A unifying motor control framework for task-specific dystonia


Task-specific dystonia is a movement disorder characterized by a painless loss of dexterity specific to a particular motor skill. This disorder is prevalent among writers, musicians, dancers and athletes. No current treatment is predictably effective, and the disorder generally ends the careers of affected individuals. Traditional disease models of dystonia have a number of limitations with regard to task-specific dystonia. We therefore discuss emerging evidence that the disorder has its origins within normal compensatory mechanisms of a healthy motor system in which the representation and reproduction of motor skill are disrupted. We describe how risk factors for task-specific dystonia can be stratified and translated into mechanisms of dysfunctional motor control. The proposed model aims to define new directions for experimental research and stimulate therapeutic advances for this highly disabling disorder.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Motor hierarchy in skill learning.
Figure 2: Evidence for a motor hierarchy.
Figure 3: Components required for skill performance and the dynamic interactions between risk factors.
Figure 4: Vulnerabilities of highly skilled representations.
Figure 5: The development of task-specific dystonia.


  1. 1

    Albanese, A. et al. Phenomenology and classification of dystonia: a consensus update. Mov. Disord. 28, 863–873 (2013).

  2. 2

    Albanese, A. How many dystonias? Clinical evidence. Front. Neurol. 8, 18 (2017).

  3. 3

    Hofmann, A., Grossbach, M., Baur, V., Hermsdorfer, J. & Altenmuller, E. Musician's dystonia is highly task specific: no strong evidence for everyday fine motor deficits in patients. Med. Probl. Perform. Art. 30, 38–46 (2015).

  4. 4

    Altenmuller, E. & Jabusch, H. C. Focal hand dystonia in musicians: phenomenology, etiology, and psychological trigger factors. J. Hand Ther. 22, 144–154 (2009).

  5. 5

    Garcia-Ruiz, P. J. Task-specific dystonias: historical review — a new look at the classics. J. Neurol. 260, 750–753 (2013).

  6. 6

    Quartarone, A. & Hallett, M. Emerging concepts in the physiological basis of dystonia. Mov. Disord. 28, 958–967 (2013).

  7. 7

    Hallett, M. Neurophysiology of dystonia: the role of inhibition. Neurobiol. Dis. 42, 177–184 (2011).

  8. 8

    Quartarone, A. et al. Abnormal plasticity of sensorimotor circuits extends beyond the affected body part in focal dystonia. J. Neurol. Neurosurg. Psychiatry 79, 985–990 (2008).

  9. 9

    Pirio Richardson, S. et al. Research priorities in limb and task-specific dystonias. Front. Neurol. 8, 170 (2017).

  10. 10

    Sadnicka, A., Hamada, M., Bhatia, K. P., Rothwell, J. C. & Edwards, M. J. A reflection on plasticity research in writing dystonia. Mov. Disord. 29, 980–987 (2014).

  11. 11

    Diedrichsen, J. & Kornysheva, K. Motor skill learning between selection and execution. Trends Cogn. Sci. 19, 227–233 (2015).

  12. 12

    Telgen, S., Parvin, D. & Diedrichsen, J. Mirror reversal and visual rotation are learned and consolidated via separate mechanisms: recalibrating or learning de novo? J. Neurosci. 34, 13768–13779 (2014).

  13. 13

    Wulf, G. Attentional focus and motor learning: a review of 15 years. Int. Rev. Sport Exerc. Psychol. 6, 77–104 (2013).

  14. 14

    Shmuelof, L. & Krakauer, J. W. Are we ready for a natural history of motor learning? Neuron 72, 469–476 (2011).

  15. 15

    Overduin, S. A., d'Avella, A., Carmena, J. M. & Bizzi, E. Microstimulation activates a handful of muscle synergies. Neuron 76, 1071–1077 (2012).

  16. 16

    Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

  17. 17

    Graziano, M. S. Ethological action maps: a paradigm shift for the motor cortex. Trends Cogn. Sci. 20, 121–132 (2016).

  18. 18

    Gentner, R. et al. Encoding of motor skill in the corticomuscular system of musicians. Curr. Biol. 20, 1869–1874 (2010).

  19. 19

    Gobet, F. et al. Chunking mechanisms in human learning. Trends Cogn. Sci. 5, 236–243 (2001).

  20. 20

    Rosenbaum, D. A., Kenny, S. B. & Derr, M. A. Hierarchical control of rapid movement sequences. J. Exp. Psychol. Hum. Percept. Perform. 9, 86–102 (1983).

  21. 21

    Sakai, K., Kitaguchi, K. & Hikosaka, O. Chunking during human visuomotor sequence learning. Exp. Brain Res. 152, 229–242 (2003).

  22. 22

    Jin, X., Tecuapetla, F. & Costa, R. M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423–430 (2014).

  23. 23

    Graybiel, A. M. The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70, 119–136 (1998).

  24. 24

    Wymbs, N. F., Bassett, D. S., Mucha, P. J., Porter, M. A. & Grafton, S. T. Differential recruitment of the sensorimotor putamen and frontoparietal cortex during motor chunking in humans. Neuron 74, 936–946 (2012).

  25. 25

    Shima, K. & Tanji, J. Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements. J. Neurophysiol. 80, 3247–3260 (1998).

  26. 26

    Penhune, V. B. & Steele, C. J. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav. Brain Res. 226, 579–591 (2012).

  27. 27

    Ullen, F. & Bengtsson, S. L. Independent processing of the temporal and ordinal structure of movement sequences. J. Neurophysiol. 90, 3725–3735 (2003).

  28. 28

    Kornysheva, K., Sierk, A. & Diedrichsen, J. Interaction of temporal and ordinal representations in movement sequences. J. Neurophysiol. 109, 1416–1424 (2013).

  29. 29

    Kornysheva, K. & Diedrichsen, J. Human premotor areas parse sequences into their spatial and temporal features. eLife 3, e03043 (2014).

  30. 30

    Bengtsson, S. L., Ehrsson, H. H., Forssberg, H. & Ullen, F. Effector-independent voluntary timing: behavioural and neuroimaging evidence. Eur. J. Neurosci. 22, 3255–3265 (2005).

  31. 31

    Kornysheva, K. Encoding temporal features of skilled movements — what, whether and how? Adv. Exp. Med. Biol. 957, 35–54 (2016).

  32. 32

    Konoike, N. et al. Temporal and motor representation of rhythm in fronto-parietal cortical areas: an fMRI study. PLoS ONE 10, e0130120 (2015).

  33. 33

    Lemon, R. N. Descending pathways in motor control. Annu. Rev. Neurosci. 31, 195–218 (2008).

  34. 34

    Schmidt, A. et al. Etiology of musician's dystonia: familial or environmental? Neurology 72, 1248–1254 (2009).

  35. 35

    Lohmann, K. et al. Genome-wide association study in musician's dystonia: a risk variant at the arylsulfatase G locus? Mov. Disord. 29, 921–927 (2014).

  36. 36

    Nibbeling, E. et al. Accumulation of rare variants in the arylsulfatase G (ARSG) gene in task-specific dystonia. J. Neurol. 262, 1340–1343 (2015).

  37. 37

    Altenmuller, E. & Jabusch, H. C. Focal dystonia in musicians: phenomenology, pathophysiology and triggering factors. Eur. J. Neurol. 17 (Suppl. 1), 31–36 (2010).

  38. 38

    Leijnse, J. N., Hallett, M. & Sonneveld, G. J. A multifactorial conceptual model of peripheral neuromusculoskeletal predisposing factors in task-specific focal hand dystonia in musicians: etiologic and therapeutic implications. Biol. Cybern. 109, 109–123 (2015).

  39. 39

    Nutt, J. G., Muenter, M. D., Melton 3rd, L. J., Aronson, A. & Kurland, L. T. Epidemiology of dystonia in Rochester, Minnesota. Adv. Neurol. 50, 361–365 (1988).

  40. 40

    Altenmuller, E. & Jabusch, H. C. Focal dystonia in musicians: phenomenology, pathophysiology, triggering factors, and treatment. Med. Probl. Perform. Art. 25, 3–9 (2010).

  41. 41

    Altenmuller, E., Ioannou, C. I. & Lee, A. Apollo's curse: neurological causes of motor impairments in musicians. Prog. Brain Res. 217, 89–106 (2015).

  42. 42

    Altenmuller, E., Ioannou, C. I., Raab, M. & Lobinger, B. Apollo's curse: causes and cures of motor failures in musicians: a proposal for a new classification. Adv. Exp. Med. Biol. 826, 161–178 (2014).

  43. 43

    Ericsson, K. A., Krampe, R. T. & Heizmann, S. Can we create gifted people? Ciba Found. Symp. 178, 222–231; discussion 232–249 (1993).

  44. 44

    Solly, S. Clinical lectures on scrivener's palsy or the paralysis of writers. 1984. Clin. Orthop. Relat. Res. 351, 4–9 (1998).

  45. 45

    Pritchard, M. H. Writer's cramp: is focal dystonia the best explanation? JRSM Short Rep. 4, 1–7 (2013).

  46. 46

    Pearce, J. M. A note on scrivener's palsy. J. Neurol. Neurosurg. Psychiatry 76, 513 (2005).

  47. 47

    Ferguson, D. An Australian study of telegraphists' cramp. Br. J. Ind. Med. 28, 280–285 (1971).

  48. 48

    Suzuki, K. et al. Computer mouse-related dystonia: a novel presentation of task-specific dystonia. J. Neurol. 259, 2221–2222 (2012).

  49. 49

    Altenmuller, E., Baur, V., Hofmann, A., Lim, V. K. & Jabusch, H. C. Musician's cramp as manifestation of maladaptive brain plasticity: arguments from instrumental differences. Ann. NY Acad. Sci. 1252, 259–265 (2012).

  50. 50

    Halstead, L. A., McBroom, D. M. & Bonilha, H. S. Task-specific singing dystonia: vocal instability that technique cannot fix. J. Voice 29, 71–78 (2015).

  51. 51

    Torres-Russotto, D. & Perlmutter, J. S. Task-specific dystonias: a review. Ann. NY Acad. Sci. 1142, 179–199 (2008).

  52. 52

    Steele, C. J., Bailey, J. A., Zatorre, R. J. & Penhune, V. B. Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J. Neurosci. 33, 1282–1290 (2013).

  53. 53

    Jabusch, H. C., Muller, S. V. & Altenmuller, E. Anxiety in musicians with focal dystonia and those with chronic pain. Mov. Disord. 19, 1169–1175 (2004).

  54. 54

    Enders, L. et al. Musician's dystonia and comorbid anxiety: two sides of one coin? Mov. Disord. 26, 539–542 (2011).

  55. 55

    Ioannou, C. I. & Altenmuller, E. Psychological characteristics in musicians dystonia: a new diagnostic classification. Neuropsychologia 61, 80–88 (2014).

  56. 56

    Shamim, E. A. et al. Extreme task specificity in writer's cramp. Mov. Disord. 26, 2107–2109 (2011).

  57. 57

    Frucht, S. J. Focal task-specific dystonia-from early descriptions to a new, modern formulation. Tremor Other Hyperkinet. Mov. (NY) 4, 230 (2014).

  58. 58

    Ramkumar, P. et al. Chunking as the result of an efficiency computation trade-off. Nat. Commun. 7, 12176 (2016).

  59. 59

    Acuna, D. E. et al. Multifaceted aspects of chunking enable robust algorithms. J. Neurophysiol. 112, 1849–1856 (2014).

  60. 60

    Ingram, J. N., Howard, I. S., Flanagan, J. R. & Wolpert, D. M. Multiple grasp-specific representations of tool dynamics mediate skillful manipulation. Curr. Biol. 20, 618–623 (2010).

  61. 61

    Ogawa, T., Kawashima, N., Ogata, T. & Nakazawa, K. Limited transfer of newly acquired movement patterns across walking and running in humans. PLoS ONE 7, e46349 (2012).

  62. 62

    Houldin, A., Chua, R., Carpenter, M. G. & Lam, T. Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking. J. Neurophysiol. 108, 943–952 (2012).

  63. 63

    Wu, Y. H., Truglio, T. S., Zatsiorsky, V. M. & Latash, M. L. Learning to combine high variability with high precision: lack of transfer to a different task. J. Mot. Behav. 47, 153–165 (2015).

  64. 64

    Wiestler, T. & Diedrichsen, J. Skill learning strengthens cortical representations of motor sequences. eLife 2, e00801 (2013).

  65. 65

    Boutin, A. et al. Practice makes transfer of motor skills imperfect. Psychol. Res. 76, 611–625 (2012).

  66. 66

    Zatsiorsky, V. M., Li, Z. M. & Latash, M. L. Enslaving effects in multi-finger force production. Exp. Brain Res. 131, 187–195 (2000).

  67. 67

    van Duinen, H. & Gandevia, S. C. Constraints for control of the human hand. J. Physiol. 589, 5583–5593 (2011).

  68. 68

    Ejaz, N., Hamada, M. & Diedrichsen, J. Hand use predicts the structure of representations in sensorimotor cortex. Nat. Neurosci. 18, 1034–1040 (2015).

  69. 69

    Altenmuller, E. & Muller, D. A model of task-specific focal dystonia. Neural Netw. 48, 25–31 (2013).

  70. 70

    Potter, P. Task specific focal hand dystonia: understanding the enigma and current concepts. Work 41, 61–68 (2012).

  71. 71

    Frucht, S. J. Focal task-specific dystonia in musicians. Adv. Neurol. 94, 225–230 (2004).

  72. 72

    Frith, C. D., Blakemore, S. J. & Wolpert, D. M. Abnormalities in the awareness and control of action. Phil. Trans. R. Soc. Lond. B Biol. Sci. 355, 1771–1788 (2000).

  73. 73

    Edwards, M. J. & Rothwell, J. C. Losing focus: how paying attention can be bad for movement. Mov. Disord. 26, 1969–1970 (2011).

  74. 74

    Porter, J. M., Nolan, R. P., Ostrowski, E. J. & Wulf, G. Directing attention externally enhances agility performance: a qualitative and quantitative analysis of the efficacy of using verbal instructions to focus attention. Front. Psychol. 1, 216 (2010).

  75. 75

    Demenga, T. The art of distraction is more effective than repetitive practice. The Strad https://www.thestrad.com/the-art-of-distraction-is-more-effective-than-repetitive-practice/5344.article (2014).

  76. 76

    Mallinson, T. & Hammel, J. Measurement of participation: intersecting person, task, and environment. Arch. Phys. Med. Rehabil. 91, S29–S33 (2010).

  77. 77

    Toledo, S. D. et al. Sports and performing arts medicine. 5. Issues relating to musicians. Arch. Phys. Med. Rehabil. 85, S72–S74 (2004).

  78. 78

    McKenzie, A. L. et al. Differences in physical characteristics and response to rehabilitation for patients with hand dystonia: musicians' cramp compared to writers' cramp. J. Hand Ther. 22, 172–181 (2009).

  79. 79

    van Vugt, F. T., Boullet, L., Jabusch, H. C. & Altenmuller, E. Musician's dystonia in pianists: long-term evaluation of retraining and other therapies. Parkinsonism Relat. Disord. 20, 8–12 (2014).

  80. 80

    Jabusch, H. C., Zschucke, D., Schmidt, A., Schuele, S. & Altenmuller, E. Focal dystonia in musicians: treatment strategies and long-term outcome in 144 patients. Mov. Disord. 20, 1623–1626 (2005).

  81. 81

    Termsarasab, P., Thammongkolchai, T. & Frucht, S. J. Medical treatment of dystonia. J. Clin. Mov. Disord. 3, 19 (2016).

  82. 82

    Kruisdijk, J. J., Koelman, J. H., Ongerboer de Visser, B. W., de Haan, R. J. & Speelman, J. D. Botulinum toxin for writer's cramp: a randomised, placebo-controlled trial and 1-year follow-up. J. Neurol. Neurosurg. Psychiatry 78, 264–270 (2007).

  83. 83

    Lungu, C., Karp, B. I., Alter, K., Zolbrod, R. & Hallett, M. Long-term follow-up of botulinum toxin therapy for focal hand dystonia: outcome at 10 years or more. Mov. Disord. 26, 750–753 (2011).

  84. 84

    Taira, T. & Hori, T. Stereotactic ventrooralis thalamotomy for task-specific focal hand dystonia (writer's cramp). Stereotact. Funct. Neurosurg. 80, 88–91 (2003).

  85. 85

    Horisawa, S. et al. Stereotactic thalamotomy for hairdresser's dystonia: a case series. Stereotact. Funct. Neurosurg. 94, 201–206 (2016).

  86. 86

    Horisawa, S. et al. Gamma knife ventro-oral thalamotomy for musician's dystonia. Mov. Disord. 32, 89–90 (2017).

  87. 87

    Horisawa, S., Goto, S., Nakajima, T., Kawamata, T. & Taira, T. Bilateral stereotactic thalamotomy for bilateral musician's hand dystonia. World Neurosurg. 92, 585.e21–585.e25 (2016).

  88. 88

    Horisawa, S., Taira, T., Goto, S., Ochiai, T. & Nakajima, T. Long-term improvement of musician's dystonia after stereotactic ventro-oral thalamotomy. Ann. Neurol. 74, 648–654 (2013).

  89. 89

    Fukaya, C. et al. Thalamic deep brain stimulation for writer's cramp. J. Neurosurg. 107, 977–982 (2007).

  90. 90

    Cho, H. J. & Hallett, M. Non-invasive brain stimulation for treatment of focal hand dystonia: update and future direction. J. Mov. Disord. 9, 55–62 (2016).

  91. 91

    Kimberley, T. J., Schmidt, R. L., Chen, M., Dykstra, D. D. & Buetefisch, C. M. Mixed effectiveness of rTMS and retraining in the treatment of focal hand dystonia. Front. Hum. Neurosci. 9, 385 (2015).

  92. 92

    Sheehy, M. P. & Marsden, C. D. Writers' cramp-a focal dystonia. Brain 105, 461–480 (1982).

  93. 93

    Rosset-Llobet, J., Candia, V., Fabregas, S., Ray, W. & Pascual-Leone, A. Secondary motor disturbances in 101 patients with musician's dystonia. J. Neurol. Neurosurg. Psychiatry 78, 949–953 (2007).

  94. 94

    Wiestler, T., Waters-Metenier, S. & Diedrichsen, J. Effector-independent motor sequence representations exist in extrinsic and intrinsic reference frames. J. Neurosci. 34, 5054–5064 (2014).

  95. 95

    Ritz, K. et al. Screening for dystonia genes DYT1, 11 and 16 in patients with writer's cramp. Mov. Disord. 24, 1390–1392 (2009).

  96. 96

    Chung, S. J., Lee, J. H., Lee, M. C., Yoo, H. W. & Kim, G. H. Focal hand dystonia in a patient with PANK2 mutation. Mov. Disord. 23, 466–468 (2008).

  97. 97

    Sadnicka, A. et al. Task-specific dystonia: pathophysiology and management. J. Neurol. Neurosurg. Psychiatry 87, 968–974 (2016).

  98. 98

    Paulig, J., Jabusch, H. C., Grossbach, M., Boullet, L. & Altenmuller, E. Sensory trick phenomenon improves motor control in pianists with dystonia: prognostic value of glove-effect. Front. Psychol. 5, 1012 (2014).

  99. 99

    Cheng, F. P., Grossbach, M. & Altenmuller, E. O. Altered sensory feedbacks in pianist's dystonia: the altered auditory feedback paradigm and the glove effect. Front. Hum. Neurosci. 7, 868 (2013).

  100. 100

    Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

  101. 101

    Wolpert, D. M. & Miall, R. C. Forward models for physiological motor control. Neural Netw. 9, 1265–1279 (1996).

  102. 102

    Shadmehr, R. & Krakauer, J. W. A computational neuroanatomy for motor control. Exp. Brain Res. 185, 359–381 (2008).

  103. 103

    Schonewille, M. et al. Reevaluating the role of LTD in cerebellar motor learning. Neuron 70, 43–50 (2011).

Download references


A.S. is funded by a Guarantors of Brain Clinical Research Fellowship and a Chadburn Clinical Lectureship. K.K. is funded by Sir Henry Wellcome Fellowship no. 098881/Z/12/Z. M.J.E. is partially funded by a UK National Institute for Health Research (NIHR) grant.

Author information

A.S. and K.K. collated data and papers relevant to the article, developed its content, and wrote the manuscript. J.C.R. and M.J.E. contributed substantially to discussions of the article content and to review of the manuscript.

Correspondence to Anna Sadnicka or Katja Kornysheva.

Ethics declarations

Competing interests

A.S. and K.K. declare that they have no competing interests. J.C.R. declares that he has received speaker's travel costs from the Movement Disorders Society. M.J.E. declares that he receives royalties for the Oxford Specialist Handbook of Parkinson's Disease and Other Movement Disorders (Oxford University Press, 2008) and that he has received speaker's honoraria from UCB pharmaceuticals.

PowerPoint slides



A mode of motor control in which movements operate with very little conscious knowledge of the actions required to perform them.


Collection of elementary units that are inter-associated, stored in memory as one unit, and act as a coherent, integrated group when retrieved.


A movement disorder characterized by sustained or intermittent muscle contractions causing abnormal movements, abnormal postures or both.


The degree to which a single finger can move without unintended movements of the other fingers of the same hand.

Motor hierarchy

A functional hierarchy of the motor system, with each level having specific roles in motor encoding and control of movement.

Motor synergies

Elemental action units, characterized by groups of weighted muscle activations that are coordinated in space and time.


Activity in neural substrates containing information about the external or internal state of the system, including motor output.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadnicka, A., Kornysheva, K., Rothwell, J. et al. A unifying motor control framework for task-specific dystonia. Nat Rev Neurol 14, 116–124 (2018). https://doi.org/10.1038/nrneurol.2017.146

Download citation

Further reading