
The Centers for Disease Control and Prevention esti-
mates that in the USA, 1.7 million people experience 
traumatic brain injury (TBI) each year, and 5.3 million 
are living with TBI-related disability1. These figures 
may grossly underestimate the scope of the TBI epi-
demic, particularly for mild TBI (mTBI) which often 
goes unreported2 and, globally, the incidence of TBI 
appears to be increasing1. TBI and mTBI are ‘signature 
injuries’ of the wars in Iraq and Afghanistan, primarily 
because many military personnel are exposed to blast 
injuries from conventional and improvised explo-
sive devices3. In addition, TBI has now been linked 
to post-traumatic stress disorder, memory deficits, 
chronic traumatic encephalopathy (CTE), and chronic 
neuroinflammation.

The inflammatory reaction to TBI was thought to 
occur solely through peripheral immune mediators 
entering the CNS via a disturbed blood–brain barrier 
(BBB); however, inflammation after TBI is now rec-
ognized as a robust and complex interaction between 
central and peripheral cellular and soluble components, 

influenced by patient age, sex, mechanism of injury 
(focal, diffuse, blast), degree of injury (mild, repetitive 
mild, severe), secondary insults (hypoxaemia, hypo-
tension), therapeutic interventions, and genetic varia-
bility. TBI leads to early resident microglial activation 
and peripheral neutrophil recruitment, followed by 
infiltration of lymphocytes and monocyte-derived 
macrophages4. Simultaneously, proinflammatory and 
anti-inflammatory cytokines vie to promote and termi-
nate the post-traumatic neuroinflammatory response, 
and chemokine signalling results in the activation and 
recruitment of immune cells towards the lesion5–9.

Post-traumatic inflammation can be beneficial, 
because it promotes both clearance of debris and 
regeneration, and/or potentially harmful, by mediat-
ing neuronal death and progressive neurodegeneration 
(FIG. 1). Anti-inflammatory therapies have demonstrated 
efficacy in preclinical and single-centre trials; unfortu-
nately, however, these therapies failed to show benefit 
— and several were even deleterious — in multicentre 
clinical trials10,11.

1Department of Critical Care 
Medicine, University of 
Pittsburgh School of Medicine, 
4401 Penn Avenue, Pittsburgh, 
Pennsylvania 15224, USA.
2Department of Medicine, 
University of Pittsburgh 
School of Medicine, 3500 
Terrace Street, BST South, 
S719, Pittsburgh, 
Pennsylvania 15261, USA.
3Department of 
Anesthesiology and Shock, 
Trauma and Anesthesiology 
Research (STAR) Center, 
University of Maryland  
School of Medicine, 655  
W. Baltimore Street, Baltimore, 
Maryland 21201, USA.
4Safar Center for 
Resuscitation Research, 
University of Pittsburgh 
School of Medicine, 3434 
Fifth Avenue, Pittsburgh, 
Pennsylvania 15260, USA.

Correspondence to P.M.K.
kochanekpm@ccm.upmc.edu

doi:10.1038/nrneurol.2017.13
Published online 10 Feb 2017 
corrected online 4 Aug 2017

The far-reaching scope of 
neuroinflammation after traumatic 
brain injury
Dennis W. Simon1, Mandy J. McGeachy2, Hülya Bayır1, Robert S. B. Clark1,  
David J. Loane3 and Patrick M. Kochanek4

Abstract | The ‘silent epidemic’ of traumatic brain injury (TBI) has been placed in the spotlight as a 
result of clinical investigations and popular press coverage of athletes and veterans with single or 
repetitive head injuries. Neuroinflammation can cause acute secondary injury after TBI, and has 
been linked to chronic neurodegenerative diseases; however, anti-inflammatory agents have failed 
to improve TBI outcomes in clinical trials. In this Review, we therefore propose a new framework of 
targeted immunomodulation after TBI for future exploration. Our framework incorporates factors 
such as the time from injury, mechanism of injury, and secondary insults in considering potential 
treatment options. Structuring our discussion around the dynamics of the immune response to TBI 
— from initial triggers to chronic neuroinflammation — we consider the ability of soluble and 
cellular inflammatory mediators to promote repair and regeneration versus secondary injury and 
neurodegeneration. We summarize both animal model and human studies, with clinical data 
explicitly defined throughout this Review. Recent advances in neuroimmunology and 
TBI-responsive neuroinflammation are incorporated, including concepts of inflammasomes, 
mechanisms of microglial polarization, and glymphatic clearance. Moreover, we highlight findings 
that could offer novel therapeutic targets for translational and clinical research, assimilate 
evidence from other brain injury models, and identify outstanding questions in the field.
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Chronic traumatic 
encephalopathy
A progressive 
neurodegenerative disease 
associated with head trauma 
and characterized histologically 
by formation of neurofibrillary 
tangles, accumulation of 
phosphorylated TAR 
DNA-binding protein 43 
(TDP‑43) accumulation, and 
deposition of amyloid‑β.

Damage-associated 
molecular patterns
Host-derived molecules that 
trigger and/or exacarbate the 
inflammatory response. 
Prominent examples include 
DNA and RNA, high mobility 
group protein B1 (HMGB1), 
S100 proteins, ATP, uric acid, 
lysophospholipids, and lipid 
peroxidation-derived carbonyl 
adducts of proteins.

In this Review, we propose a new framework to 
guide future preclinical and clinical trials to optimize  
the immune response to TBI. The purpose of immune- 
targeting interventions in TBI is to limit the acute 
proinflammatory response to the level needed for 
clearance of debris and danger signals, promote an 
anti-inflammatory and pro-regenerative immune 
phenotype, and prevent the development of chronic 
neuroinflammation. Using this framework, we review 
the dynamics of the immune response to TBI, pro-
gressing from initiation of acute inflammation by 
danger signals and early inflammatory mediators, 
to subacute inflammation occurring days to weeks 
after injury and, finally, to chronically activated 
elements of the immune system that can remain 
active for months to years and have been linked to 
the development of traumatic encephalopathies. 
Mechanisms that balance proinflammatory and pro- 
reparative immune activation are discussed, as well 
as the potential for therapies to promote beneficial 
aspects of inflammation. We discuss recent discov-
eries in immunology and our current understanding 
of the possible roles of processes and systems in the 
immune response to TBI. Acknowledging the limita-
tions of TBI models12,13, we incorporate in this com-
prehensive Review what is known from human studies 
over the past two decades of TBI research, although 
notably, limited human data are available for mTBI. 
Lastly, considering the current knowledge of post- 
traumatic neuroinflammation, we propose new areas for  
advancing translational and clinical research.

Acute and subacute neuroinflammation
Inflammatory triggers
Damage-associated molecular patterns. Cellular  
membrane disruption as a result of primary mechani-
cal insult or secondary injury causes release of damage- 
associated molecular patterns (DAMPs)4,14,15 (TABLE 1). In 
response, tumour necrosis factor (TNF), IL‑6 and IL‑1β are  
upregulated rapidly by local glial cells and infiltrating 
immune cells16 and represent early effectors that drive  
post-traumatic neuroinflammation (TABLE 1).

The dual nature of inflammation was demonstrated 
in experimental models investigating the role of TNF 
and inducible nitric oxide synthase (iNOS) after TBI. 
TNF is linked to brain oedema, BBB disruption, and 
recruitment of leukocytes9. However, TNF−/− mice had 
impaired motor function and larger lesions at 4 weeks 
after injury, despite showing early neuroprotection17. 
Similarly, although TBI increased iNOS expression in 
the brain, with multiple proinflammatory and neuro-
toxic effects, genetic or chemical iNOS blockade resulted 
in worsened spatial memory 2–3 weeks after injury18.

Cell death via programmed necrosis, such as 
necroptosis through TNF-mediated RIP kinase acti-
vation19, can lead to a vicious cycle: necrosis increases 
membrane disruption, which promotes DAMP release, 
which in turn further exacerbates necrosis and ampli-
fies inflammation. The prototypical DAMP, high 
mobility group protein B1 (HMGB1), is increased in 
cerebrospinal fluid (CSF) of patients after severe TBI, 
and is associated with elevated intracranial pressure 
in adults and poor outcome in children20,21. HMGB1 
is a structural DNA-binding protein that regulates 
transcription by stabilizing nucleosomes under nor-
mal conditions21. This protein can be released from 
cells by membrane disruption or actively secreted by 
monocytes or macrophages, and it signals through 
RAGE (receptor for advanced glycation end products)  
and Toll-like receptor (TLR) 2 and TLR4 to increase 
production and release of cytokines22.

One mechanism of cytokine production triggered 
by DAMPs is the activation of the inflammasome 
complex. Binding to intracellular pattern recognition 
receptors such as the NLR (NOD-like receptor) family 
or absent in melanoma (AIM) leads to autoactivation 
of caspase‑1 and processing of pro‑IL‑1β and 
pro‑IL‑18 to their active forms23. Relatively few inflam-
masome complexes are expressed in the brain: NLRP1 
and AIM2 are present in neurons24,25 and NLRP3 is 
found in astrocytes25 and microglia in both mice and 
humans26,27. In patients, NLRP1 and caspase‑1 levels 
are increased in the CSF after severe TBI, and are 
associated with unfavourable outcomes25. In mice, 
neutralization of the NLRP1 and NLRP3 inflamma
somes attenuated IL‑1β processing and reduced lesion  
volume24,28. Inflammasome-dependent cytokine pro-
duction also contributes to disease progression in 
mouse models of multiple sclerosis, Alzheimer disease 
(AD) and amyotrophic lateral sclerosis26,29,30. However, 
it remains unclear which inflammasome complexes are 
the primary producers of IL‑1β and IL‑18 after TBI, 
and whether neurons, microglia or astrocytes are the 
key cellular mediators of inflammasome-mediated 
tissue damage.

Glutamate excitotoxicity. Concurrent with the release 
of DAMPs, a massive increase in extracellular gluta-
mate (and other excitatory amino acids)31,32 can occur, 
leading to excitotoxic neuronal injury via activation 
of neuronal glutamate receptors, such as N‑methyl-
d‑aspartate (NMDA) and α‑amino‑3‑hydroxy-5‑ 
methyl-4‑isoxazolepropionic acid (AMPA) receptors, 

Key points

•	Traumatic brain injury (TBI) is an important public health issue: the global incidence of 
TBI is on the rise, and mild, repetitive and blast injuries, in particular, are increasingly 
recognized in the popular press

•	Neuroinflammation, triggered by release of endogenous danger signals and innate 
immune activation, is crucial to recovery after TBI; however, a dysregulated immune 
response can result in secondary injury

•	After TBI, the activity of microglia and infiltrating macrophages and adaptive immune 
cells is driven by extracellular injury signals and intracellular molecular pathways that 
might represent novel therapeutic targets

•	Trials assessing immunomodulatory interventions should account for changes in 
neuroinflammation that occur over time, between injury type and severity, and across 
patient characteristics such as age, sex and genetic variability

•	Some individuals with TBI develop chronic neuroinflammation, which can last for 
years after the injury, and is being investigated as a link to accelerated 
neurodegeneration and chronic traumatic encephalopathy
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Triggers
• 4-HNE
• Chemokines (proinflammatory)
• Complement
• Cytokines (proinflammatory)
• DNA/RNA/mtDNA
• Free haemoglobin
• Glutamate
• HMGB1
• Lysophospholipids
• ROS
• S100

• Necrosis
• Vascular permeability
• Poor clearance
• Reactive astrocytes

• Clearance of triggers
• Cell survival
• Apoptosis or autophagy
• Adenosine
• Anti-inflammatory cytokines
• Reactive astrocytes/glial scar

Additional triggers

Key goals
• Limit the acute proinflammatory reponse
 to the level needed for clearance
• Promote an anti-inflammatory and
 pro-regenerative immune phenotype
• Prevent the development of chronic
 neuroinflammation and return to normal function

Important factors determining immune response
Age, sex, comorbidities, genetic susceptibility, mechanism
(focal, diffuse, blast), degree of injury (mild, mild repetitive,
severe), secondary insults (hypoxaemia, hypotension), therapies
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followed by Ca2+-dependent degeneration33. In mice, 
multiple interactions between inflammatory medi-
ators and glutamate signalling have been demon-
strated, including changes in cell surface expression, 
distribution and function of NMDA and AMPA 
receptors, mediated by TNF and IL‑1β; NMDA receptor- 
mediated induction of inflammatory gene expression; 
and a TNF-and‑IL‑1β‑mediated reduction in astrocytic 
glutamate transporters, resulting in impaired glutamate 
clearance from the synaptic cleft34. NMDA receptor 
blockade is an attractive therapeutic strategy to sup-
press inflammation after TBI; however, NMDA recep-
tor antagonists have failed in clinical TBI trials, partly 

owing to a limited therapeutic window and off-target 
neurotoxicity, as well as the effects of inhibiting normal 
synaptic function and plasticity35.

In response to TBI and glutamate toxicity, high levels 
of the endogenous neuroprotectant adenosine are pro-
duced through breakdown of adenosine triphosphate 
and mRNA36. Activation of adenosine receptor A1 after 
TBI has anti-excitotoxic37 and anti-inflammatory effects 
in mice38; however, systemic administration of adenosine 
to patients can result in bradycardia and hypotension. 
A variety of adenosine-associated strategies are being 
actively investigated to mitigate excitoxicity and various 
facets of acute and chronic neuroinflammation39.

Figure 1 | Neuroinflammation after traumatic brain injury. Primary mechanical injury to the CNS may cause cell 
membrane disruption, vascular rupture and blood–brain barrier (BBB) damage followed by secondary reactions involving 
ionic imbalance, release of excitatory amino acids, calcium overload, and mitochondrial dysfunction, culminating in cell 
death pathways. Primary and secondary injury lead to release of damage-associated molecular patterns, cytokines, 
chemokines, activation of microglia and astrocytes, and recruitment of circulating immune cells. Temporally, these immune 
responses largely overlap. The inflammatory response is crucial to clearance of debris, repair, and regeneration after 
traumatic brain injury. However, dysregulated inflammation can lead to additional acute and chronic brain injury. 4‑HNE, 
4‑hydroxynonenol; HMGB1, high mobility group protein B1; mtDNA, mitochondrial DNA; ROS, reactive oxygen species.
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Table 1 | Factors modulating neuroinflammation in patients with TBI

Inflammatory 
mediator

Tissue or 
fluid

Time course Association with clinical 
outcomes

Other observations Refs

Cytokines and chemokines

TNF CSF, ECF •	Peaks early on day 1
•	Prolonged elevation in patients  

with hypoxia

•	Mixed results
•	Most studies show no association 

with outcome
•	High level at 6 h might be 

associated with ICP and outcome

•	Soluble TNF receptor levels 
peak later (days 4–9)

•	TNF allele variants associated 
with clinical outcome

5,7,117, 
168, 

198–203

Tissue Increased within 17 min after injury Unknown Fourfold increase in mRNA 
within 17 min

6

IFNγ Tissue Increased within 17 min of injury Unknown Second-highest cytokine 
concentration measured  
(after IL‑6)

IL‑1β CSF, ECF •	Peaks at days 1–2; decreases  
at days 2–4

•	IL‑1ra consistently much higher  
than IL‑1β

•	Paediatric: mixed results; no 
correlation with outcome

•	Adult: mixed results; no 
correlation with outcome and 
elevated ICP

•	Adult: high ECF IL‑1ra and 
IL‑1ra:IL‑1β ratio associated with 
good outcome

•	IL1RN (IL‑1ra gene) 
polymorphisms associated 
with cerebral haemorrhage 
after TBI

•	Principal component analysis 
of microdialysis data shows 
close covariance with TNF

117, 
203–210

Tissue Increased above control 6–122 h  
after injury

Unknown Fivefold increase in mRNA  
at 6–122 h

6

IL‑6 CSF, ECF •	Marked increase after TBI
•	Peaks at day 1, declines at days 2–3

•	Paediatric: mixed results; no 
correlation with outcome

•	Adult: high CSF or ECF level 
associated with favorable GOS 
score

•	Paediatric: twofold greater 
in children with intermittent 
versus continuous CSF 
drainage

•	Adults: associated with 
NGF level (CSF added to 
astrocyte culture induced 
NGF production, blocked by 
anti‑IL-6 antibody)

203–205, 
209, 

211–217

Tissue Increased within 17 min after injury No relationship with ICP, brain 
oxygenation or oedema

20‑fold increase in mRNA levels 
at 6–122 h

6,209

IL‑10 CSF, ECF •	Peaks at day 1, declines at days 2–3
•	May have second or third peak of 

lower magnitude
•	Later peak in ECF at days 4–6

•	Paediatric: high level associated 
with mortality in severe TBI

•	Adult: mixed results; correlation 
with outcome

•	Very young patients (<4 years) 
have high levels

•	No change in contused tissue

5,6,117, 
203,208, 
209,211, 
214,218

IL‑12p70 CSF, ECF •	Increased at days 2–3
•	Peaks at days 3–5

Paediatric: not associated with 
outcome

35‑fold greater in ECF than in 
plasma

203,204

GM‑CSF Tissue Increased above control 6–122 h  
after injury

Unknown Expression in CSF prolonged by 
hypoxia

6,219

TGFβ CSF Peaks at day 1, gradually decreases  
over 21 days

Adult: not associated with  
outcome

Associated with BBB 
permeability

220

CCL2 (MCP‑1) CSF, ECF Peaks at day 1, decreases and plateaus 
by day 4, but remains elevated until 
day 10

Unknown Tenfold higher in ECF than in 
plasma

203,221, 
222

Tissue mRNA detected 3 h to 15 days after 
injury

Unknown The most consistently and 
strongly expressed chemokine 
mRNA in evacuated contusion

222

CCL3 (MIP1α) CSF, ECF Increased at days 1–3, no clear peak Paediatric: not associated with 
outcome

No association with age, sex or 
GCS score

203,204

Tissue mRNA detected 3 h to 15 days after 
injury

Unknown Intermediate levels of mRNA 
detected

222

CXCL8 (IL‑8) CSF, ECF Peaks at day 1; marked decline at days 
2–3; remains elevated up to 108 h after 
injury

•	Paediatric: high level strongly 
associated with mortality

•	Adult: high level associated  
with BBB permeability, but not  
mortality

•	No association with age, sex 
or GCS score

•	Tenfold to 20‑fold higher in 
CSF and ECF than in plasma

203,204, 
214,223

Tissue mRNA detected 3 h to 15 days after 
injury

Unknown 139‑fold increase in mRNA at 
6–122 h

6,222
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Table 1 (cont.) | Factors modulating neuroinflammation in patients with TBI

Inflammatory 
mediator

Tissue or 
fluid

Time course Association with clinical 
outcomes

Other observations Refs

Cellular mediators

Microglia Tissue 
(pathology)

•	Proliferating microglia observed 72 h 
after injury

•	Peaks at 3 months
•	Extensive amoeboid CR3/43 and 

CD68 immunoreactive cells seen in 
~25% of patients surviving >2 weeks 
and up to years after TBI, particularly 
with diffuse axonal injury

Unknown •	Associated with ongoing 
white matter degeneration

•	May be influenced by IL‑1 
genotype

6,162, 
163,166, 

224

Tissue 
(imaging)

•	Increased 11C-DPA‑713 binding to  
TSPO 24–42 years after playing in the 
National Football League

•	Increased 11C-(R)-PK11195 binding to 
TSPO in thalamus, putamen, occipital 
cortex, and internal capsule years after 
moderate to severe TBI

Adult: higher 11C-(R)-PK11195 
binding associated with more  
severe cognitive impairment

Atrophy of hippocampus 
observed

164,167

Astrocytes CSF YKL‑40 (marker for reactive astrocytes) 
elevated at day 1, peaks at day 4

Adult: might be linked to outcome 
(non-significant trend)

Associated with CSF IL‑1β, TNF 
and C‑reactive protein

225

Tissue Increased GFAP in ipsilateral and 
contralateral cortex at 6–122 h

Unknown Anti-GFAP antibodies 
detectable in serum

6,226

Triggers and brakes

Adenosine CSF, ECF Increased within hours of injury, rapidly 
declines over 12–24 h

•	Paediatric: no association with 
outcome after severe TBI

•	Adult: high levels observed in 
patients who died after severe 
TBI

•	Adenosine receptor A1 gene 
variants associated with 
post-traumatic epilepsy

•	Increased CSF adenosine 
associated with jugular vein 
desaturation

227–229

Complement CSF Peaks 1 day after injury, declines on  
days 2–7

Adult: increased membrane attack 
complex level associated with BBB 
dysfunction in severe TBI

C3 and factor B increased 
relative to controls

49,230

Tissue Increased in tissue resected 2–82 h  
after injury

Unknown C3 mRNA also detected in 
penumbra, suggesting a 
contribution of local synthesis

48

Glutamate CSF, ECF •	Multiple courses described
•	Typically reported to peak at day 1,  

with a decline at days 2–3

•	Paediatric: high levels associated 
with poor 6‑month GOS score in 
severe TBI

•	Adult: increase in ECF glutamate 
associated with poor outcomes

•	Increased glutamate 
associated with age <4 years 
and diagnosis of child abuse

•	Hourly levels not affected by 
transient haemodynamic or 
ICP change

32, 
231–233

HMGB1 CSF No change over time •	Paediatric: high levels associated 
with unfavorable 6‑month GOS 
score in severe TBI

•	Adult: increased level associated 
with high ICP

Not associated with age or 
mechanism of injury

20,21

Tissue •	Translocated to cytoplasm of cells in 
contused area at 30 min to 1day

•	Localized to cytoplasm of phagocytic 
microglia at days 2–20

Unknown RAGE (HMGB1 receptor) 
expression also increased in 
contused area in phagocytic 
microglia

234

NLRP1 CSF Unknown Adult: high levels seen in patients 
with unfavourable 5‑month GOS 
score in moderate to severe TBI

Adaptor protein ASC also 
increased in CSF of TBI patients

235

Caspase‑1 CSF Unknown Adult: high levels in patients with 
unfavourable 5‑month GOS score  
in moderate to severe TBI

Identified by p20 subunit, 
suggesting activated form of 
enzyme

235

Tissue Procaspase‑1 is cleaved to active form 
on day 1

Unknown – 236

Mitochondrial 
DNA

CSF Peak day 1, declined on day 3, but still 
above control

Paediatric: high levels associated  
with unfavourable 6‑month GOS 
score in severe TBI

Correlates with HMGB1 level 43

BBB, blood–brain barrier; CCL, C–C motif chemokine; CSF, cerebrospinal fluid; CXCL, C–X–C motif ligand; ECF, extracellular fluid; GFAP, glial fibrillary acidic protein; GCS, 
Glasgow Coma Scale; GOS, Glasgow Outcome Scale; HMGB1, high mobility group box 1; ICP, intracranial pressure; NGF, nerve growth factor; NLRP1, NACHT, LRR and 
PYD domains-containing protein 1; RAGE, receptor for advanced glycation end products; TBI, traumatic brain injury; TGF, transforming growth factor; TNF, tumour 
necrosis factor; TSPO, translocator protein.
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CD11d/CD18 integrin
A pattern recognition receptor 
that is located on the surface 
of neutrophils and monocytes 
and is functionally important in 
recognition of complement, as 
well as cell–cell interactions 
and cellular adhesion.

Chemokine gradients
Concentration gradients of 
chemotactic cytokines with the 
ability to influence 
inflammatory cell migration 
and function. For example, C–C 
motif chemokine 2 (CCL2), a 
chemokine for monocytes, 
macrophages and microglia, 
and its receptor CCR2 interact 
to recruit these immune cells to 
injured tissue after traumatic 
brain injury.

Mitochondrial dysfunction. Mitochondrial dysfunc-
tion and reactive oxygen species (ROS) generation, 
caused by direct and indirect injury after TBI, have 
also been identified as triggers of neuroinflamma-
tion40. Translocation of the phospholipid cardiolipin 
from the inner to the outer mitochondrial mem-
brane, shown to occur after experimental TBI, tags 
damaged mitochondria for mitophagy, and can also 
be a final pathway for inflammasome activation41,42. 
Failure of mitophagy and resultant cell death can lead 
to release of mitochondrial DAMPs: in children with 
TBI, increased levels of mitochondrial DNA have been 
reported in the CSF43. These mitochondrial danger 
signals produce local and systemic responses through 
interaction with receptors on immune cells: mitochon-
drial DNA via TLR9 on dendritic cells and N‑formyl 
peptides via formyl peptide receptor 1 on neutrophils44. 
Membranes with mitochondrial cardiolipins on their 
surface are engulfed via phagocytosis dependent on 
the CD36 protein45. There is a paucity of data regard-
ing the CD36‑mediated inflammatory response after 
TBI; however, one study has indicated that CD36 has 
a beneficial role in neurological outcomes in patients 
with intracranial haemorrhage, probably by facilitat-
ing haematoma resorption46. Although individuals 
with TBI were excluded from the study, intracranial 
haemorrhage is present in many patients with mod-
erate to severe TBI, and CD36‑mediated haematoma 
resorption may outweigh the harm of CD36‑mediated 
inflammation.

Vascular injury. In addition to inflammatory triggers 
released from neurons and glia, trauma to the vascula-
ture can lead to leakage of blood components, including 
complement and the potent neurotoxin and immune 
modulator cell-free haemoglobin (fHb), into the cer-
ebral parenchyma47. Complement factors have been 
detected in brain tissue48 and CSF49 of patients within 
hours of severe TBI, and they correlate with increased 

BBB permeability49. Evidence from murine models50 
suggests that although complement system activation 
is required for normal wound healing, TBI can cause 
acute dysregulation of complement, resulting in second-
ary injury51. Indeed, in a weight-drop model of TBI in 
mice, inhibition of the alternative complement pathway52 
or the membrane attack complex53 reduced neurode-
generation and axonal loss, and improved neurological 
outcomes. fHb–haptoglobin complexes are released in 
the contused areas of the brain, where they are cleared 
by CD163 receptors on microglia and macrophages 
which, as a result, differentiate to an anti-inflammatory 
phenotype54. If the haptoglobin–CD163 pathway is dys
functional or is outcompeted by the amount of fHb pres-
ent, fHb and its breakdown products haem and iron can, 
presumably, induce direct neuronal toxicity by generat-
ing ROS and scavenging nitric oxide55, as demonstrated 
in rodent models of post-traumatic epilepsy56. CSF levels 
of soluble CD163 and the iron-binding protein ferritin 
are increased after TBI in children, and they correlate 
with injury severity and unfavourable outcome57. Thus, 
inflammation triggered by fHb and its degradation  
products could be a therapeutic target after TBI.

Several of the biochemical and molecular mech-
anisms of secondary injury listed above have been 
reported in blast-induced mTBI animal models. 
Characterized by axonal, periventricular and hippocam-
pal neuronal injury, blast-induced mTBI is associated 
with cytokine and chemokine release, adenosine pro-
duction (probably from mRNA breakdown), and activa-
tion of microglia58,59. Promising neuroprotective effects 
were demonstrated with the anti-inflammatory drug 
minocycline following blast injury in rats60.

Cellular regulation of inflammation
Dynamics of the cellular response. Several mouse stud-
ies have elucidated the time course of inflammatory 
response in TBI. The first circulating immune cells to 
infiltrate the CNS after trauma are neutrophils, num-
bers of which typically peak within 24–48 h of the ini-
tial injury then rapidly decline61. Diapedesis between 
endothelial cells is dependent on binding of integrins to 
vascular adhesion molecules. Within 4 h of experimen-
tal TBI, expression of the neutrophilic vascular adhe-
sion molecules E‑selectin (CD62E) and intracellular 
adhesion molecule 1 (CD54) increases on the endothe-
lium of the injured hemisphere62. Administration of 
antibody to the CD11d/CD18 integrin reduced leukocyte 
infiltration to the CNS, as well as the systemic inflam-
matory response to TBI63,64 (BOX 1). Chemokine gradients 
attract monocytes from the circulation to injured brain 
tissue, where they differentiate into macrophage sub-
populations distinguished by cell-surface expression of 
chemokine receptors65. Studies of monocyte infiltration 
in mice have demonstrated accumulation within the 
lesion through to 3 days post-injury66,67. Dendritic cells, 
T lymphocytes and natural killer cells are similarly 
recruited during this period68, but in lower numbers.

Concurrently within the CNS, astrocytes — vital reg-
ulators of CNS inflammation — undergo reactive astro-
gliosis characterized by morphological and functional 

Box 1 | SIRS and the compensatory anti-inflammatory response

In this Review, we have focused primarily on the neuroinflammatory response to 
traumatic brain injury (TBI); however, a single TBI can also trigger a systemic 
inflammatory response syndrome (SIRS) and subsequent compensatory 
anti-inflammatory response. These systemic responses can potentially increase the 
risk of nosocomial infection or multiple organ dysfunction.

A peripheral immune response can increase the risk of CNS injury via several 
pathways, including the sympathetic and parasympathetic nervous system, glymphatic 
and lymphatic clearance, the hypothalamic–pituitary–adrenal axis, and a disrupted 
blood–brain barrier. In addition, therapeutic agents routinely used in neurocritical care, 
such as sedatives, antiepileptic drugs and hyperosmolar agents, can affect peripheral 
immune function and further exacerbate the risk of SIRS.

Age seems to be an important risk factor for SIRS. For example, early post-TBI 
neutrophilia in adults is associated with substantially increased oxidative burst 
activity195, whereas in children, TBI results in substantially reduced ROS generation in 
neutrophils196.

Perhaps the most important factor influencing the characteristics of the systemic 
inflammatory response to TBI is time from injury. Although few studies have carefully 
studied the time course of peripheral immune function, a marked immunosuppressed 
state seems to occur at ~1 week after TBI, corresponding to the peak of the nosocomial 
infection rate197.
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adaptations, including upregulation of glial fibrillary 
acidic protein (GFAP) and production of cytokines and 
chemokines that further recruit and activate immune 
cells69,70. YKL‑40, a marker of reactive astrocytes, is 
significantly elevated in the CSF of adults with severe 
TBI on day 2, and peaks on day 4 post-injury (TABLE 1). 
Microglia undergo a similar transformation in morph
ology and function, with an initial peak approximately 
7 days post-injury54,71,72.

Multiple phenotypes of microglia. The concept of 
post-traumatic neuroinflammation as a ‘double-edged 
sword’ (REF. 73), with both beneficial and injurious 
effects, has recently been expanded to include the 
function of microglia74,75. Like peripheral macrophages, 
microglia respond to changes in their microenviron-
ment to become polarized along an activation spectrum 
ranging from the classic M1‑like phenotype to an alter-
native M2‑like phenotype76 (FIG. 2). This concept has 
evolved from the canonical M1 versus M2 classification 
to reflect mixed phenotypes and the functional plas-
ticity of tissue macrophages and microglia to changes 
in the microenvironment. Stimulation by DAMPs, free  
radicals, or proinflammatory cytokines such as IFNγ 
induces a M1‑like phenotype77. Although M1‑like 
‘proinflammatory’ cells are often presumed to be harm-
ful, a well-regulated M1‑like response could be neuro
protective after TBI. An exaggerated or prolonged 
M1‑like response, however, can lead to secondary 
brain injury and drive a self-propagating hyperinflam-
matory state78,79. The M2a‑like ‘alternative’ phenotype, 
a response to IL‑4 and IL‑13 stimulation, is associ-
ated with production of anti-inflammatory cytokines 
and increased phagocytic activity77. The M2c‑like  
‘de‑activated’ phenotype occurs in response to IL‑10,  
glucocorticoids or uptake of apoptotic cells, and regulates 
tissue repair and remodelling77. The M2b‑like ‘inter-
mediate’ phenotype is stimulated by immune complex  
exposure or TLR ligands76,77, and has both proinflam-
matory (mediated by IL‑1, IL‑6 and TNF) and anti- 
inflammatory (mediated by IL‑10) effects77. The 
degree to which microglia assume a particular pheno-
type (or multiple phenotypes) depends on these and 
other changes in the lesion microenvironment driving 
complex intracellular signalling pathways, influenced 
by genetic and epigenetic factors, that might offer  
additional opportunities for therapeutic intervention77,80.

Microglial polarization has been shown to vary 
over time and between different TBI models. In mice, 
activated microglia demonstrate a bimodal increase 
after focal contusion with an initial M2‑like peak at 
7 days followed by an M1‑like peak at 21–28 days, 
although it should be noted that the bulk of activated 
microglia have mixed M1‑like and M2‑like activation 
markers68,71,79. In diffuse brain injury, M1‑like versus 
M2‑like polarization dynamics are strikingly differ-
ent, probably as a result of altered cellular immune 
responses that include reduced neutrophil infiltration 
and restricted macrophage or microglial accumula-
tion in white matter regions that incurred the great-
est damage. Diffuse brain injury results in transient 

Figure 2 | Polarization of microglia and macrophages following TBI. Molecular 
signals from injured tissue drive phenotypic and functional responses in microglia or 
macrophages after traumatic brain injury (TBI). Damage-associated molecular patterns 
(DAMPs) released by injured neurons, and proinflammatory or oxidative mediators 
released by infiltrating immune cells polarize cells towards an M1‑like phenotype. 
M1‑like populations are characterized by expression of proteins such as IL‑1β, TNF, IL‑6, 
NOS2, IL‑12p40, and NOX2. Molecular pathways that regulate the M1 phenotype 
include signal transducer and activator of transcription 1 (STAT1), interferon regulatory 
factor (IRF)-3/5, nuclear factor‑κB (NF‑κB), p50/p65 and microRNA (miR)-155. M1‑like 
cells release proinflammatory factors and free radicals that promote neuroinflammation, 
oxidative stress and neurodegeneration. In response to anti-inflammatory and 
neurotrophic signals, microglia and macrophages can be polarized towards an M2‑like 
phenotype, characterized by expression of proteins such as CD206, CD163, arginase‑1, 
FCγR, Ym1, IL‑10, and TGFβ. Molecular pathways that regulate M2‑like phenotypic 
transitions include STAT6/3, IRF‑4/7, NF‑κB p50/p50, Nrf2 and miR‑124. M2‑like 
microglia and macrophages release anti-inflammatory and trophic factors that resolve 
inflammation. They have increased phagocytic activity and promote repair by 
modulating neurogenesis, axonal regeneration, synaptic plasticity, and angiogenesis. 
Microglia and macrophages demonstrate marked plasticity and can switch between 
M1‑like and M2‑like phenotypes. Following TBI, mixed phenotypes are present during 
the acute phase, transitioning to an M1‑like-dominant phenotype in the chronic phase.
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Autoimmune T cells
Also called autoreactive T cells, 
these T lymphocytes react to 
self antigens and may cause 
autoimmune disease, but are 
also critical for normal brain 
function and repair.

TH17 cells
A subset of effector T‑helper 
cells that produce IL‑17 and 
other proinflammatory 
cytokines.

Glymphatic system
Astrocyte-regulated convective 
bulk flow of the cerebrospinal 
fluid from the paravascular 
space through interstitial fluid 
in an arterial–venous direction.

increases in IL‑1β, TNF and CD14 expression in the 
cortex and hippocampus of mice as early as 4 h after 
injury; the levels of these molecules return to base-
line by 72 h (REF. 81). In addition, mixed M1‑like and 
M2‑like activation markers are present on microglia or 
macrophages 24 h after injury in mice82. However, the 
functional role of M1‑like versus M2‑like phenotypes 
in axonal injury and repair following diffuse brain 
injury remains to be elucidated.

Links to adaptive immune response. The adaptive 
immune response, mediated by T cells and B cells, can 
strongly influence microglial phenotype and function, 
but the involvement of this system after TBI remains 
unclear. Data from rodent studies have shown that 
T cells infiltrate the injured tissues to promote inflam-
mation after experimental spinal cord injury; fingolimod 
administration sequestered lymphocytes in lymph nodes, 
thereby suppressing inflammation and promoting recov-
ery83–85. However, fingolimod also acts directly on CNS 
cells, complicating the interpretation of these findings. 
Mice genetically engineered to lack T cells have worse 
outcomes after experimental CNS injury86,87, suggesting 
that T cells are predominantly neuroprotective.

Somewhat counterintuitively, activation of auto
immune T cells protects mice from secondary neuro-
degeneration in CNS injury, a phenomenon termed 
‘protective autoimmunity’ (REFS 86,88). One potential 
mechanism underlying this protection is the produc-
tion, by T cells, of neurotrophic factors that promote 
survival and repair of neurons and astrocytes89,90. Mice 
lacking T cells show cognitive, behavioural and devel-
opmental abnormalities, suggesting that T cells con-
tribute to neurodevelopment; these cells might also 
participate in maintenance of normal brain function91. 
As well as regulating the M1‑like versus M2‑like balance,  
T‑cell-produced IL‑4 protects neurons by amplification 
of neurotrophin signalling86. Although T‑cell responses 
typically require antigen presentation to the T‑cell 
receptor, IL‑4‑mediated protection of injured CNS tis-
sue does not seem to require antigen-specific receptor 
activation of T cells, and DAMPs from injured neurons 
directly induce differentiation of IL‑4‑producing T cells86. 
IL‑33, an interleukin belonging to the IL‑1 family that 
is released from damaged cells, is also neuroprotective 
after CNS injury in mice92. IL‑33 is known to act on 
type 2 T-helper (TH2) cells that produce IL‑4 (REF. 93); 
hence, IL‑33 could provide a link between CNS injury 
and activation of IL‑4 production. An IL‑33‑responsive 
population of tissue-resident regulatory T cells has been 
identified in the muscle94,95 and gut of mice96, and con-
tributes to resolution of inflammation and wound repair 
in those tissues. It is intriguing to speculate that a similar 
IL‑33–regulatory T‑cell axis could operate in the human 
brain after TBI.

To harness the neuroprotective benefits of T‑cell 
activity without adverse effects, the specific mecha-
nisms of T‑cell-mediated protection versus damage 
need to be precisely targeted. The methods used to 
evoke an autoimmune response that protects from 
injury in mouse models of TBI are also used to induce 

experimental autoimmune encephalomyelitis (EAE), 
which is used to model multiple sclerosis in rodents. 
TH17 cells are thought to drive inflammatory demyeli-
nation of the spinal cord in EAE97. TH17 cells and other 
type 17 T cells have been associated with myriad auto-
immune and inflammatory conditions98 but have not 
yet been investigated in TBI.

Potential involvement of the gut–brain axis. Type 17 
responses are promoted by cytokines, particularly IL‑1β, 
that are known to be released after TBI in humans, and 
induce CXCL8 and neutrophil recruitment. In ischae-
mic stroke modelled in mice, harmful IL‑17 is largely 
produced by ‘type 17’ γδT cells that rapidly infiltrate 
the injured brain99. These cells are strongly influenced 
by the remote gut environment, as shown in another 
mouse study in which antibiotic-induced dysbiosis of 
gut microbial flora resulted in protection from stroke, an 
effect that could be linked to reduced numbers of IL‑17+ 
γδT cells100. The profound impact of the gut microbiome 
on peripheral tissue immune responses, including the 
CNS, is a recurring theme in immunology101,102. Besides 
CNS injury, the gut–CNS communication has been sug-
gested to influence cognition, mood and anxiety103,104. 
Thus, it is possible that administration of antibiotics  
or changes in diet during intensive care unit hospitali-
zation after severe TBI could inadvertently alter this gut 
microbiome–brain inflammation axis.

Lymphatic and glymphatic systems. Lymphatic drain-
age of body tissues regulates the flow of interstitial fluid 
and removal of waste products. The lymphatic system 
also supports immune surveillance by carrying macro
molecules and activated antigen-bearing dendritic 
cells to local lymph nodes, where the antigens can be 
presented to activate the adaptive immune response. 
Antigen presentation may represent a critical step, 
as naive T cells and B cells typically circulate through 
lymph nodes via blood and efferent lymphatics but do 
not enter non-lymphoid tissues until primed.

Until recently, the brain was considered an 
immune-privileged site: the apparent lack of a lym-
phatic drainage system in the brain supported the 
assumption that the peripheral immune system was 
unresponsive to pathologies in the CNS. However, 
adaptive immune responses are primed and recruited 
as a response to CNS injury, and waste products must 
be rapidly cleared from the brain. Technological 
advances in imaging that enabled interrogation of brain 
drainage in closed-skull systems have resolved these 
paradoxes and, in the past few years, two — most prob-
ably intersecting — systems that drain the brain tissue 
have been delineated in mice.

The glymphatic system105 allows small mole-
cules to rapidly enter the brain and, perhaps more 
importantly, enables fluid drainage and clearance 
of metabolites, soluble proteins and waste products, 
including amyloid‑β (Aβ), from the brain intersti-
tial space. Glymphatic flow is greatly increased dur-
ing sleep, when the brain interstitial space volume is 
increased; this phenomenon seems to be at least partly 

R E V I E W S

178 | MARCH 2017 | VOLUME 13	 www.nature.com/nrneurol

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



attributable to passive mechanisms, as lateral posture 
in awake mice replicated the increased flow compared 
with upright posture106,107.

The second CNS clearance system consists of lym-
phatic vessels that line the dural sinuses and menin-
geal arteries108,109. These vessels have classic lymphatic 
architecture and drain to the deep cervical lymph 
nodes, providing a direct conduit between the brain 
and the peripheral immune system. These vessels also 
contain immune cells and macromolecules, mimicking 
peripheral lymphatic vessels. Brain lymphatic vessels 
include populations of T cells and B cells109, which 
have presumably migrated through and surveyed the 
brain tissue.

In a rodent model, TBI has been shown to impair 
the glymphatic system drainage110, resulting in accu-
mulation of damage and waste products such as tau111, 
and providing a potential link between injury-induced 
disruption of glymphatic drainage and development of 
CTE. Inflammatory astrocyte activation might amplify 
the effects of mechanical damage on glymphatic flow 
after TBI, as glymphatic flow is determined in large 
part by astrocyte function, in particular, aquaporin‑4 
channels. The effects of TBI on brain lymphatic drain-
age to deep cervical lymph nodes have not yet been 
investigated, but one could envision that TBI would 
alter the associated lymph vessels. Accumulation 
of waste products as a result of impaired lymphatic 
drainage might trigger neuroinflammation by acti-
vating pattern recognition receptors on microglia. 
The interaction between altered lymphatic drainage  
and neuroinflammation and the ensuing long-term 
consequences warrant further investigation.

Effects of secondary insults
The presence of a concurrent secondary insult such as 
polytrauma, hypotension and/or hypoxaemia is a critical 
determinant of outcome after TBI, particularly severe 
TBI. Secondary insults occur in as many as two-thirds of 
patients with severe TBI112. These insults are often haem-
orrhagic, and compromise perfusion and oxygen deliv-
ery to the injured brain113. Analysis of >2,000 patients 
revealed that mortality was 72% in patients with severe 
TBI and a comorbid secondary injury, compared with 
46% in patients with TBI alone114.

Despite the importance of polytrauma and second-
ary insults in TBI, few preclinical or clinical studies 
have evaluated their role in the cerebral or systemic 
inflammatory responses. Although one might antici-
pate that polytrauma and/or secondary insults would 
amplify the local inflammatory response in the brain 
by superimposing tissue hypoxaemia and/or ischaemia 
onto the traumatic insult, such an effect has, surpris-
ingly, not been observed. Instead, both preclinical and 
clinical studies have revealed that second insults shift 
the cytokine response to a more anti-inflammatory 
phenotype, amplifying the IL‑10 response. In a mouse 
model of polytrauma (controlled cortical-impact TBI 
followed by a brief period of severe haemorrhagic 
shock), serum IL‑10 levels increased nearly 100‑fold 
compared with TBI alone and 30‑fold compared with 

haemorrhagic shock alone115. Levels of proinflamma-
tory cytokines and chemokines (IP‑10, TNF, CXCL1, 
CCL2, CCL3 and CCL11) increased in serum after TBI 
alone, but not after TBI plus haemorrhagic shock, and 
the mice with TBI plus haemorrhagic shock had lower 
serum IL‑6 levels than did animals exposed to TBI 
alone. Although haemorrhagic shock worsened long-
term behavioural outcomes and histologically con-
firmed pathology after TBI116, the local cytokine and 
chemokine responses in the brain were not appreciably  
altered.

In general, clinical data parallel these preclinical 
findings. Relative to patients with TBI alone, patients 
with TBI with polytrauma have increased serum con-
centrations of the anti-inflammatory agents IL‑10, 
IL‑1ra, and soluble TNF receptor 1, with no change 
in the levels of proinflammatory cytokines IL‑1β 
and TNF117. In a longitudinal analysis of cytokines  
and adhesion molecules in 114 adults with severe  
TBI, serum IL‑10 levels were higher among individ-
uals with TBI plus polytrauma than in patients with  
TBI alone118.

It remains unclear whether haemorrhagic shock 
confers a unique effect, or whether all types of sec-
ondary insults produce a similar shift toward an anti- 
inflammatory phenotype. Certain forms of peripheral 
injury, such as skeletal fracture or hepatic contusion, 
might increase the circulation of proinflammatory 
cytokines in patients. Combined-injury animal mod-
els that incorporate long-bone fracture with TBI are 
increasingly used to address the effects of peripheral 
injuries on TBI outcomes119,120. In a mouse model of 
tibia fracture combined with diffuse brain injury, mice 
with combined injury exhibited increased anxiety- 
related behaviour and brain atrophy, and evidence of 
increased astrogliosis, neutrophil infiltration and brain 
tissue IL‑1β levels121. Similarly, systemic administra-
tion of the proinflammatory mediators IL‑1β122 and 
lipopolysaccharide123 in rodent models of diffuse TBI 
have been demonstrated to exacerbate the neuroinflam-
matory response, result in larger contusion volume, and 
worsen behavioural outcomes. Whether these effects are 
mediated directly via binding to receptors on microglia 
and astrocytes is not known, and confounding indirect 
effects such as hypotension or hyperthermia cannot 
currently be excluded.

Finally, there has been limited study of the 
impact of secondary insults in mTBI. In rats, a brief  
period of imposed hyperthermia to 39 °C, beginning 
15 min before mild fluid percussion injury and contin-
ued for 4 h, produced cognitive deficits even though 
the injury level used was so mild that it would not have 
otherwise resulted in cognitive deficits124. Cooling the 
rats to normothermia at 15 min after TBI prevented 
development of the cognitive deficits, a finding that 
the researchers attributed to amplification of neuro
inflammation by hyperthermia. Given the high prev-
alence of concussions during the summer months, for 
example, in football and other sports training camps, 
this observation, if translated to humans, could have 
important implications.
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Neuroinflammation and regeneration
Neurogenesis. The effects of neuronal death after TBI 
might be mitigated by an increased rate of neuronal pro-
genitor cell (NPC) proliferation, followed by migration 
to injured brain regions, differentiation to neurons, and 
integration into neural networks125. Similar to the dual 
effects of inflammation on secondary brain injury, exper-
imental evidence suggests that inflammatory mediators 
are a key component of neurogenesis and can either 
support or hinder the potentially neuroprotective role of 
NPCs at several stages. For example, microglia stimulated 
to differentiate to an M1‑like phenotype with lipopoly
saccharide reduce hippocampal neurogenesis in the 
adult mouse126, an effect similarly seen with the proin-
flammatory cytokines TNF, IL‑1β and IL‑6 (REF. 127). 
Reduced neurogenesis was reversed by treatment with 
minocycline126 or indomethacin128. By contrast, M2‑like 
microglia, induced by IL‑4 or low-dose IFNγ, release 
neurotrophins such as insulin-like growth factor‑1 
(IGF‑1) and induce neurogenesis129. Neurogenesis may 
be stimulated by addition of a running wheel to the 
cage after experimentally induced TBI in mice, which 
was shown to reduce M1‑like microglial activation and 
increase production of IGF‑1, IL‑10 and brain-derived 
neurotrophic factor; these changes were associated with 
improved cognitive outcomes130. NPCs also express 
chemokine receptors, such as CCR2 and CXCR4, and 
chemokines may direct the migration of these cells to 
the area of injury131.

Although brain atrophy increases over time after 
TBI132,133, most TBI survivors show functional improve-
ments134, which are attributed not only to recovery of 
function of existing neuronal pathways but also to brain 
plasticity and reorganization. Although studies in TBI 
animal models are limited, experiments modelling 
other forms of brain injury suggest that interactions 
between the neuronal unit and immune system are 
critical to formation and strengthening of new synaptic 
connections135. The degree of activation and the local 
inflammatory milieu are likely to define whether any 
particular cytokine or inflammatory cell type benefits 
or disrupts brain plasticity. For example, in a GFAP–
IL‑6 transgenic mouse model, overexpression of IL‑6 
caused a substantial reduction in hippocampal long-
term potentiation (LTP)136; this effect was partially 
reversed by blocking of IL‑6 signalling137. Elevated IL‑1β 
also impairs LTP but, surprisingly, promotes neurite 
outgrowth synergistically with neurotrophin‑3, sug-
gesting that IL‑1β‑blocking therapies would promote 
neuronal survival at the expense of reinnervation138. In 
rats subjected to repetitive mTBI, activation of microglia 
was associated with impaired LTP, attenuated NMDA  
signalling and impaired memory — effects that were not 
seen after a single mTBI139. Thus, neuroinflammation is 
likely to have a critical — though patient-specific — role 
in neurogenesis and synaptic plasticity after TBI.

Angiogenesis and gliogenesis. Microglial polarization 
and the local inflammatory milieu might influence 
repair through activation of angiogenesis and gliogen-
esis. Although evidence from animal models of TBI is 

scant, findings from experimental autoimmune and 
hypoxic–ischaemic brain injury suggest that M1‑like 
microglia impair oligodendrogenesis, and oligoden-
drocyte maturation and viability, via a TNF-dependent 
mechanism80,140. By contrast, M2‑like microglia or 
conditioned medium from M2‑like microglial cul-
ture promote oligodendrogenesis and remyelination 
in these models. M2‑like microglia might also induce 
angiogenesis and vascular repair via production of 
pro-angiogenic cytokines (such as TGFβ) and growth 
factors. Whether these findings translate to recovery 
from TBI in humans is unknown; however, treat-
ment with pro-angiogenic growth factors released by 
M2‑like microglia has been demonstrated to be neuro
protective in mice, and promotes neurogenesis and 
angiogenesis in experimental TBI141.

Clinical experience
A key question arising from the data discussed above 
is whether TBI-responsive neuroinflammation is a 
clinically relevant therapeutic target (FIG. 3). Several  
preclinical studies have supported this hypothesis; how-
ever, few clinical trials of therapies primarily targeting 
inflammation TBI have been reported.

Steroids. Surprisingly, corticosteroids have been the 
least successful anti-inflammatory class of drugs in 
TBI (TABLE 2). Despite the potent suppressive effects  
on inflammation, high-dose methylprednisolone 
(5 mg/kg daily)142, large doses of dexamethasone 
(100 mg daily for 4 days, followed by 16 mg daily from 
days 5–7 and tapering of the dose from days 8–10 
(REF.  143)), ultra-high-dose dexamethasone (2.3 g 
over 51 h)144, the aminosteroid tirilazad145, and a trial 
of hydrocortisone and fludrocortisone146 all failed to 
demonstrate beneficial effects on neurological out-
come. Off-target effects with systemic administration 
of corticosteroids are likely to affect outcomes and, in 
the case of tirilazad, limited brain exposure might have 
been a confounder147.

Other anti-inflammatory drugs. Other anti-inflammatory 
strategies have been evaluated in humans, including the 
bradykinin B2 receptor antagonist anatibant, which 
produced a trend toward worse outcome in 228 patients 
enrolled148. A provocative randomized controlled trial 
(RCT) used recombinant human granulocyte colony 
stimulating factor (G‑CSF) to enhance the cellular 
inflammatory response149. The number of patients was 
low, and no differences were seen between G‑CSF-
treated and placebo groups in the primary outcome 
(nosocomial infections), mortality or hospital length of 
stay. Minocycline has shown promise in a phase II trial 
in patients with spinal cord injury150; however, its efficacy 
has not been tested in human TBI, and preclinical data 
are equivocal151. Of note, the studies targeting inflamma-
tion after TBI have all been performed in adult patients. 
Given the observed association between heightened 
inflammation and younger age in children with severe 
TBI, anti-neuroinflammatory strategies might be more 
impactful in the developing brain57,152.
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Non-selective versus targeted therapies. Inferences can 
be made by extrapolating from clinical trials that eval-
uated multifaceted therapies with anti-inflammatory  
consequences. The anti-inflammatory effect of hypo-
thermia was touted as one of its main modes of effi-
cacy153. Disappointingly, although single-centre studies 

in adults with severe TBI showed a reduction of inflam-
matory cytokine levels154, multicentre RCTs of therapeu-
tic hypothermia after TBI have failed to show benefit in 
either adults155,156 or children11,157. Progesterone, which 
blunted the neuroinflammatory response to trauma in 
mice158, was evaluated in two large multicentre RCTs159,160 

Figure 3 | Novel TBI therapies targeting inflammation at different time points. Therapies targeting traumatic brain 
injury (TBI)-responsive inflammation may be effective at different time points depending on the therapeutic target(s). 
Inflammation triggered by release of damage-associated molecular patterns (DAMPs) and reactive oxygen species (ROS) 
can be blocked through the use of antioxidants, minocycline and peroxisome proliferator-activated receptor (PPAR) 
agonists. Inflammasome activation will cause release of IL‑1β, the action of which can be inhibited at IL‑1 receptors with 
IL‑1ra (anakinra). Over the next few hours to days, invasion of the CNS by circulating immune cells can be inhibited by 
therapies such as NK1 and chemokine antagonists. Microglial polarization to an M2‑like phenotype can be promoted by 
mesenchymal stem cells (MSCs), PPAR agonists and CCR2 antagonists. T cells must be primed to enter the CNS — this 
process might be inhibited by therapies such as intravenous immunoglobulin. Additionally, alterations in the gut 
microbiome may affect the relative numbers of proinflammatory and anti-inflammatory T lymphocytes. Glymphatic 
clearance may be impaired after TBI, possibly reducing clearance of proinflammatory mediators. Investigations are 
ongoing to determine ways to improve glymphatic flow, such as increased clearance observed during sleep. Chronic 
microglial activation might develop and lead to neurodegeneration. Activation of mGluR5 on microglia, such as with  
(RS)-2‑chloro-5‑hydroxyphenylglycine (CHPG), attenuates chronic M1‑like microglial activation. Rehabilitation and 
exercise have also been shown to reduce M1‑like microglial activation. CSF, cerebrospinal fluid.
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of adults with moderate to severe TBI, and failed to show 
benefit with regard to 6‑month Glasgow Outcome Scale 
scores or mortality.

The results from these clinical studies suggest that 
non-selective attenuation of the inflammatory response 
early after severe TBI is not beneficial, and can poten-
tially be detrimental. The existing literature lacks studies 
using targeted, single-pathway anti-inflammatory strate-
gies in humans, and more-personalized approaches that 
individualize treatments according to genotype, inflam-
matory biomarkers, timing and duration of therapy, and 

patient age and sex. Identification of specific patient 
subsets to target enrolment criteria for clinical studies 
could increase the success of future trials. For example, 
a variant of a gene encoding IL‑1β was associated with 
increased risk of post-traumatic epilepsy161, making it an 
attractive strategy to target antiseizure interventions to 
individuals at high risk.

Furthermore, it is unclear whether acute inhibition of 
inflammation after single or repetitive mTBI might pre-
vent chronic sequelae such as CTE. The key question is 
whether a single exposure or multiple exposures to TBI 

Table 2 | Selected clinical trials evaluating therapies for neuroinflammation after TBI

Therapy Effects on 
inflammation

Study design 
and number of 
patients

Dose Primary 
outcome

Secondary 
outcomes

Comments

Anatibant •	Blocks bradykinin 
signalling

•	Prevents BBB 
disruption

Brain Trial:

•	Multicentre RCT148

•	228 adults with 
GCS score ≤12

Low (10 mg load + 5 mg 
daily), mid (20 mg 
load + 10 mg daily), or 
high (30 mg load + 15 mg 
daily) versus placebo

No difference 
in incidence of 
serious adverse 
events

Trend towards 
harm in 
discharge 
GCS, DRS, and 
HIREOS scores

•	Recruitment 
paused due 
to Data 
and Safety 
Monitoring 
Board 
concerns

•	Terminated 
(withdrawal of 
funding)

Cyclosporin A Reduces T‑cell 
counts and 
activation

•	Single-centre 
RCT237

•	38 adults with GCS 
score ≤8

5 mg/kg over 24 h or 
10 mg/kg over 48 h 
versus placebo

No difference 
in blood T‑cell 
counts

No difference 
in incidence of 
infection

Reduced 
lymphocyte 
count on 
admission 
associated with 
worse outcome 
and increased 
respiratory 
infections

Dexanabinol •	TNF inhibitor
•	NMDA antagonist

•	Multicentre RCT238

•	861 adults with 
ICP monitoring, 
GCS motor score 
2–5

Single 150 mg dose 
(within 6 h of injury) 
versus placebo

No difference in 
GOS‑E score at 
6 months

No difference in 
adverse events

–

Erythropoietin •	Decreases 
production of 
proinflammatory 
cytokines and 
chemokines

•	IL‑1 and TNF block 
erythropoietin 
production

EPO-TBI:

•	Multicentre RCT239

•	606 adults with 
moderate and 
severe groups 
(GCS score 9–12 
and ≤8)

40,000 IU weekly for 
3 weeks versus placebo

No difference in 
GOS‑E score at 
6 months

No difference in 
mortality or deep 
vein thrombosis

•	Mortality 
reduced 
in patients 
without mass 
lesions, no 
increase in 
good outcome

•	Many patients 
did not receive 
full course

•	Multicentre RCT240

•	200 adults with 
TBI, unable to 
follow commands

500 IU/kg × 3 doses 
at 24 h intervals or 
500 IU/kg × 1 dose then 
weekly × 2 weeks versus 
placebo

No difference in 
GOS‑E score at 
6 months

No difference 
in mortality, 
acute respiratory 
distress 
syndrome or 
infection

Original dosing 
regimen (daily × 3 
doses) stopped 
by the FDA 
owing to safety 
concern (higher 
mortality in 
stroke trial)

Granulocyte 
colony- 
stimulating  
factor (G‑CSF)

Stimulates stem 
cells to produce 
granulocytes

•	Multicentre RCT149

•	61 adults with GCS 
score ≤8, expected 
to require 
mechanical 
ventilation for 
>3 days

75 μg or 300 μg daily for 
10 days versus placebo

Dose-dependent 
increase in 
neutrophil count

•	No difference 
in mortality, 
length of stay, 
or nosocomial 
infection

•	Significant 
decrease in 
bacteraemia 
incidence

•	Adverse events 
similar between 
groups

•	Included 
patients with 
cerebral 
haemorrhage 
as well as TBI
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Table 2 (cont.) | Selected clinical trials evaluating therapies for neuroinflammation after TBI

Therapy Effects on 
inflammation

Study design 
and number of 
patients

Dose Primary 
outcome

Secondary 
outcomes

Comments

Hypertonic 
saline

•	Improves T‑cell 
function

•	Reduces TNF and 
IL‑10

•	Multicentre RCT241

•	1,331 adults with 
severe TBI

250 ml bolus of 7.5% 
saline/6% dextran 70 
or 7.5% saline versus 
0.9% saline initiated 
pre-hospital

No difference in 
GOS‑E score at 
6 months

No difference 
in survival at 
28 days

Terminated 
(futility)

Hypothermia •	Humoral and 
cellular immune 
response is  
temperature- 
dependent

•	Decreased 
neutrophil 
accumulation in 
CNS

•	Decreased IL‑1β, 
possibly via 
reduction in  
temperature- 
dependent 
caspase‑1 activity

Cool Kids:

•	Multicentre RCT242

•	77 children with 
GCS score ≤8

32–33 °C versus 
36.5–37.5 °C for 48–72 h

No difference 
in mortality at 
3 months

No adverse 
events

Terminated 
(futility)

•	Multicentre RCT11

•	225 children with 
GCS score ≤8

32.5 °C versus 37 °C for 
24 h

No difference in 
6‑month PCPC 
score

No difference in 
mortality

Non-significant 
trend toward 
increased 
mortality, 
significantly 
higher incidence 
of hypotension 
and vasoactive 
agent use during 
rewarming 
(+0.5 °C  
every 2 h)

NABIS: HII

•	Multicentre RCT156

•	97 adults with GCS 
score 4–8, enrolled 
within 2.5 h of 
injury

32–34 °C versus 
35.5–37 °C for 72 h

No difference 
in 6‑month 
outcome

No difference in 
mortality

•	Terminated 
(futility)

•	Improved 
outcomes in 
patients with 
evacuated 
haematoma 
treated with 
hypothermia

Eurotherm3235:

•	Multicentre RCT155

•	387 adults with 
severe TBI and 
ICP >20 mm Hg 
despite stage 1 
treatments

Cooled to 32–35 °C 
followed by stage 2 
if ICP remained 
high versus stage 2 
treatments alone

Lower GOS‑E 
score in 
hypothermia 
group

Stage 3 
treatments 
(coma, 
craniectomy) 
more often 
required in the 
control group 
than in the 
hypothermia 
group

Terminated 
(safety concerns)

Anakinra Blocks IL‑1 signal 
transduction

•	Single-centre 
RCT243

•	20 adults with GCS 
score ≤8

100 mg subcutaneous 
every 24 h × 5 doses

Increased 
IL‑1ra in CNS 
extracellular 
fluid within 6 h

PCA of 42 
cytokine 
multiplex 
demonstrated 
separation 
between 
treatment and 
placebo groups

•	Subsequent 
study244 
showed that 
patients 
receiving 
rIL‑1ra had 
cytokines 
biasing to 
M1‑like 
microglial 
phenotype

•	Control 
patients were 
relatively 
biased to 
M2‑like 
phenotype

Probiotics Modify lymphocyte 
polarization before 
CNS infiltration

•	Single-centre 
RCT245

•	52 adults with GCS 
score 5–8

109 bacteria for 21 days 
versus placebo

No difference in 
28‑day mortality

On day 21, 
treatment group 
had higher IFNγ 
and lower IL‑10 
and IL‑4

•	Trend to 
decrease late  
ventilator- 
associated 
pneumonia

•	CNS effects 
unclear
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can prime the brain for chronic neuroinflammation and, if 
so, would modulation of the inflammatory response early 
after mTBI, or at a later stage, provide clinically meaning-
ful benefit? Finally, from a therapeutic perspective, given 
the aforementioned beneficial effects of strategies mim-
icking rehabilitation on neuroinflammation neurogenesis 
and cognitive outcome, it is possible that enhancement of 
beneficial aspects of neuroinflammation — rather than 
inhibition of detrimental effects — could represent a 
more successful avenue for future clinical investigation.

Chronic neuroinflammation
Bystander or driver of pathology?
Findings from patients. As already discussed, one might 
expect the acute inflammatory response after TBI to 
eventually resolve to a normal state. However, a subset 

of patients develop chronic neuroinflammation that 
can last for years after injury162–165. Areas under active 
investigation include the proportion of patients in whom 
chronic inflammation will develop, the dominant triggers 
and intracellular pathways propagating inflammation, 
and genetic susceptibilities to chronic inflammation.

An examination of autopsy specimens from patients 
surviving >1 year after TBI, and in some cases as long as 
18 years, revealed an increase in amoeboid microglia in 
subcortical white matter tracts versus control tissue163,166. 
Activated microglia were observed in 28% of the autop-
sies, and were associated with thinning of the corpus 
callosum163,166. These findings are supported by PET 
studies in which translocator protein (TSPO) ligands, 
which are thought to bind to activated microglia, were 
used to examine chronic neuroinflammation in TBI 

Table 2 (cont.) | Selected clinical trials evaluating therapies for neuroinflammation after TBI

Therapy Effects on 
inflammation

Study design 
and number of 
patients

Dose Primary 
outcome

Secondary 
outcomes

Comments

Statins •	Inhibit expression 
of vascular 
dhesion molecules 
and chemokines to 
reduce leukocyte 
infiltration of CNS

•	Associated with 
reductions in 
proinflammatory 
cytokines

•	Single-centre 
RCT246

•	21 adults with GCS 
score 9–13

Rosuvastatin 20 mg 
daily for 10 days versus 
placebo

Modest decrease 
in amnesia and 
disorientation 
time

No difference 
in disability at 
3 months

Subsequent 
study247 showed 
reduction in 
plasma TNF at 
72 h

Steroids •	Inhibit leukocyte 
activation and 
infiltration

•	Modulate cytokine 
release

•	Progesterone 
decreases 
upregulation of 
IL‑1β, TNF, and 
complement 
factors 3 and 5

•	Reduce M1‑like 
microglial 
activation

CRASH:

•	Multicentre RCT142

•	10,008 adults with 
GCS score ≤14

Methylprednisolone 
load 2 g over 
1 h + maintenance 
0.4 g/h for 48 h versus 
placebo

Higher risk 
of mortality 
at 2 weeks in 
steroid group

Higher risk of 
mortality at 
6 months in 
steroid group

Terminated 
early for safety 
concerns

•	Multicentre RCT143

•	161 adults with TBI 
and coma

Dexamethasone 100 mg 
versus placebo

No difference in 
survival

No difference 
in 6‑month 
outcome

–

•	Multicentre RCT145

•	163 adults with 
GCS score 9–12 
and 957 adults 
with GCS score 
4–8

Tirilazad 10 mg/kg 
within 4 h of injury and 
every 6 h for 5 days 
versus placebo

No difference in 
6‑month GOS 
score

No difference in 
mortality

Significant 
differences in 
pretreatment 
hypotension and 
hypoxia related 
to intercentre 
variation

Corti‑TC:

•	Multicentre RCT146

•	336 adults with 
GCS score ≤8

Hydrocortisone  
(200 mg daily, tapered)  
+fludrocortisone (50 μg 
daily) for 10 days versus 
placebo

No difference 
in incidence of 
hospital- 
acquired 
pneumonia

No change 
when analysed 
according 
to presence 
or absence 
of adrenal 
insufficiency

Study may 
have been 
underpowered 
owing to lower 
than expected 
incidence of 
hospital-acquired 
pneumonia

ProTECT III:

•	Multicentre RCT159

•	882 adults with 
GCS score 4–12

Progesterone infusion 
started within 4 h of 
injury, duration 96 h

No difference in 
6‑month GOS 
score

No difference in 
mortality

Terminated 
(futility)

SyNAPSe:

•	Multicentre RCT160

•	1,195 adults with 
GCS score ≤8

Progesterone 0.71 mg/
kg load + 0.5 mg/kg/h 
infusion for 119 h

No difference in 
6‑month GOS 
score

No difference in 
mortality

–

BBB, blood–brain barrier; DRS, Disability Rating Scale; GCS, Glasgow Coma Scale; GOS, Glasgow Outcome Scale; GOS‑E, Extended GOS; HIREOS, Head Injury 
Related Early Outcome Score; ICP, intracranial pressure; NMDA, N‑methyl-d-aspartate; PCA, principal components analysis; PCPC, Paediatric Cerebral 
Performance Category; RCT, randomized controlled trial; TBI, traumatic brain injury; TNF, tumour necrosis factor.
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survivors164,167. In one study of adult patients with mod-
erate to severe TBI, diffuse binding of the TSPO ligand 
11C-(R)-PK11195 was observed in areas remote to the 
trauma, including the thalamus, putamen and occipi-
tal cortex, up to 17 years after injury164. Inflammation 
in the thalamus was associated with more-severe cog-
nitive impairments164. In another study, the second- 
generation TPSO ligand 11C-DPA‑713 was used to 
study retired National Football League (NFL) players 
with self-reported histories of career concussions. 
The supramarginal gyrus and right amygdala exhib-
ited ligand binding to levels greater than seen in  
age-matched controls167.

Serum cytokines might also demonstrate a chronic 
immune activation state after TBI. For example, a pro-
spective TBI biomarker study reported chronically ele-
vated expression of TNF in the serum after TBI, and an 
association between increased TNF and unfavourable 
long-term neuropsychiatric outcomes168.

Findings from animal models. Animal studies sub-
stantiate the clinical evidence for a chronic inflam-
matory state after TBI, and indicate underlying 
molecular mechanisms and potential therapeutic 
strategies139,169–173. In mice, chronic microglial acti-
vation with upregulation of the cell surface markers 
MHC class II, CD68 and NADPH oxidase (NOX2) is 
seen 1 year after moderate to severe contusion78. These 
markers would indicate an M1‑like phenotype, with 
proinflammatory cytokine production and reduced 
phagocytic activity that would be less effective at pro-
tective functions such as Aβ clearance. Over the course 
of the year, the mice demonstrated progressive neuro-
degeneration with enlarging lesion volume, persistent 
oxidative stress, demyelination, and cognitive impair-
ments. Chronic neuroinflammation is also observed in 
several murine models of repetitive mTBI. As in the 
acute inflammatory response to mild repetitive injury, 
microglia are characteristically localized to white 
matter tracts and may be seen in regions bordering 
degenerating axons, with associated neurobehavioural 
changes, 12–18 months after injury139,170,174–177.

Prospects for therapy. These findings have raised 
interest in the development of pharmacological and 
nonpharmacological approaches to reduce chronic 
neuroinflammation after TBI, thereby greatly expand-
ing the window for targeted interventions. The con-
cept of targeting chronic neuroinflammation has been 
examined in preclinical studies. One of the compounds 
tested was the selective metabotropic glutamate recep-
tor 5 agonist (RS)-2‑chloro-5‑hydroxyphenylglycine 
(CHPG), which was previously shown to reduce micro-
glial activation178 and improve functional recovery179 
when given acutely after trauma. Mice given CHPG 
at 1 month after focal brain injury displayed improved 
neurological recovery, decreased neuroinflammation, 
arrested lesion expansion, sparing of white matter, and 
reduced neurodegeneration at 4 months180. Similarly, 
though with a more generalized anti-inflammatory 
approach, administration of the phosphodiesterase 

inhibitor ibudilast on days 30–34 after fluid percussion 
injury in rats reduced anxiety-like behaviour and gliosis 
at 6 months181.

As previously stated, exercise regimens that simulate 
physical rehabilitation might alleviate neuroinflamma-
tion and promote release of neurotrophic factors after 
TBI. In mice, a 4‑week treatment regime involving vol-
untary exercise attenuated IL‑1β gene expression and 
chronic microglial activation, increased production of 
IL‑10 and neurotrophic factors, improved behavioural 
outcomes, and reduced lesion volume130. Importantly, 
the authors compared two start dates for the exercise 
regimen: exercise was only effective if started 5 weeks 
after injury, and exercise initiated at 1 week after injury 
was potentially proinflammatory. Thus, accumulat-
ing evidence from preclinical research indicates that 
chronic neuroinflammation and related neurodegen-
eration can be treated weeks after TBI, which suggests 
exciting potential for clinical translation of delayed 
anti-inflammatory therapies.

Progressive neurodegeneration
Accelerated neurodegeneration and CTE have been 
reported after single and repetitive TBI in athletes182 
and military personnel3, who have a high incidence of 
head trauma and concussion183. Besides its association 
with CTE, TBI increases the risk of developing non‑AD 
dementia years after the initial injury184.

Recently, the role of chronic inflammation in the 
pathophysiology of neurodegenerative disorders has 
attracted considerable attention185,186, leading inves-
tigators to speculate about the role of post-traumatic 
neuroinflammation in mediating neurodegeneration, 
non‑AD dementias, and CTE. Autopsies from patients 
with CTE associated with repetitive mTBI have shown 
activated microglia in perivascular regions of subcorti-
cal white matter and, in advanced disease, throughout 
the brain3,187,188. Two recent neuroimaging studies of 
retired NFL players support a role for microglial neu-
roinflammation in the development of CTE following 
repetitive head injury189,190.

Early intervention with progesterone to prevent 
neurodegeneration after repetitive mTBI has been eval-
uated in one rat study191. The animals were administered 
three mild diffuse injuries, each separated by 5 days, 
and randomly assigned to vehicle or progesterone for 
15 days after the first injury. At 12 weeks after the end 
of the treatment, a time point considered chronic in 
rodent TBI models, progesterone-treated rats exhib-
ited improved neurocognitive outcomes, reduced brain 
atrophy, and attenuated neuroinflammation compared 
with vehicle-treated rats. These promising data warrant 
further preclinical studies.

It remains unclear whether persistent inflammation 
initiates the characteristic neuropathology in CTE and 
should be targeted by anti-inflammatory treatments. It 
is also possible that the accumulation of these abnormal 
proteins triggers the inflammatory response, which may 
be aberrant and ill-suited to restore normal function. 
Further research is required to understand the mech-
anisms that underlie the chronic pathologies of TBI, 
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including chronic neuroinflammation, and their relation-
ship to development of neurodegenerative disease (FIG. 4). 
Advances in clinical neuroimaging of TBI, including the 
use of selective PET ligands to reflect amyloid deposi-
tion192, tau deposits193 and neuroinflammation164,167, 
could clarify the mechanisms driving chronic neurode-
generation after TBI, and provide opportunities to develop  
targeted therapies for the long-term sequelae.

Conclusions
Advances in understanding TBI-responsive neuro
inflammation have raised exciting new questions 
(BOX  2), identified new therapeutic targets, and 
expanded the time window for treatment. Clinical 
trials of therapies that modulate inflammation after 
TBI — even in severe TBI — are still in their infancy, 

Figure 4 | Effects of chronic neuroinflammation. Neuroinflammation and microglial activation are key mediators of 
repair and recovery after traumatic brain injury (TBI). However, recent clinical and laboratory data have shown that TBI 
can cause persistent neuroinflammation and microglial activation, in some cases lasting many years, and can lead to 
chronic neurodegeneration, dementia and encephalopathy. Prospective studies of TBI biomarkers in adults with severe 
TBI have shown that serum levels of IL‑1β, IL‑6, CXCL8, IL‑10, and tumour necrosis factor (TNF) are chronically increased. 
Experiments in animal models have demonstrated persistently increased numbers of microglia expressing MHC class II 
(MHC II), CD68 and NOX2 at the margins of the lesion and in the thalamus at 1 year post-injury associated with oxidative 
stress and white matter disruption. These inflammatory findings correlate with chronic neurodegeneration, the 
development of dementia, and encephalopathies (which may subsequently cause additional inflammation in a 
self-perpetuating deleterious feedback mechanism).

and therapies targeting neuroinflammation after 
mTBI in patients remain completely unexplored. 
The approach of treating all patients with TBI using 
a broad-acting anti-inflammatory agent has so far 
not shown benefit in RCTs. Clearly, there is a need to 
define the inflammatory phenotypes of our patients 
on the basis of injury characteristics such as patient 
age, sex, genetic predisposition, presence or absence 
of secondary insults, and serum, CSF and/or imaging 
biomarkers. An initial approach towards a more com-
prehensive inflammatory phenotyping of patients by 
principle component analysis — incorporating classic 
inflammatory markers as well as steroid hormones, 
neurotrophic factors, and brain-derived TBI bio-
markers in serum and CSF — was recently reported 
by Kumar et al.194. Such an approach will allow us to 
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Review criteria
To identify human data on neuroinflammation associated with 
traumatic brain injury (TBI), we searched PubMed for articles 
published in English from January 1950 to March 2016 using 
the following query: “traumatic brain injury” or “closed head 
injury” or “closed-head injury” or “head trauma” AND ((Case 
Reports[ptyp] OR Clinical Study[ptyp] OR Clinical Trial[ptyp] 
OR Clinical Trial, phase I[ptyp] OR Clinical Trial, phase II[ptyp] 
OR Clinical Trial, phase  III[ptyp] OR Clinical Trial, 
phase  IV[ptyp] OR Controlled Clinical Trial[ptyp] OR 
Comparative Study[ptyp] OR Meta-Analysis[ptyp] OR 
Multicenter Study[ptyp] OR Randomized Controlled 
Trial[ptyp]) AND Humans[Mesh]). We selected articles report-
ing clinical findings of neuroinflammation in human TBI. 
Reference lists and the authors’ expertise were used for  
inclusion of additional relevant studies.
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