170100125, LE0882864 and LE130100078) and the NHMRC (grant GNT1058769 and NHMRC Senior Research Fellowship GNT1060075). L.-G.B. is supported by the Peter Hilton Fellowship. The authors thank R. Tweedale for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote the manuscript, made substantial contributions to discussions of its content and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Jürgen Götz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Long-term potentiation

A cellular mechanism underlying learning and memory that involves a persistent increase in synaptic strength following high-frequency stimulation.

Sumoylation

A post-translational modification involving conjugation with small ubiquitin-like modifiers (SUMOs).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polanco, J., Li, C., Bodea, LG. et al. Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nat Rev Neurol 14, 22–39 (2018). https://doi.org/10.1038/nrneurol.2017.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing