Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PET imaging of the neurovascular interface in cerebrovascular disease

A Corrigendum to this article was published on 03 April 2018

This article has been updated

Key Points

  • PET enables noninvasive detection and quantification of inflammation, microcalcification and hypoxia, which are all associated with plaque rupture in carotid atherosclerosis

  • The temporospatial evolution of acute ischaemia and secondary neuroinflammation can be visualized using PET

  • PET studies have elucidated complex interactions between cerebral small vessel disease, neuroinflammation and amyloid deposition, and demonstrated different uptake patterns in vascular cognitive impairment

  • PET-based metabolic imaging not only offers improved understanding of disease mechanisms but also provides sensitive end points for use in clinical trials and has the potential to improve clinical risk-stratification

Abstract

Cerebrovascular disease encompasses a range of pathologies that affect different components of the cerebral vasculature and brain parenchyma. Large artery atherosclerosis, acute cerebral ischaemia, and intracerebral small vessel disease all demonstrate altered metabolic processes that are key to their pathogenesis. Although structural imaging techniques such as MRI are the mainstay of clinical care and research in cerebrovascular disease, they have limited ability to detect these pathophysiological processes in vivo. By contrast, PET can detect and quantify metabolic processes that are relevant to each facet of cerebrovascular disease. Information obtained from PET studies has helped to shape the understanding of key concepts in cerebrovascular medicine, including vulnerable atherosclerotic plaque, salvageable ischaemic penumbra, neuroinflammation and selective neuronal loss after ischaemic insult. PET has also helped to elucidate the relationships between chronic hypoxia, neuroinflammation, and amyloid-β deposition in cerebral small vessel disease. This Review describes how PET-based imaging of metabolic processes at the neurovascular interface has contributed to our understanding of cerebrovascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Carotid artery inflammation detected using 18F-FDG-PET.
Figure 2: Carotid artery inflammation detected using 68Ga-DOTATATE-PET.
Figure 3: The three main pathophysiological profiles in patients with acute stroke as shown by 15O-PET.
Figure 4: 11C-PK11195-PET scans showing the evolution of neuroinflammation in a patient after stroke.
Figure 5: Interaction between infarction and amyloid deposition.

Similar content being viewed by others

Change history

  • 03 April 2018

    In this article as originally published, Prof. J. C. Baron was credited as the source of Figure 3. However, we omitted to state that permission to reproduce Figure 3 was obtained from Oxford University Press, the publisher of Prof. J. C. Baron’s article. This omission has been corrected online as of 3 April 2018.

References

  1. Mochizuki, T. et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J. Nucl. Med. 42, 1551–1555 (2001).

    CAS  PubMed  Google Scholar 

  2. Irkle, A. et al. Identifying active vascular microcalcification by 18F-sodium fluoride positron emission tomography. Nat. Commun. 6, 7495 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Owen, D. R. et al. Two binding sites for 3H-PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation. J. Cereb. Blood Flow Metab. 30, 1608–1618 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. Ross, R. Atherosclerosis — an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    CAS  PubMed  Google Scholar 

  5. Davies, J. R. et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 36, 2642–2647 (2005).

    PubMed  Google Scholar 

  6. Mizoguchi, M. et al. Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes a prospective, randomized, comparator-controlled study using serial FDG PET/CT imaging study of carotid artery and ascending aorta. JACC Cardiovasc. Imaging 4, 1110–1118 (2011).

    PubMed  Google Scholar 

  7. Fayad, Z. A. et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 378, 1547–1559 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Baron, J. C. Mapping the ischaemic penumbra with PET: a new approach. Brain 124, 2–4 (2001).

    CAS  PubMed  Google Scholar 

  9. Mann, J. M. & Davies, M. J. Vulnerable plaque. Relation of characteristics to degree of stenosis in human coronary arteries. Circulation 94, 928–931 (1996).

    CAS  PubMed  Google Scholar 

  10. Maldonado, N. et al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 303, H619–H628 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Vengrenyuk, Y. et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc. Natl Acad. Sci. USA 103, 14678–14683 (2006).

    CAS  PubMed  Google Scholar 

  12. Sluimer, J. C. et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J. Am. Coll. Cardiol. 51, 1258–1265 (2008).

    CAS  PubMed  Google Scholar 

  13. Murdoch, C., Muthana, M. & Lewis, C. E. Hypoxia regulates macrophage functions in inflammation. J. Immunol. 175, 6257–6263 (2005).

    CAS  PubMed  Google Scholar 

  14. Usman, A., Sadat, U., Graves, M. J. & Gillard, J. H. Magnetic resonance imaging of atherothrombotic plaques. J. Clin. Neurosci. 22, 1722–1726 (2015).

    PubMed  Google Scholar 

  15. Bucerius, J. et al. Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: the impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels. Eur. J. Nucl. Med. Mol. Imaging 41, 369–383 (2014).

    CAS  PubMed  Google Scholar 

  16. Tawakol, A. et al. In vivo18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J. Am. Coll. Cardiol. 48, 1818–1824 (2006).

    PubMed  Google Scholar 

  17. Huet, P., Burg, S., Le Guludec, D., Hyafil, F. & Buvat, I. Variability and uncertainty of FDG PET imaging protocols for assessing inflammation in atherosclerosis: suggestions for improvement. J. Nucl. Med. 56, 552–559 (2015).

    CAS  PubMed  Google Scholar 

  18. Yun, M. et al. 18F FDG uptake in the large arteries: a new observation. Clin. Nucl. Med. 26, 314–319 (2001).

    CAS  PubMed  Google Scholar 

  19. Rudd, J. H. F. et al. Imaging atherosclerotic plaque inflammation with 18F-fluorodeoxyglucose positron emission tomography. Circulation 105, 2708–2711 (2002).

    CAS  PubMed  Google Scholar 

  20. Marnane, M. et al. Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann. Neurol. 71, 709–718 (2012).

    PubMed  Google Scholar 

  21. Kim, H. J. et al. Carotid inflammation on 18F-fluorodeoxyglucose positron emission tomography associates with recurrent ischemic lesions. J. Neurol. Sci. 347, 242–245 (2014).

    PubMed  Google Scholar 

  22. Moustafa, R. R. et al. Carotid plaque inflammation is associated with cerebral microembolism in patients with recent transient ischemic attack or stroke: a pilot study. Circ. Cardiovasc. Imaging 3, 536–541 (2010).

    PubMed  Google Scholar 

  23. Howard, D. P. et al. Symptomatic carotid atherosclerotic disease: correlations between plaque composition and ipsilateral stroke risk. Stroke 46, 182–189 (2015).

    PubMed  Google Scholar 

  24. Figueroa, A. L. et al. Distribution of inflammation within carotid atherosclerotic plaques with high-risk morphological features: a comparison between positron emission tomography activity, plaque morphology, and histopathology. Circ. Cardiovasc. Imaging 5, 69–77 (2012).

    PubMed  Google Scholar 

  25. Silvera, S. S. et al. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis 207, 139–143 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hyafil, F. et al. Rupture of nonstenotic carotid plaque as a cause of ischemic stroke evidenced by multimodality imaging. Circulation 129, 130–131 (2014).

    PubMed  Google Scholar 

  27. Rudd, J. H. et al. Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: a prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study. Circ. Cardiovasc. Imaging 2, 107–115 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. Subramanian, S. et al. High-dose atorvastatin reduces periodontal inflammation: a novel pleiotropic effect of statins. J. Am. Coll. Cardiol. 62, 2382–2391 (2013).

    CAS  PubMed  Google Scholar 

  29. Chróinín, D. N. et al. Serum lipids associated with inflammation-related PET-FDG uptake in symptomatic carotid plaque. Neurology 82, 1693–1699 (2014).

    PubMed  Google Scholar 

  30. Bernelot Moens, S. J. et al. Carotid arterial wall inflammation in peripheral artery disease is augmented by type 2 diabetes: a cross-sectional study. BMC Cardiovasc. Disord. 16, 237 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Yoo, H. J. et al. Vascular inflammation in metabolically abnormal but normal-weight and metabolically healthy obese individuals analyzed with 18F-fluorodeoxyglucose positron emission tomography. Am. J. Cardiol. 115, 523–528 (2015).

    PubMed  Google Scholar 

  32. Kim, S. et al. Concurrent carotid inflammation in acute coronary syndrome as assessed by 18F-FDG PET/CT: a possible mechanistic link for ischemic stroke. J. Stroke Cerebrovasc. Dis. 24, 2547–2554 (2015).

    PubMed  Google Scholar 

  33. Tawakol, A. et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet 389, 834–845 (2017).

    PubMed  Google Scholar 

  34. Abdelbaky, A. et al. Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study. Circ. Cardiovasc. Imaging 6, 747–754 (2013).

    PubMed  Google Scholar 

  35. Joshi, F. R. et al. Does vascular calcification accelerate inflammation?: a substudy of the dal-PLAQUE trial. J. Am. Coll. Cardiol. 67, 69–78 (2016).

    PubMed  Google Scholar 

  36. Tarkin, J. M., Joshi, F. R. & Rudd, J. H. PET imaging of inflammation in atherosclerosis. Nat. Rev. Cardiol. 11, 443–457 (2014).

    CAS  PubMed  Google Scholar 

  37. Tahara, N. et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J. Am. Coll. Cardiol. 48, 1825–1831 (2006).

    CAS  PubMed  Google Scholar 

  38. Tawakol, A. et al. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J. Am. Coll. Cardiol. 62, 909–917 (2013).

    CAS  PubMed  Google Scholar 

  39. Derlin, T. et al. Quantification of 18F-FDG uptake in atherosclerotic plaque: impact of renal function. Ann. Nucl. Med. 25, 586–591 (2011).

    PubMed  Google Scholar 

  40. Bucerius, J. et al. Position paper of the cardiovascular committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis. Eur. J. Nucl. Med. Mol. Imaging 43, 780–792 (2016).

    PubMed  Google Scholar 

  41. Fujimura, Y. et al. Increased peripheral benzodiazepine receptors in arterial plaque of patients with atherosclerosis: an autoradiographic study with 3H-PK 11195. Atherosclerosis 201, 108–111 (2008).

    CAS  PubMed  Google Scholar 

  42. Bird, J. L. et al. Evaluation of translocator protein quantification as a tool for characterising macrophage burden in human carotid atherosclerosis. Atherosclerosis 210, 388–391 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gaemperli, O. et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur. Heart J. 33, 1902–1910 (2012).

    CAS  PubMed  Google Scholar 

  44. Laitinen, I. et al. Uptake of inflammatory cell marker 11C-PK11195 into mouse atherosclerotic plaques. Eur. J. Nucl. Med. Mol. Imaging 36, 73–80 (2009).

    CAS  PubMed  Google Scholar 

  45. Tarkin, J. M. et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to 18F-FDG PET imaging. J. Am. Coll. Cardiol. 69, 1774–1791 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, W. & Dilsizian, V. Targeted PET/CT imaging of vulnerable atherosclerotic plaques: microcalcification with sodium fluoride and inflammation with fluorodeoxyglucose. Curr. Cardiol. Rep. 15, 364 (2013).

    PubMed  Google Scholar 

  47. Bluestein, D. et al. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J. Biomech. 41, 1111–1118 (2008).

    PubMed  Google Scholar 

  48. Kelly-Arnold, A. et al. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc. Natl Acad. Sci. USA 110, 10741–10746 (2013).

    CAS  PubMed  Google Scholar 

  49. Derlin, T. et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J. Nucl. Med. 51, 862–865 (2010).

    PubMed  Google Scholar 

  50. Hawkins, R. A. et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J. Nucl. Med. 33, 633–642 (1992).

    CAS  PubMed  Google Scholar 

  51. Janssen, T. et al. Association of linear 18F-sodium fluoride accumulation in femoral arteries as a measure of diffuse calcification with cardiovascular risk factors: a PET/CT study. J. Nucl. Cardiol. 20, 569–577 (2013).

    PubMed  Google Scholar 

  52. Joshi, N. V. et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383, 705–713 (2014).

    PubMed  Google Scholar 

  53. Dweck, M. R. et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J. Am. Coll. Cardiol. 59, 1539–1548 (2012).

    CAS  PubMed  Google Scholar 

  54. Cocker, M. S. et al. 18F-NaF PET/CT identifies active calcification in carotid plaque. JACC Cardiovasc. Imaging 10, 486–488 (2017).

    PubMed  Google Scholar 

  55. Vesey, A. T. et al. 18F-fluoride and 18F-fluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke: case-control study. Circ. Cardiovasc. Imaging 10, e004976 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Quirce, R. et al. Contribution of 18F-sodium fluoride PET/CT to the study of the carotid atheroma calcification. Rev. Esp. Med. Nucl. Imagen Mol. 32, 22–25 (2013).

    CAS  PubMed  Google Scholar 

  57. Derlin, T. et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J. Nucl. Med. 52, 1020–1027 (2011).

    PubMed  Google Scholar 

  58. Li, X. et al. Association between osteogenesis and inflammation during the progression of calcified plaque as evaluated by combined 18F-NaF and 18F-FDG PET/CT. J. Nucl. Med. 58, 968–974 (2017).

    PubMed  Google Scholar 

  59. Takasawa, M., Moustafa, R. R. & Baron, J. C. Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke. Stroke 39, 1629–1637 (2008).

    CAS  PubMed  Google Scholar 

  60. Leppanen, O. et al. ATP depletion in macrophages in the core of advanced rabbit atherosclerotic plaques in vivo. Atherosclerosis 188, 323–330 (2006).

    PubMed  Google Scholar 

  61. Joshi, F. R. et al. Vascular imaging with 18F-fluorodeoxyglucose positron emission tomography is influenced by hypoxia. J. Am. Coll. Cardiol. 69, 1873–1874 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. van der Valk, F. M. et al. Thresholds for arterial wall inflammation quantified by 18F-FDG PET imaging: implications for vascular interventional studies. JACC Cardiovasc. Imaging 9, 1198–1207 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. Rudd, J. H. et al. 18F-fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J. Am. Coll. Cardiol. 50, 892–896 (2007).

    PubMed  Google Scholar 

  64. Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).

    CAS  PubMed  Google Scholar 

  65. Astrup, J., Siesjo, B. K. & Symon, L. Thresholds in cerebral ischemia — the ischemic penumbra. Stroke 12, 723–725 (1981).

    CAS  PubMed  Google Scholar 

  66. Heiss, W. D. The ischemic penumbra: how does tissue injury evolve? Ann. NY Acad. Sci. 1268, 26–34 (2012).

    PubMed  Google Scholar 

  67. Wang, X. & Feuerstein, G. Z. The Janus face of inflammation in ischemic brain injury. Acta Neurochir. Suppl. 89, 49–54 (2004).

    CAS  PubMed  Google Scholar 

  68. Amantea, D., Nappi, G., Bernardi, G., Bagetta, G. & Corasaniti, M. T. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J. 276, 13–26 (2009).

    CAS  PubMed  Google Scholar 

  69. Kriz, J. Inflammation in ischemic brain injury: timing is important. Crit. Rev. Neurobiol. 18, 145–157 (2006).

    CAS  PubMed  Google Scholar 

  70. Xia, C. Y., Zhang, S., Gao, Y., Wang, Z. Z. & Chen, N. H. Selective modulation of microglia polarization to M2 phenotype for stroke treatment. Int. Immunopharmacol. 25, 377–382 (2015).

    CAS  PubMed  Google Scholar 

  71. Marchal, G. et al. PET imaging of cerebral perfusion and oxygen consumption in acute ischaemic stroke: relation to outcome. Lancet 341, 925–927 (1993).

    CAS  PubMed  Google Scholar 

  72. Marchal, G. et al. Value of acute-stage positron emission tomography in predicting neurological outcome after ischemic stroke: further assessment. Stroke 26, 524–525 (1995).

    CAS  PubMed  Google Scholar 

  73. Marchal, G. et al. Prolonged persistence of substantial volumes of potentially viable brain tissue after stroke: a correlative PET-CT study with voxel-based data analysis. Stroke 27, 599–606 (1996).

    CAS  PubMed  Google Scholar 

  74. Agarwal, S., Warburton, E. A. & Baron, J. C. From time is brain to physiology is brain: a case for reflection in acute stroke treatment decisions. Brain 138, 1768–1770 (2015).

    PubMed  Google Scholar 

  75. Bivard, A. et al. Perfusion computed tomography to assist decision making for stroke thrombolysis. Brain 138, 1919–1931 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Guadagno, J. V. et al. Does the acute diffusion-weighted imaging lesion represent penumbra as well as core? A combined quantitative PET/MRI voxel-based study. J. Cereb. Blood Flow Metab. 24, 1249–1254 (2004).

    PubMed  Google Scholar 

  77. Guadagno, J. V. et al. The diffusion-weighted lesion in acute stroke: heterogeneous patterns of flow/metabolism uncoupling as assessed by quantitative positron emission tomography. Cerebrovasc. Dis. 19, 239–246 (2005).

    PubMed  Google Scholar 

  78. Guadagno, J. V. et al. How affected is oxygen metabolism in DWI lesions? A combined acute stroke PET-MR study. Neurology 67, 824–829 (2006).

    CAS  PubMed  Google Scholar 

  79. Marchal, G. et al. Voxel-based mapping of irreversible ischaemic damage with PET in acute stroke. Brain 122, 2387–2400 (1999).

    PubMed  Google Scholar 

  80. Read, S. J. et al. Identifying hypoxic tissue after acute ischemic stroke using PET and 18F-fluoromisonidazole. Neurology 51, 1617–1621 (1998).

    CAS  PubMed  Google Scholar 

  81. Alawneh, J. A. et al. Diffusion and perfusion correlates of the 18F-MISO PET lesion in acute stroke: pilot study. Eur. J. Nucl. Med. Mol. Imaging 41, 736–744 (2014).

    CAS  PubMed  Google Scholar 

  82. Markus, R. et al. Topography and temporal evolution of hypoxic viable tissue identified by 18F-fluoromisonidazole positron emission tomography in humans after ischemic stroke. Stroke 34, 2646–2652 (2003).

    CAS  PubMed  Google Scholar 

  83. Markus, R., Donnan, G., Kazui, S., Read, S. & Reutens, D. Penumbral topography in human stroke: methodology and validation of the 'Penumbragram'. Neuroimage 21, 1252–1259 (2004).

    PubMed  Google Scholar 

  84. Spratt, N. J., Donnan, G. A. & Howells, D. W. Characterisation of the timing of binding of the hypoxia tracer FMISO after stroke. Brain Res. 1288, 135–142 (2009).

    CAS  PubMed  Google Scholar 

  85. Lee, G. H. et al. 18F-fluoromisonidazole (FMISO) positron emission tomography (PET) predicts early infarct growth in patients with acute ischemic stroke. J. Neuroimaging 25, 652–655 (2015).

    PubMed  Google Scholar 

  86. Markus, R. et al. Hypoxic tissue in ischaemic stroke: persistence and clinical consequences of spontaneous survival. Brain 127, 1427–1436 (2004).

    CAS  PubMed  Google Scholar 

  87. Baron, J. C., Yamauchi, H., Fujioka, M. & Endres, M. Selective neuronal loss in ischemic stroke and cerebrovascular disease. J. Cereb. Blood Flow Metab. 34, 2–18 (2014).

    PubMed  Google Scholar 

  88. Cramer, S. C. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann. Neurol. 63, 272–287 (2008).

    PubMed  Google Scholar 

  89. Heiss, W. D. et al. Permanent cortical damage detected by flumazenil positron emission tomography in acute stroke. Stroke 29, 454–461 (1998).

    CAS  PubMed  Google Scholar 

  90. Heiss, W. D. et al. Early 11C-flumazenil/H2O positron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapy. Stroke 31, 366–369 (2000).

    CAS  PubMed  Google Scholar 

  91. Guadagno, J. V. et al. Selective neuronal loss in rescued penumbra relates to initial hypoperfusion. Brain 131, 2666–2678 (2008).

    CAS  PubMed  Google Scholar 

  92. Carrera, E. et al. Is neural activation within the rescued penumbra impeded by selective neuronal loss? Brain 136, 1816–1829 (2013).

    PubMed  Google Scholar 

  93. Kuroda, S. et al. Reduced blood flow and preserved vasoreactivity characterize oxygen hypometabolism due to incomplete infarction in occlusive carotid artery diseases. J. Nucl. Med. 45, 943–949 (2004).

    PubMed  Google Scholar 

  94. Dohmen, C., Galldiks, N., Bosche, B., Kracht, L. & Graf, R. The severity of ischemia determines and predicts malignant brain edema in patients with large middle cerebral artery infarction. Cerebrovasc. Dis. 33, 1–7 (2012).

    PubMed  Google Scholar 

  95. Stephenson, D. T. et al. Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J. Neurosci. 15, 5263–5274 (1995).

    CAS  PubMed  Google Scholar 

  96. Price, C. J. et al. Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke. Stroke 37, 1749–1753 (2006).

    PubMed  Google Scholar 

  97. Gerhard, A., Schwarz, J., Myers, R., Wise, R. & Banati, R. B. Evolution of microglial activation in patients after ischemic stroke: a 11C-(R)-PK11195 PET study. Neuroimage 24, 591–595 (2005).

    PubMed  Google Scholar 

  98. Thiel, A. & Heiss, W. D. Imaging of microglia activation in stroke. Stroke 42, 507–512 (2011).

    PubMed  Google Scholar 

  99. Schroeter, M. et al. Neuroinflammation extends brain tissue at risk to vital peri-infarct tissue: a double tracer 11C-PK11195 and 18F-FDG-PET study. J. Cereb. Blood Flow Metab. 29, 1216–1225 (2009).

    CAS  PubMed  Google Scholar 

  100. Pappata, S. et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and 11C-PK1195. Neurology 55, 1052–1054 (2000).

    CAS  PubMed  Google Scholar 

  101. Katchanov, J. et al. Selective neuronal vulnerability following mild focal brain ischemia in the mouse. Brain Pathol. 13, 452–464 (2003).

    PubMed  Google Scholar 

  102. Weishaupt, N., Zhang, A., Deziel, R. A., Tasker, R. A. & Whitehead, S. N. Prefrontal ischemia in the rat leads to secondary damage and inflammation in remote gray and white matter regions. Front. Neurosci. 10, 81 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Radlinska, B. A. et al. Multimodal microglia imaging of fiber tracts in acute subcortical stroke. Ann. Neurol. 66, 825–832 (2009).

    PubMed  Google Scholar 

  104. Thiel, A. et al. The temporal dynamics of poststroke neuroinflammation: a longitudinal diffusion tensor imaging-guided PET study with 11C-PK11195 in acute subcortical stroke. J. Nucl. Med. 51, 1404–1412 (2010).

    CAS  PubMed  Google Scholar 

  105. Chen, M. K. & Guilarte, T. R. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol. Ther. 118, 1–17 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Imaizumi, M. et al. PET imaging with 11C-PBR28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat. Neurosci. Lett. 411, 200–205 (2007).

    CAS  PubMed  Google Scholar 

  107. Fujita, M. et al. Kinetic analysis in healthy humans of a novel positron emission tomography radioligand to image the peripheral benzodiazepine receptor, a potential biomarker for inflammation. Neuroimage 40, 43–52 (2008).

    PubMed  Google Scholar 

  108. Owen, D. R. et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J. Nucl. Med. 52, 24–32 (2011).

    CAS  PubMed  Google Scholar 

  109. Kreisl, W. C. et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J. Cereb. Blood Flow Metab. 33, 53–58 (2013).

    CAS  PubMed  Google Scholar 

  110. Gulyas, B. et al. Visualising neuroinflammation in post-stroke patients: a comparative PET study with the TSPO molecular imaging biomarkers 11C-PK11195 and 11C-vinpocetine. Curr. Radiopharm. 5, 19–28 (2012).

    CAS  PubMed  Google Scholar 

  111. Gulyas, B. et al. Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: a PET study with the TSPO molecular imaging biomarker 11C-vinpocetine. J. Neurol. Sci. 320, 110–117 (2012).

    CAS  PubMed  Google Scholar 

  112. Ribeiro, M. J. et al. Could 18F-DPA-714 PET imaging be interesting to use in the early post-stroke period? EJNMMI Res. 4, 28 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Boutin, H. et al. 18F-DPA-714: direct comparison with 11C-PK11195 in a model of cerebral ischemia in rats. PLoS ONE 8, e56441 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chauveau, F. et al. Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J. Nucl. Med. 50, 468–476 (2009).

    CAS  PubMed  Google Scholar 

  115. Chauveau, F., Boutin, H., Van Camp, N., Dolle, F. & Tavitian, B. Nuclear imaging of neuroinflammation: a comprehensive review of 11C-PK11195 challengers. Eur. J. Nucl. Med. Mol. Imaging 35, 2304–2319 (2008).

    PubMed  Google Scholar 

  116. Roman, G. C., Erkinjuntti, T., Wallin, A., Pantoni, L. & Chui, H. C. Subcortical ischaemic vascular dementia. Lancet Neurol. 1, 426–436 (2002).

    PubMed  Google Scholar 

  117. Sabri, O. et al. Neuropsychological impairment correlates with hypoperfusion and hypometabolism but not with severity of white matter lesions on MRI in patients with cerebral microangiopathy. Stroke 30, 556–566 (1999).

    CAS  PubMed  Google Scholar 

  118. Benson, D. F. et al. The fluorodeoxyglucose 18F scan in Alzheimer's disease and multi-infarct dementia. Arch. Neurol. 40, 711–714 (1983).

    CAS  PubMed  Google Scholar 

  119. Kitagawa, K. et al. Relationship between cerebral blood flow and later cognitive decline in hypertensive patients with cerebral small vessel disease. Hypertens. Res. 32, 816–820 (2009).

    PubMed  Google Scholar 

  120. Tatsch, K. et al. Cortical hypometabolism and crossed cerebellar diaschisis suggest subcortically induced disconnection in CADASIL: an 18F-FDG PET study. J. Nucl. Med. 44, 862–869 (2003).

    PubMed  Google Scholar 

  121. Tuominen, S. et al. Phenotype of a homozygous CADASIL patient in comparison to 9 age-matched heterozygous patients with the same R133C Notch3 mutation. Stroke 32, 1767–1774 (2001).

    CAS  PubMed  Google Scholar 

  122. Akiguchi, I., Tomimoto, H., Suenaga, T., Wakita, H. & Budka, H. Alterations in glia and axons in the brains of Binswanger's disease patients. Stroke 28, 1423–1429 (1997).

    CAS  PubMed  Google Scholar 

  123. Kobayashi, K. et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 4, e525 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu, Z. et al. Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke 38, 146–152 (2007).

    CAS  PubMed  Google Scholar 

  125. Yang, Y. et al. Attenuation of acute stroke injury in rat brain by minocycline promotes blood–brain barrier remodeling and alternative microglia/macrophage activation during recovery. J. Neuroinflamm. 12, 26 (2015).

    Google Scholar 

  126. Jalal, F. Y., Yang, Y., Thompson, J. F., Roitbak, T. & Rosenberg, G. A. Hypoxia-induced neuroinflammatory white-matter injury reduced by minocycline in SHR/SP. J. Cereb. Blood Flow Metab. 35, 1145–1153 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Yang, F., Zhou, L., Wang, D., Wang, Z. & Huang, Q. Y. Minocycline ameliorates hypoxia-induced blood–brain barrier damage by inhibition of HIF-1α through SIRT-3/PHD-2 degradation pathway. Neuroscience 304, 250–259 (2015).

    CAS  PubMed  Google Scholar 

  128. Attems, J. & Jellinger, K. A. The overlap between vascular disease and Alzheimer's disease — lessons from pathology. BMC Med. 12, 206 (2014).

    PubMed  PubMed Central  Google Scholar 

  129. Kalaria, R. N. et al. Accumulation of the β amyloid precursor protein at sites of ischemic injury in rat brain. Neuroreport 4, 211–214 (1993).

    CAS  PubMed  Google Scholar 

  130. Jendroska, K. et al. Ischemic stress induces deposition of amyloid β immunoreactivity in human brain. Acta Neuropathol. 90, 461–466 (1995).

    CAS  PubMed  Google Scholar 

  131. Zhang, F., Eckman, C., Younkin, S., Hsiao, K. K. & Iadecola, C. Increased susceptibility to ischemic brain damage in transgenic mice overexpressing the amyloid precursor protein. J. Neurosci. 17, 7655–7661 (1997).

    CAS  PubMed  Google Scholar 

  132. Mathis, C. A. et al. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem. 46, 2740–2754 (2003).

    CAS  PubMed  Google Scholar 

  133. Yang, J. et al. Risk factors for incident dementia after stroke and transient ischemic attack. Alzheimers Dement. 11, 16–23 (2015).

    PubMed  Google Scholar 

  134. Ly, J. V. et al. Subacute ischemic stroke is associated with focal 11C PiB positron emission tomography retention but not with global neocortical Aβ deposition. Stroke 43, 1341–1346 (2012).

    CAS  PubMed  Google Scholar 

  135. Kalheim, L. F. et al. Amyloid dysmetabolism relates to reduced glucose uptake in white matter hyperintensities. Front. Neurol. 7, 209 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Ye, B. S. et al. Effects of amyloid and vascular markers on cognitive decline in subcortical vascular dementia. Neurology 85, 1687–1693 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Grimmer, T. et al. White matter hyperintensities predict amyloid increase in Alzheimer's disease. Neurobiol. Aging 33, 2766–2773 (2012).

    CAS  PubMed  Google Scholar 

  138. Jang, Y. K. et al. Early- versus late-onset subcortical vascular cognitive impairment. Neurology 86, 527–534 (2016).

    CAS  PubMed  Google Scholar 

  139. Kim, H. J. et al. Clinical effect of white matter network disruption related to amyloid and small vessel disease. Neurology 85, 63–70 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Kim, Y. J. et al. Gray and white matter changes linking cerebral small vessel disease to gait disturbances. Neurology 86, 1199–1207 (2016).

    PubMed  Google Scholar 

  141. Yoon, C. W. et al. Cognitive deficits of pure subcortical vascular dementia versus Alzheimer disease: PiB-PET-based study. Neurology 80, 569–573 (2013).

    PubMed  Google Scholar 

  142. Ly, J. V. et al. 11C-PIB binding is increased in patients with cerebral amyloid angiopathy-related hemorrhage. Neurology 74, 487–493 (2010).

    CAS  PubMed  Google Scholar 

  143. Gurol, M. E. et al. Cerebral amyloid angiopathy burden associated with leukoaraiosis: a positron emission tomography/magnetic resonance imaging study. Ann. Neurol. 73, 529–536 (2013).

    PubMed  PubMed Central  Google Scholar 

  144. Rousset, O. G., Ma, Y. & Evans, A. C. Correction for partial volume effects in PET: principle and validation. J. Nucl. Med. 39, 904–911 (1998).

    CAS  PubMed  Google Scholar 

  145. Izquierdo-Garcia, D. et al. Comparison of methods for magnetic resonance-guided 18F-fluorodeoxyglucose positron emission tomography in human carotid arteries: reproducibility, partial volume correction, and correlation between methods. Stroke 40, 86–93 (2009).

    PubMed  Google Scholar 

  146. Keiner, S., Wurm, F., Kunze, A., Witte, O. W. & Redecker, C. Rehabilitative therapies differentially alter proliferation and survival of glial cell populations in the perilesional zone of cortical infarcts. Glia 56, 516–527 (2008).

    PubMed  Google Scholar 

  147. Nelson, J. W. et al. Role of soluble epoxide hydrolase in age-related vascular cognitive decline. Prostaglandins Other Lipid Mediat. 113–115, 30–37 (2014).

    PubMed  Google Scholar 

  148. Horti, A. G. et al. 18F-FNDP for PET imaging of soluble epoxide hydrolase. J. Nucl. Med. 57, 1817–1822 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Rotering, S. et al. Imaging of α7 nicotinic acetylcholine receptors in brain and cerebral vasculature of juvenile pigs with 18F-NS14490. EJNMMI Res. 4, 43 (2014).

    PubMed  PubMed Central  Google Scholar 

  150. Medoc, M. et al. In vivo evaluation of radiofluorinated caspase-3/7 inhibitors as radiotracers for apoptosis imaging and comparison with 18F-ML-10 in a stroke model in the rat. Mol. Imaging Biol. 18, 117–126 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.R.E. is supported by a research training fellowship from The Dunhill Medical Trust (grant number RTF44/0114). J.M.T. is supported by a Wellcome Trust research training fellowship (104492/Z/14/Z). J.H.F.R. is part-supported by the Higher Education Funding Council for England (HEFCE), the British Heart Foundation, and the Wellcome Trust. H.S.M. is supported by the Medical Research Council (MRC) as a National Institute for Health Research (NIHR) Senior Investigator. E.A.W. is supported by the British Heart Foundation. H.S.M., J.H.F.R., and E.A.W. are supported by the NIHR Cambridge Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

N.R.E. wrote the manuscript. N.R.E., J.M.T. and J.H.F.R. researched data for the article. All authors (N.R.E., J.M.T., J.R.B., H.S.M., J.H.F.R. & E.A.W.) contributed substantially to discussions of the article content and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Nicholas R. Evans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, N., Tarkin, J., Buscombe, J. et al. PET imaging of the neurovascular interface in cerebrovascular disease. Nat Rev Neurol 13, 676–688 (2017). https://doi.org/10.1038/nrneurol.2017.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing