Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A unifying motor control framework for task-specific dystonia


Task-specific dystonia is a movement disorder characterized by a painless loss of dexterity specific to a particular motor skill. This disorder is prevalent among writers, musicians, dancers and athletes. No current treatment is predictably effective, and the disorder generally ends the careers of affected individuals. Traditional disease models of dystonia have a number of limitations with regard to task-specific dystonia. We therefore discuss emerging evidence that the disorder has its origins within normal compensatory mechanisms of a healthy motor system in which the representation and reproduction of motor skill are disrupted. We describe how risk factors for task-specific dystonia can be stratified and translated into mechanisms of dysfunctional motor control. The proposed model aims to define new directions for experimental research and stimulate therapeutic advances for this highly disabling disorder.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Motor hierarchy in skill learning.
Figure 2: Evidence for a motor hierarchy.
Figure 3: Components required for skill performance and the dynamic interactions between risk factors.
Figure 4: Vulnerabilities of highly skilled representations.
Figure 5: The development of task-specific dystonia.


  1. 1

    Albanese, A. et al. Phenomenology and classification of dystonia: a consensus update. Mov. Disord. 28, 863–873 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. 2

    Albanese, A. How many dystonias? Clinical evidence. Front. Neurol. 8, 18 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. 3

    Hofmann, A., Grossbach, M., Baur, V., Hermsdorfer, J. & Altenmuller, E. Musician's dystonia is highly task specific: no strong evidence for everyday fine motor deficits in patients. Med. Probl. Perform. Art. 30, 38–46 (2015).

    PubMed  Google Scholar 

  4. 4

    Altenmuller, E. & Jabusch, H. C. Focal hand dystonia in musicians: phenomenology, etiology, and psychological trigger factors. J. Hand Ther. 22, 144–154 (2009).

    PubMed  Google Scholar 

  5. 5

    Garcia-Ruiz, P. J. Task-specific dystonias: historical review — a new look at the classics. J. Neurol. 260, 750–753 (2013).

    PubMed  Google Scholar 

  6. 6

    Quartarone, A. & Hallett, M. Emerging concepts in the physiological basis of dystonia. Mov. Disord. 28, 958–967 (2013).

    PubMed  PubMed Central  Google Scholar 

  7. 7

    Hallett, M. Neurophysiology of dystonia: the role of inhibition. Neurobiol. Dis. 42, 177–184 (2011).

    PubMed  Google Scholar 

  8. 8

    Quartarone, A. et al. Abnormal plasticity of sensorimotor circuits extends beyond the affected body part in focal dystonia. J. Neurol. Neurosurg. Psychiatry 79, 985–990 (2008).

    CAS  PubMed  Google Scholar 

  9. 9

    Pirio Richardson, S. et al. Research priorities in limb and task-specific dystonias. Front. Neurol. 8, 170 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Sadnicka, A., Hamada, M., Bhatia, K. P., Rothwell, J. C. & Edwards, M. J. A reflection on plasticity research in writing dystonia. Mov. Disord. 29, 980–987 (2014).

    PubMed  Google Scholar 

  11. 11

    Diedrichsen, J. & Kornysheva, K. Motor skill learning between selection and execution. Trends Cogn. Sci. 19, 227–233 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. 12

    Telgen, S., Parvin, D. & Diedrichsen, J. Mirror reversal and visual rotation are learned and consolidated via separate mechanisms: recalibrating or learning de novo? J. Neurosci. 34, 13768–13779 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Wulf, G. Attentional focus and motor learning: a review of 15 years. Int. Rev. Sport Exerc. Psychol. 6, 77–104 (2013).

    Google Scholar 

  14. 14

    Shmuelof, L. & Krakauer, J. W. Are we ready for a natural history of motor learning? Neuron 72, 469–476 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Overduin, S. A., d'Avella, A., Carmena, J. M. & Bizzi, E. Microstimulation activates a handful of muscle synergies. Neuron 76, 1071–1077 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Graziano, M. S. Ethological action maps: a paradigm shift for the motor cortex. Trends Cogn. Sci. 20, 121–132 (2016).

    PubMed  Google Scholar 

  18. 18

    Gentner, R. et al. Encoding of motor skill in the corticomuscular system of musicians. Curr. Biol. 20, 1869–1874 (2010).

    CAS  PubMed  Google Scholar 

  19. 19

    Gobet, F. et al. Chunking mechanisms in human learning. Trends Cogn. Sci. 5, 236–243 (2001).

    CAS  PubMed  Google Scholar 

  20. 20

    Rosenbaum, D. A., Kenny, S. B. & Derr, M. A. Hierarchical control of rapid movement sequences. J. Exp. Psychol. Hum. Percept. Perform. 9, 86–102 (1983).

    CAS  Google Scholar 

  21. 21

    Sakai, K., Kitaguchi, K. & Hikosaka, O. Chunking during human visuomotor sequence learning. Exp. Brain Res. 152, 229–242 (2003).

    Google Scholar 

  22. 22

    Jin, X., Tecuapetla, F. & Costa, R. M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423–430 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Graybiel, A. M. The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70, 119–136 (1998).

    CAS  PubMed  Google Scholar 

  24. 24

    Wymbs, N. F., Bassett, D. S., Mucha, P. J., Porter, M. A. & Grafton, S. T. Differential recruitment of the sensorimotor putamen and frontoparietal cortex during motor chunking in humans. Neuron 74, 936–946 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Shima, K. & Tanji, J. Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements. J. Neurophysiol. 80, 3247–3260 (1998).

    CAS  PubMed  Google Scholar 

  26. 26

    Penhune, V. B. & Steele, C. J. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav. Brain Res. 226, 579–591 (2012).

    PubMed  Google Scholar 

  27. 27

    Ullen, F. & Bengtsson, S. L. Independent processing of the temporal and ordinal structure of movement sequences. J. Neurophysiol. 90, 3725–3735 (2003).

    PubMed  Google Scholar 

  28. 28

    Kornysheva, K., Sierk, A. & Diedrichsen, J. Interaction of temporal and ordinal representations in movement sequences. J. Neurophysiol. 109, 1416–1424 (2013).

    PubMed  Google Scholar 

  29. 29

    Kornysheva, K. & Diedrichsen, J. Human premotor areas parse sequences into their spatial and temporal features. eLife 3, e03043 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. 30

    Bengtsson, S. L., Ehrsson, H. H., Forssberg, H. & Ullen, F. Effector-independent voluntary timing: behavioural and neuroimaging evidence. Eur. J. Neurosci. 22, 3255–3265 (2005).

    PubMed  Google Scholar 

  31. 31

    Kornysheva, K. Encoding temporal features of skilled movements — what, whether and how? Adv. Exp. Med. Biol. 957, 35–54 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Konoike, N. et al. Temporal and motor representation of rhythm in fronto-parietal cortical areas: an fMRI study. PLoS ONE 10, e0130120 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Lemon, R. N. Descending pathways in motor control. Annu. Rev. Neurosci. 31, 195–218 (2008).

    CAS  Google Scholar 

  34. 34

    Schmidt, A. et al. Etiology of musician's dystonia: familial or environmental? Neurology 72, 1248–1254 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Lohmann, K. et al. Genome-wide association study in musician's dystonia: a risk variant at the arylsulfatase G locus? Mov. Disord. 29, 921–927 (2014).

    CAS  PubMed  Google Scholar 

  36. 36

    Nibbeling, E. et al. Accumulation of rare variants in the arylsulfatase G (ARSG) gene in task-specific dystonia. J. Neurol. 262, 1340–1343 (2015).

    CAS  PubMed  Google Scholar 

  37. 37

    Altenmuller, E. & Jabusch, H. C. Focal dystonia in musicians: phenomenology, pathophysiology and triggering factors. Eur. J. Neurol. 17 (Suppl. 1), 31–36 (2010).

    PubMed  Google Scholar 

  38. 38

    Leijnse, J. N., Hallett, M. & Sonneveld, G. J. A multifactorial conceptual model of peripheral neuromusculoskeletal predisposing factors in task-specific focal hand dystonia in musicians: etiologic and therapeutic implications. Biol. Cybern. 109, 109–123 (2015).

    CAS  PubMed  Google Scholar 

  39. 39

    Nutt, J. G., Muenter, M. D., Melton 3rd, L. J., Aronson, A. & Kurland, L. T. Epidemiology of dystonia in Rochester, Minnesota. Adv. Neurol. 50, 361–365 (1988).

    CAS  PubMed  Google Scholar 

  40. 40

    Altenmuller, E. & Jabusch, H. C. Focal dystonia in musicians: phenomenology, pathophysiology, triggering factors, and treatment. Med. Probl. Perform. Art. 25, 3–9 (2010).

    PubMed  Google Scholar 

  41. 41

    Altenmuller, E., Ioannou, C. I. & Lee, A. Apollo's curse: neurological causes of motor impairments in musicians. Prog. Brain Res. 217, 89–106 (2015).

    PubMed  Google Scholar 

  42. 42

    Altenmuller, E., Ioannou, C. I., Raab, M. & Lobinger, B. Apollo's curse: causes and cures of motor failures in musicians: a proposal for a new classification. Adv. Exp. Med. Biol. 826, 161–178 (2014).

    PubMed  Google Scholar 

  43. 43

    Ericsson, K. A., Krampe, R. T. & Heizmann, S. Can we create gifted people? Ciba Found. Symp. 178, 222–231; discussion 232–249 (1993).

    CAS  PubMed  Google Scholar 

  44. 44

    Solly, S. Clinical lectures on scrivener's palsy or the paralysis of writers. 1984. Clin. Orthop. Relat. Res. 351, 4–9 (1998).

    Google Scholar 

  45. 45

    Pritchard, M. H. Writer's cramp: is focal dystonia the best explanation? JRSM Short Rep. 4, 1–7 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. 46

    Pearce, J. M. A note on scrivener's palsy. J. Neurol. Neurosurg. Psychiatry 76, 513 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Ferguson, D. An Australian study of telegraphists' cramp. Br. J. Ind. Med. 28, 280–285 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Suzuki, K. et al. Computer mouse-related dystonia: a novel presentation of task-specific dystonia. J. Neurol. 259, 2221–2222 (2012).

    PubMed  Google Scholar 

  49. 49

    Altenmuller, E., Baur, V., Hofmann, A., Lim, V. K. & Jabusch, H. C. Musician's cramp as manifestation of maladaptive brain plasticity: arguments from instrumental differences. Ann. NY Acad. Sci. 1252, 259–265 (2012).

    PubMed  Google Scholar 

  50. 50

    Halstead, L. A., McBroom, D. M. & Bonilha, H. S. Task-specific singing dystonia: vocal instability that technique cannot fix. J. Voice 29, 71–78 (2015).

    PubMed  Google Scholar 

  51. 51

    Torres-Russotto, D. & Perlmutter, J. S. Task-specific dystonias: a review. Ann. NY Acad. Sci. 1142, 179–199 (2008).

    PubMed  Google Scholar 

  52. 52

    Steele, C. J., Bailey, J. A., Zatorre, R. J. & Penhune, V. B. Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J. Neurosci. 33, 1282–1290 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Jabusch, H. C., Muller, S. V. & Altenmuller, E. Anxiety in musicians with focal dystonia and those with chronic pain. Mov. Disord. 19, 1169–1175 (2004).

    PubMed  Google Scholar 

  54. 54

    Enders, L. et al. Musician's dystonia and comorbid anxiety: two sides of one coin? Mov. Disord. 26, 539–542 (2011).

    PubMed  Google Scholar 

  55. 55

    Ioannou, C. I. & Altenmuller, E. Psychological characteristics in musicians dystonia: a new diagnostic classification. Neuropsychologia 61, 80–88 (2014).

    PubMed  Google Scholar 

  56. 56

    Shamim, E. A. et al. Extreme task specificity in writer's cramp. Mov. Disord. 26, 2107–2109 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Frucht, S. J. Focal task-specific dystonia-from early descriptions to a new, modern formulation. Tremor Other Hyperkinet. Mov. (NY) 4, 230 (2014).

    Google Scholar 

  58. 58

    Ramkumar, P. et al. Chunking as the result of an efficiency computation trade-off. Nat. Commun. 7, 12176 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. 59

    Acuna, D. E. et al. Multifaceted aspects of chunking enable robust algorithms. J. Neurophysiol. 112, 1849–1856 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. 60

    Ingram, J. N., Howard, I. S., Flanagan, J. R. & Wolpert, D. M. Multiple grasp-specific representations of tool dynamics mediate skillful manipulation. Curr. Biol. 20, 618–623 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Ogawa, T., Kawashima, N., Ogata, T. & Nakazawa, K. Limited transfer of newly acquired movement patterns across walking and running in humans. PLoS ONE 7, e46349 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Houldin, A., Chua, R., Carpenter, M. G. & Lam, T. Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking. J. Neurophysiol. 108, 943–952 (2012).

    PubMed  Google Scholar 

  63. 63

    Wu, Y. H., Truglio, T. S., Zatsiorsky, V. M. & Latash, M. L. Learning to combine high variability with high precision: lack of transfer to a different task. J. Mot. Behav. 47, 153–165 (2015).

    PubMed  Google Scholar 

  64. 64

    Wiestler, T. & Diedrichsen, J. Skill learning strengthens cortical representations of motor sequences. eLife 2, e00801 (2013).

    PubMed  PubMed Central  Google Scholar 

  65. 65

    Boutin, A. et al. Practice makes transfer of motor skills imperfect. Psychol. Res. 76, 611–625 (2012).

    PubMed  Google Scholar 

  66. 66

    Zatsiorsky, V. M., Li, Z. M. & Latash, M. L. Enslaving effects in multi-finger force production. Exp. Brain Res. 131, 187–195 (2000).

    CAS  PubMed  Google Scholar 

  67. 67

    van Duinen, H. & Gandevia, S. C. Constraints for control of the human hand. J. Physiol. 589, 5583–5593 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Ejaz, N., Hamada, M. & Diedrichsen, J. Hand use predicts the structure of representations in sensorimotor cortex. Nat. Neurosci. 18, 1034–1040 (2015).

    CAS  PubMed  Google Scholar 

  69. 69

    Altenmuller, E. & Muller, D. A model of task-specific focal dystonia. Neural Netw. 48, 25–31 (2013).

    PubMed  Google Scholar 

  70. 70

    Potter, P. Task specific focal hand dystonia: understanding the enigma and current concepts. Work 41, 61–68 (2012).

    PubMed  Google Scholar 

  71. 71

    Frucht, S. J. Focal task-specific dystonia in musicians. Adv. Neurol. 94, 225–230 (2004).

    PubMed  Google Scholar 

  72. 72

    Frith, C. D., Blakemore, S. J. & Wolpert, D. M. Abnormalities in the awareness and control of action. Phil. Trans. R. Soc. Lond. B Biol. Sci. 355, 1771–1788 (2000).

    CAS  Google Scholar 

  73. 73

    Edwards, M. J. & Rothwell, J. C. Losing focus: how paying attention can be bad for movement. Mov. Disord. 26, 1969–1970 (2011).

    PubMed  Google Scholar 

  74. 74

    Porter, J. M., Nolan, R. P., Ostrowski, E. J. & Wulf, G. Directing attention externally enhances agility performance: a qualitative and quantitative analysis of the efficacy of using verbal instructions to focus attention. Front. Psychol. 1, 216 (2010).

    PubMed  PubMed Central  Google Scholar 

  75. 75

    Demenga, T. The art of distraction is more effective than repetitive practice. The Strad (2014).

    Google Scholar 

  76. 76

    Mallinson, T. & Hammel, J. Measurement of participation: intersecting person, task, and environment. Arch. Phys. Med. Rehabil. 91, S29–S33 (2010).

    PubMed  Google Scholar 

  77. 77

    Toledo, S. D. et al. Sports and performing arts medicine. 5. Issues relating to musicians. Arch. Phys. Med. Rehabil. 85, S72–S74 (2004).

    PubMed  Google Scholar 

  78. 78

    McKenzie, A. L. et al. Differences in physical characteristics and response to rehabilitation for patients with hand dystonia: musicians' cramp compared to writers' cramp. J. Hand Ther. 22, 172–181 (2009).

    PubMed  Google Scholar 

  79. 79

    van Vugt, F. T., Boullet, L., Jabusch, H. C. & Altenmuller, E. Musician's dystonia in pianists: long-term evaluation of retraining and other therapies. Parkinsonism Relat. Disord. 20, 8–12 (2014).

    CAS  PubMed  Google Scholar 

  80. 80

    Jabusch, H. C., Zschucke, D., Schmidt, A., Schuele, S. & Altenmuller, E. Focal dystonia in musicians: treatment strategies and long-term outcome in 144 patients. Mov. Disord. 20, 1623–1626 (2005).

    PubMed  Google Scholar 

  81. 81

    Termsarasab, P., Thammongkolchai, T. & Frucht, S. J. Medical treatment of dystonia. J. Clin. Mov. Disord. 3, 19 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. 82

    Kruisdijk, J. J., Koelman, J. H., Ongerboer de Visser, B. W., de Haan, R. J. & Speelman, J. D. Botulinum toxin for writer's cramp: a randomised, placebo-controlled trial and 1-year follow-up. J. Neurol. Neurosurg. Psychiatry 78, 264–270 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Lungu, C., Karp, B. I., Alter, K., Zolbrod, R. & Hallett, M. Long-term follow-up of botulinum toxin therapy for focal hand dystonia: outcome at 10 years or more. Mov. Disord. 26, 750–753 (2011).

    PubMed  PubMed Central  Google Scholar 

  84. 84

    Taira, T. & Hori, T. Stereotactic ventrooralis thalamotomy for task-specific focal hand dystonia (writer's cramp). Stereotact. Funct. Neurosurg. 80, 88–91 (2003).

    PubMed  Google Scholar 

  85. 85

    Horisawa, S. et al. Stereotactic thalamotomy for hairdresser's dystonia: a case series. Stereotact. Funct. Neurosurg. 94, 201–206 (2016).

    PubMed  Google Scholar 

  86. 86

    Horisawa, S. et al. Gamma knife ventro-oral thalamotomy for musician's dystonia. Mov. Disord. 32, 89–90 (2017).

    PubMed  Google Scholar 

  87. 87

    Horisawa, S., Goto, S., Nakajima, T., Kawamata, T. & Taira, T. Bilateral stereotactic thalamotomy for bilateral musician's hand dystonia. World Neurosurg. 92, 585.e21–585.e25 (2016).

    Google Scholar 

  88. 88

    Horisawa, S., Taira, T., Goto, S., Ochiai, T. & Nakajima, T. Long-term improvement of musician's dystonia after stereotactic ventro-oral thalamotomy. Ann. Neurol. 74, 648–654 (2013).

    PubMed  Google Scholar 

  89. 89

    Fukaya, C. et al. Thalamic deep brain stimulation for writer's cramp. J. Neurosurg. 107, 977–982 (2007).

    PubMed  Google Scholar 

  90. 90

    Cho, H. J. & Hallett, M. Non-invasive brain stimulation for treatment of focal hand dystonia: update and future direction. J. Mov. Disord. 9, 55–62 (2016).

    PubMed  PubMed Central  Google Scholar 

  91. 91

    Kimberley, T. J., Schmidt, R. L., Chen, M., Dykstra, D. D. & Buetefisch, C. M. Mixed effectiveness of rTMS and retraining in the treatment of focal hand dystonia. Front. Hum. Neurosci. 9, 385 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. 92

    Sheehy, M. P. & Marsden, C. D. Writers' cramp-a focal dystonia. Brain 105, 461–480 (1982).

    PubMed  Google Scholar 

  93. 93

    Rosset-Llobet, J., Candia, V., Fabregas, S., Ray, W. & Pascual-Leone, A. Secondary motor disturbances in 101 patients with musician's dystonia. J. Neurol. Neurosurg. Psychiatry 78, 949–953 (2007).

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Wiestler, T., Waters-Metenier, S. & Diedrichsen, J. Effector-independent motor sequence representations exist in extrinsic and intrinsic reference frames. J. Neurosci. 34, 5054–5064 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Ritz, K. et al. Screening for dystonia genes DYT1, 11 and 16 in patients with writer's cramp. Mov. Disord. 24, 1390–1392 (2009).

    PubMed  Google Scholar 

  96. 96

    Chung, S. J., Lee, J. H., Lee, M. C., Yoo, H. W. & Kim, G. H. Focal hand dystonia in a patient with PANK2 mutation. Mov. Disord. 23, 466–468 (2008).

    PubMed  Google Scholar 

  97. 97

    Sadnicka, A. et al. Task-specific dystonia: pathophysiology and management. J. Neurol. Neurosurg. Psychiatry 87, 968–974 (2016).

    PubMed  Google Scholar 

  98. 98

    Paulig, J., Jabusch, H. C., Grossbach, M., Boullet, L. & Altenmuller, E. Sensory trick phenomenon improves motor control in pianists with dystonia: prognostic value of glove-effect. Front. Psychol. 5, 1012 (2014).

    PubMed  PubMed Central  Google Scholar 

  99. 99

    Cheng, F. P., Grossbach, M. & Altenmuller, E. O. Altered sensory feedbacks in pianist's dystonia: the altered auditory feedback paradigm and the glove effect. Front. Hum. Neurosci. 7, 868 (2013).

    PubMed  PubMed Central  Google Scholar 

  100. 100

    Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    CAS  Google Scholar 

  101. 101

    Wolpert, D. M. & Miall, R. C. Forward models for physiological motor control. Neural Netw. 9, 1265–1279 (1996).

    Google Scholar 

  102. 102

    Shadmehr, R. & Krakauer, J. W. A computational neuroanatomy for motor control. Exp. Brain Res. 185, 359–381 (2008).

    PubMed  PubMed Central  Google Scholar 

  103. 103

    Schonewille, M. et al. Reevaluating the role of LTD in cerebellar motor learning. Neuron 70, 43–50 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


A.S. is funded by a Guarantors of Brain Clinical Research Fellowship and a Chadburn Clinical Lectureship. K.K. is funded by Sir Henry Wellcome Fellowship no. 098881/Z/12/Z. M.J.E. is partially funded by a UK National Institute for Health Research (NIHR) grant.

Author information




A.S. and K.K. collated data and papers relevant to the article, developed its content, and wrote the manuscript. J.C.R. and M.J.E. contributed substantially to discussions of the article content and to review of the manuscript.

Corresponding authors

Correspondence to Anna Sadnicka or Katja Kornysheva.

Ethics declarations

Competing interests

A.S. and K.K. declare that they have no competing interests. J.C.R. declares that he has received speaker's travel costs from the Movement Disorders Society. M.J.E. declares that he receives royalties for the Oxford Specialist Handbook of Parkinson's Disease and Other Movement Disorders (Oxford University Press, 2008) and that he has received speaker's honoraria from UCB pharmaceuticals.

PowerPoint slides



A mode of motor control in which movements operate with very little conscious knowledge of the actions required to perform them.


Collection of elementary units that are inter-associated, stored in memory as one unit, and act as a coherent, integrated group when retrieved.


A movement disorder characterized by sustained or intermittent muscle contractions causing abnormal movements, abnormal postures or both.


The degree to which a single finger can move without unintended movements of the other fingers of the same hand.

Motor hierarchy

A functional hierarchy of the motor system, with each level having specific roles in motor encoding and control of movement.

Motor synergies

Elemental action units, characterized by groups of weighted muscle activations that are coordinated in space and time.


Activity in neural substrates containing information about the external or internal state of the system, including motor output.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadnicka, A., Kornysheva, K., Rothwell, J. et al. A unifying motor control framework for task-specific dystonia. Nat Rev Neurol 14, 116–124 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing