Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long-term effects of exercise and physical therapy in people with Parkinson disease

Key Points

  • Most progressive strength and aerobic endurance training programmes have positive effects that last for 12 weeks

  • Extended progressive strength training improves muscle strength for up to 24 months and aerobic endurance training increases walking capacity at 6–16 months

  • Balance training improves balance, gait and mobility, and reduces falls for up to 12 months after completion of treatment

  • Gait training improves gait performance and walking capacity for up to 6 months after training

  • Tai chi and dance improve balance and tai chi reduces fall frequency up to 6 months after training

  • A training period of at least 6 months is effective for achieving clinically meaningful improvement in UPDRS-III scores

Abstract

Parkinson disease (PD) is a progressive, neurodegenerative movement disorder with symptoms reflecting various impairments and functional limitations, such as postural instability, gait disturbance, immobility and falls. In addition to pharmacological and surgical management of PD, exercise and physical therapy interventions are also being actively researched. This Review provides an overview of the effects of PD on physical activity — including muscle weakness, reduced aerobic capacity, gait impairment, balance disorders and falls. Previously published reviews have discussed only the short-term benefits of exercises and physical therapy for people with PD. However, owing to the progressive nature of PD, the present Review focuses on the long-term effects of such interventions. We also discuss exercise-induced neuroplasticity, present data on the possible risks and adverse effects of exercise training, make recommendations for clinical practice, and describe new treatment approaches. Evidence suggests that a minimum of 4 weeks of gait training or 8 weeks of balance training can have positive effects that persist for 3–12 months after treatment completion. Sustained strength training, aerobic training, tai chi or dance therapy lasting at least 12 weeks can produce long-term beneficial effects. Further studies are needed to verify disease-modifying effects of these interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. European Parkinson's Disease Association. What is Parkinson's? EPDA http://www.epda.eu.com/en/pd-info/about-parkinsons/ (2015).

  2. Pringsheim, T., Jette, N., Frolkis, A. & Steeves, T. D. The prevalence of Parkinson's disease: a systematic review and meta-analysis. Mov. Disord. 29, 1583–1590 (2014).

    Article  PubMed  Google Scholar 

  3. Gasser, T. Mendelian forms of Parkinson's disease. Biochim. Biophys. Acta 1792, 587–596 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Wirdefeldt, K., Adami, H. O., Cole, P., Trichopoulos, D. & Mandel, J. Epidemiology and etiology of Parkinson's disease: a review of the evidence. Eur. J. Epidemiol. 26, 1–58 (2011).

    Article  Google Scholar 

  5. Curtze, C., Nutt, J. G., Carlson-Kuhta, P., Mancini, M. & Horak, F. B. Levodopa is a double-edged sword for balance and gait in people with Parkinson's disease. Mov. Disord. 30, 1361–1370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van der Marck, M. A. et al. Consensus-based clinical practice recommendations for the examination and management of falls in patients with Parkinson's disease. Parkinsonism Relat. Disord. 20, 360–369 (2014).

    Article  PubMed  Google Scholar 

  7. Fox, S. H. et al. The Movement Disorder Society Evidence-Based Medicine review update: treatments for the motor symptoms of Parkinson's disease. Mov. Disord. 26, S2–S41 (2011).

    Article  PubMed  Google Scholar 

  8. Allen, N. E., Sherrington, C., Paul, S. S. & Canning, C. G. Balance and falls in Parkinson's disease: a meta-analysis of the effect of exercise and motor training. Mov. Disord. 26, 1605–1615 (2011).

    Article  PubMed  Google Scholar 

  9. Shen, X., Wong-Yu, I. S. & Mak, M. K. Effects of exercise on falls, balance, and gait ability in Parkinson's disease: a meta-analysis. Neurorehabil. Neural Repair. 30, 512–527 (2016).

    Article  PubMed  Google Scholar 

  10. Tomlinson, C. L. et al. Physiotherapy intervention in Parkinson's disease: systematic review and meta-analysis. BMJ 345, e5004 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Allen, N. E., Canning, C. G., Sherrington, C. & Fung, V. S. Bradykinesia, muscle weakness and reduced muscle power in Parkinson's disease. Mov. Disord. 24, 1344–1351 (2009).

    Article  PubMed  Google Scholar 

  12. Bridgewater, K. J. & Sharpe, M. H. Trunk muscle performance in early Parkinson's disease. Phys. Ther. 78, 566 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Kakinuma, S., Nogaki, H., Pramanik, B. & Morimatsu, M. Muscle weakness in Parkinson's disease: isokinetic study of the lower limbs. Eur. Neurol. 39, 218–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Koller, W. & Kase, S. Muscle strength testing in Parkinson's disease. Eur. Neurol. 25, 130–133 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Nallegowda, M. et al. Role of sensory input and muscle strength in maintenance of balance, gait, and posture in Parkinson's disease: a pilot study. Am. J. Phys. Med. Rehabil. 83, 898–908 (2004).

    Article  PubMed  Google Scholar 

  16. Inkster, L. M., Eng, J. J., MacIntyre, D. L. & Stoessl, A. J. Leg muscle strength is reduced in Parkinson's disease and relates to the ability to rise from a chair. Mov. Disord. 18, 157–162 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nocera, J. R., Buckley, T., Waddell, D., Okun, M. S. & Hass, C. J. Knee extensor strength, dynamic stability, and functional ambulation: are they related in Parkinson's disease? Arch. Phys. Med. Rehabil. 91, 589–595 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Allen, N. E. et al. The effects of an exercise program on fall risk factors in people with Parkinson's disease: a randomized controlled trial. Mov. Disord. 25, 1217–1225 (2010).

    Article  PubMed  Google Scholar 

  19. Latt, M. D., Lord, S. R., Morris, J. G. L. & Fung, V. S. Clinical and physiological assessments for elucidating falls risk in Parkinson's disease. Mov. Disord. 24, 1280–1289 (2009).

    Article  PubMed  Google Scholar 

  20. Berardelli, A., Rothwell, J. C., Thompson, P. D. & Hallett, M. Pathophysiology of bradykinesia in Parkinson's disease. Brain 124, 2131–2146 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. David, F. J. et al. Progressive resistance exercise and Parkinson's disease: a review of potential mechanisms. Parkinsons Dis. 2012, 124527 (2012).

    PubMed  Google Scholar 

  22. Glendinning, D. S. & Enoka, R. M. Motor unit behavior in Parkinson's disease. Phys. Ther. 74, 61–70 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Katzel, L. I. et al. Repeatability of aerobic capacity measurements in Parkinson disease. Med. Sci. Sports Exerc. 43, 2381 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Canning, C. G., Alison, J. A., Allen, N. E. & Groeller, H. Parkinson's disease: an investigation of exercise capacity, respiratory function, and gait. Arch. Phys. Med. Rehabil. 78, 199–207 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Saltin, B. & Landin, S. Work capacity, muscle strength and SDH activity in both legs of hemiparetic patients and patients with Parkinson's disease. Scand. J. Clin. Lab. Invest. 35, 531–538 (1975).

    Article  CAS  PubMed  Google Scholar 

  26. Protas, E. J., Stanley, R. K., Jankovic, J. & MacNeill, B. Cardiovascular and metabolic responses to upper-and lower-extremity exercise in men with idiopathic Parkinson's disease. Phys. Ther. 76, 34–40 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Christiansen, C. L., Schenkman, M. L., McFann, K., Wolfe, P. & Kohrt, W. M. Walking economy in people with Parkinson's disease. Mov. Disord. 24, 1481–1487 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Canning, C. G., Ada, L., Johnson, J. J. & McWhirter, S. Walking capacity in mild to moderate Parkinson's disease. Arch. Phys. Med. Rehabil. 87, 371–375 (2006).

    Article  PubMed  Google Scholar 

  29. Lord, S. et al. Ambulatory activity in incident Parkinson's: more than meets the eye? J. Neurol. 260, 2964–2972 (2013).

    Article  PubMed  Google Scholar 

  30. Rogers, M. W. Disorders of posture, balance, and gait in Parkinson's disease. Clin. Geriatr. Med. 12, 825 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Morris, M. E., Iansek, R., Matyas, T. A. & Summers, J. J. The pathogenesis of gait hypokinesia in Parkinson's disease. Brain 117, 1169–1181 (1994).

    Article  PubMed  Google Scholar 

  32. Van Emmerik, R. E., Wagenaar, R. C., Winogrodzka, A. & Wolters, E. C. Identification of axial rigidity during locomotion in Parkinson disease. Arch. Phys. Med. Rehabil. 80, 186–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y. & Goldberger, A. L. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease. Mov. Disord. 13, 428–437 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Willems, A. M. et al. Turning in Parkinson's disease patients and controls: the effect of auditory cues. Mov. Disord. 22, 1871–1878 (2007).

    Article  PubMed  Google Scholar 

  35. Dennison, A. C. et al. Falling in Parkinson disease: identifying and prioritizing risk factors in recurrent fallers. Am. J. Phys. Med. Rehabil. 86, 621–632 (2007).

    Article  PubMed  Google Scholar 

  36. Ashburn, A., Stack, E., Ballinger, C., Fazakarley, L. & Fitton, C. The circumstances of falls among people with Parkinson's disease and the use of Falls Diaries to facilitate reporting. Disabil. Rehabil. 30, 1205–1212 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Rochester, L. et al. Attending to the task: interference effects of functional tasks on walking in Parkinson's disease and the roles of cognition, depression, fatigue, and balance. Arch. Phys. Med. Rehabil. 85, 1578–1585 (2004).

    Article  PubMed  Google Scholar 

  38. Yogev-Seligmann, G., Hausdorff, J. M. & Giladi, N. Do we always prioritize balance when walking? Towards an integrated model of task prioritization. Mov. Disord. 27, 765–770 (2012).

    Article  PubMed  Google Scholar 

  39. Giladi, N., Horak, F. B. & Hausdorff, J. M. Classification of gait disturbances: distinguishing between continuous and episodic changes. Mov. Disord. 28, 1469–1473 (2013).

    Article  PubMed  Google Scholar 

  40. Nutt, J. G. et al. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 10, 734–744 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Leddy, A. L., Crowner, B. E. & Earhart, G. M. Utility of the mini-BESTest, BESTest, and BESTest sections for balance assessments in individuals with Parkinson disease. J. Neurol. Phys. Ther. 35, 90–97 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mancini, M. et al. Postural sway as a marker of progression in Parkinson's disease: a pilot longitudinal study. Gait Posture 36, 471–476 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Beuter, A., Hernández, R., Rigal, R., Modolo, J. & Blanchet, P. J. Postural sway and effect of levodopa in early Parkinson's disease. Can. J. Neurol. Sci. 35, 65–68 (2008).

    Article  PubMed  Google Scholar 

  44. Švehlík, M. et al. Gait analysis in patients with Parkinson's disease off dopaminergic therapy. Arch. Phys. Med. Rehabil. 90, 1880–1886 (2009).

    Article  PubMed  Google Scholar 

  45. Zampieri, C., Salarian, A., Carlson-Kuhta, P., Nutt, J. G. & Horak, F. B. Assessing mobility at home in people with early Parkinson's disease using an instrumented Timed Up and Go test. Parkinsonism Relat. Disord. 17, 277–280 (2011).

    Article  PubMed  Google Scholar 

  46. Mancini, M., Rocchi, L., Horak, F. B. & Chiari, L. Effects of Parkinson's disease and levodopa on functional limits of stability. Clin. Biomech. (Bristol, Avon) 23, 450–458 (2008).

    Article  Google Scholar 

  47. Vaugoyeau, M., Viallet, F., Mesure, S. & Massion, J. Coordination of axial rotation and step execution: deficits in Parkinson's disease. Gait Posture 18, 150–157 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Boonstra, T. A., van Kordelaar, J., Engelhart, D., van Vugt, J. P. & van der Kooij, H. Asymmetries in reactive and anticipatory balance control are of similar magnitude in Parkinson's disease patients. Gait Posture 43, 108–113 (2015).

    Article  PubMed  Google Scholar 

  49. Stack, E. L., Ashburn, A. & Jupp, K. Postural instability during reaching tasks in Parkinson's disease. Physiother. Res. Int. 10, 146–153 (2005).

    Article  PubMed  Google Scholar 

  50. Roemmich, R. T. et al. Spatiotemporal variability during gait initiation in Parkinson's disease. Gait Posture 36, 340–343 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rogers, M. W. et al. Postural preparation prior to stepping in patients with Parkinson's disease. J. Neurophysiol. 106, 915–924 (2011).

    Article  PubMed  Google Scholar 

  52. King, L. A. & Horak, F. B. Lateral stepping for postural correction in Parkinson's disease. Arch. Phys. Med. Rehabil. 89, 492–499 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Peterson, D. S. & Horak, F. B. The effect of levodopa on improvements in protective stepping in people with Parkinson's disease. Neurorehabil. Neural Repair 30, 931–940 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pickering, R. M. et al. A meta-analysis of six prospective studies of falling in Parkinson's disease. Mov. Disord. 22, 1892–1900 (2007).

    Article  PubMed  Google Scholar 

  55. Bloem, B. R., Grimbergen, Y. A., Cramer, M., Willemsen, M. & Zwinderman, A. H. Prospective assessment of falls in Parkinson's disease. J. Neurol. 248, 950–958 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Ashburn, A., Stack, E., Pickering, R. M. & Ward, C. D. Predicting fallers in a community-based sample of people with Parkinson's disease. Gerontology 47, 277–281 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Gray, P. & Hildebrand, K. Fall risk factors in Parkinson's disease. J. Neurosci. Nurs. 32, 222–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Kerr, G. K. et al. Predictors of future falls in Parkinson disease. Neurology 75, 116–124 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Wood, B. H., Bilclough, J. A., Bowron, A. & Walker, R. W. Incidence and prediction of falls in Parkinson's disease: a prospective multidisciplinary study. J. Neurol. Neurosurg. Psychiatry 72, 721–725 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lord, S. et al. Predicting first fall in newly diagnosed Parkinson's disease: insights from a fall-naïve cohort. Mov. Disord. 31, 1829–1836 (2016).

    Article  PubMed  Google Scholar 

  61. Mak, M. K. & Pang, M. Y. Fear of falling is independently associated with recurrent falls in patients with Parkinson's disease: a 1-year prospective study. J. Neurol. 256, 1689–1695 (2009).

    Article  PubMed  Google Scholar 

  62. Matinolli, M., Korpelainen, J. T., Sotaniemi, K. A., Myllylä, V. V. & Korpelainen, R. Recurrent falls and mortality in Parkinson's disease: a prospective two-year follow-up study. Acta Neurol. Scand. 123, 193–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Paul, S. S. et al. Three simple clinical tests to accurately predict falls in people with Parkinson's disease. Mov. Disord. 28, 655–662 (2013).

    Article  PubMed  Google Scholar 

  64. Paul, S. S., Canning, C. G., Song, J., Fung, V. S. & Sherrington, C. Leg muscle power is enhanced by training in people with Parkinson's disease: a randomized controlled trial. Clin. Rehabil. 28, 275–288 (2014).

    Article  PubMed  Google Scholar 

  65. Plotnik, M., Giladi, N., Dagan, Y. & Hausdorff, J. M. Postural instability and fall risk in Parkinson's disease: impaired dual tasking, pacing, and bilateral coordination of gait during the “ON” medication state. Exp. Brain Res. 210, 529–538 (2011).

    Article  PubMed  Google Scholar 

  66. Hely, M. A., Reid, W. G., Adena, M. A., Halliday, G. M. & Morris, J. G. The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Mov. Disord. 23, 837–844 (2008).

    Article  PubMed  Google Scholar 

  67. Idjadi, J. A. et al. Hip fracture outcomes in patients with Parkinson's disease. Am. J. Orthop. (Belle Mead NJ) 34, 341–346 (2005).

    Google Scholar 

  68. Bloem, B. R., Hausdorff, J. M., Visser, J. E. & Giladi, N. Falls and freezing of gait in Parkinson's disease: a review of two interconnected, episodic phenomena. Mov. Disord. 19, 871–884 (2004).

    Article  PubMed  Google Scholar 

  69. Melton, L. J. et al. Fracture risk after the diagnosis of Parkinson's disease: influence of concomitant dementia. Mov. Disord. 21, 1361–1367 (2006).

    Article  PubMed  Google Scholar 

  70. Keus, S. H., Munneke, M., Nijkrake, M. J., Kwakkel, G. & Bloem, B. R. Physical therapy in Parkinson's disease: evolution and future challenges. Mov. Disord. 24, 1–14 (2009).

    Article  PubMed  Google Scholar 

  71. Keus, S. et al. European Physiotherapy Guideline for Parkinson's Disease. (KNGF/ParkinsonNet, 2014).

    Google Scholar 

  72. Tomlinson, C. L. et al. Physiotherapy for Parkinson's disease: a comparison of techniques. Cochrane Database Syst. Rev. 6, CD002815 (2014).

    Google Scholar 

  73. Ellis, T. et al. Efficacy of a physical therapy program in patients with Parkinson's disease: a randomized controlled trial. Arch. Phys. Med. Rehabil. 86, 626–632 (2005).

    Article  PubMed  Google Scholar 

  74. Schenkman, M. et al. Exercise for people in early- or mid-stage Parkinson disease: a 16-month randomized controlled trial. Phys. Ther. 92, 1395 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Frazzitta, G. et al. Intensive rehabilitation treatment in early Parkinson's disease: a randomized pilot study with a 2-year follow-up. Neurorehabil. Neural Repair. 29, 123–131 (2015).

    Article  PubMed  Google Scholar 

  76. Chung, C. L., Thilarajah, S. & Tan, D. Effectiveness of resistance training on muscle strength and physical function in people with Parkinson's disease: a systematic review and meta-analysis. Clin. Rehabil. 30, 11–23 (2016).

    Article  PubMed  Google Scholar 

  77. Lima, L. O., Scianni, A. & Rodrigues-de-Paula, F. Progressive resistance exercise improves strength and physical performance in people with mild to moderate Parkinson's disease: a systematic review. J. Physiother. 59, 7–13 (2013).

    Article  PubMed  Google Scholar 

  78. Lamotte, G. et al. Effects of endurance exercise training on the motor and non-motor features of Parkinson's disease: a review. J. Parkinsons Dis. 5, 21–41 (2015).

    PubMed  Google Scholar 

  79. Shen, X. & Mak, M. K. Technology-assisted balance and gait training reduces falls in patients with Parkinson's disease: a randomized controlled trial with 12-month follow-up. Neurorehabil. Neural Repair. 29, 103–111 (2015).

    Article  PubMed  Google Scholar 

  80. Carvalho, A. et al. Comparison of strength training, aerobic training, and additional physical therapy as supplementary treatments for Parkinson's disease: pilot study. Clin. Interv. Aging 10, 183 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Corcos, D. et al. A two-year randomized controlled trial of progressive resistance exercise for Parkinson's disease. Mov. Disord. 28, 1230–1240 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shulman, L. M. et al. Randomized clinical trial of 3 types of physical exercise for patients with Parkinson disease. JAMA Neurol. 70, 183–191 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Silva-Batista, C. et al. Resistance training with instability for patients with Parkinson's disease. Med. Sci. Sports Exerc. 48, 1678–1687 (2016).

    Article  PubMed  Google Scholar 

  84. Ni, M., Signorile, J. F., Balachandran, A. & Potiaumpai, M. Power training induced change in bradykinesia and muscle power in Parkinson's disease. Parkinsonism Relat. Disord. 23, 37–44 (2016).

    Article  PubMed  Google Scholar 

  85. Ni, M. et al. Comparative effect of power training and high-speed yoga on motor function in older patients with Parkinson disease. Arch. Phys. Med. Rehabil. 97, 345–354.e15 (2016).

    Article  PubMed  Google Scholar 

  86. Dibble, L. E., Hale, T. F., Marcus, R. L., Gerber, J. P. & LaStayo, P. C. High intensity eccentric resistance training decreases bradykinesia and improves quality of life in persons with Parkinson's disease: a preliminary study. Parkinsonism Relat. Disord. 15, 752–757 (2009).

    Article  PubMed  Google Scholar 

  87. Dibble, L. E., Foreman, K. B., Addison, O., Marcus, R. L. & LaStayo, P. C. Exercise and medication effects on persons with Parkinson disease across the domains of disability: a randomized clinical trial. J. Neurol. Phys. Ther. 39, 85 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Morris, M. E. et al. A randomized controlled trial to reduce falls in people with Parkinson's disease. Neurorehabil. Neural Repair. 29, 777–785 (2015).

    Article  PubMed  Google Scholar 

  89. Schlenstedt, C. et al. Resistance versus balance training to improve postural control in Parkinson's disease: a randomized rater blinded controlled study. PLoS ONE 10, e0140584 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Li, F. et al. Tai chi and postural stability in patients with Parkinson's disease. N. Engl. J. Med. 366, 511–519 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Prodoehl, J. et al. Two-year exercise program improves physical function in Parkinson's disease the PRET-PD randomized clinical trial. Neurorehabil. Neural Repair. 29, 112–122 (2015).

    Article  PubMed  Google Scholar 

  92. Shen, X. & Mak, M. K. Balance and gait training with augmented feedback improves balance confidence in people with Parkinson's disease: a randomized controlled trial. Neurorehabil. Neural Repair. 28, 524–535 (2014).

    Article  PubMed  Google Scholar 

  93. Sage, M. D. & Almeida, Q. J. Symptom and gait changes after sensory attention focused exercise versus aerobic training in Parkinson's disease. Mov. Disord. 24, 1132–1138 (2009).

    Article  PubMed  Google Scholar 

  94. Nadeau, A., Pourcher, E. & Corbeil, P. Effects of 24 weeks of treadmill training on gait performance in Parkinson disease. Med. Sci. Sports Exerc. 46, 645–655 (2013).

    Article  Google Scholar 

  95. Cugusi, L. et al. Effects of a Nordic walking program on motor and non-motor symptoms, functional performance and body composition in patients with Parkinson's disease. NeuroRehabilitation 37, 245–254 (2015).

    Article  PubMed  Google Scholar 

  96. Reuter, I. et al. Effects of a flexibility and relaxation programme, walking, and Nordic walking on Parkinson's disease. J. Aging Res. 2011, 232473 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bridgewater, K. J. & Sharpe, M. H. Aerobic exercise and early Parkinson's disease. J. Neurol. Rehabil. 10, 233–241 (1996).

    Google Scholar 

  98. Morris, M. E., Iansek, R., Matyas, T. A. & Summers, J. J. Stride length regulation in Parkinson's disease. Brain 119, 551–568 (1996).

    Article  PubMed  Google Scholar 

  99. Spaulding, S. J. et al. Cueing and gait improvement among people with Parkinson's disease: a meta-analysis. Arch. Phys. Med. Rehabil. 94, 562–570 (2013).

    Article  PubMed  Google Scholar 

  100. Morris, M. E., Iansek, R. & Kirkwood, B. A randomized controlled trial of movement strategies compared with exercise for people with Parkinson's disease. Mov. Disord. 24, 64–71 (2009).

    Article  PubMed  Google Scholar 

  101. Martin, T., Weatherall, M., Anderson, T. J. & MacAskill, M. R. randomized controlled feasibility trial of a specific cueing program for falls management in persons with Parkinson disease and freezing of gait. J. Neurol. Phys. Ther. 39, 179–184 (2015).

    Article  PubMed  Google Scholar 

  102. de Bruin, N. et al. Walking with music is a safe and viable tool for gait training in Parkinson's disease: the effect of a 13-week feasibility study on single and dual task walking. Parkinsons Dis. 2010, 483530 (2010).

    PubMed  PubMed Central  Google Scholar 

  103. Frazzitta, G., Maestri, R., Uccellini, D., Bertotti, G. & Abelli, P. Rehabilitation treatment of gait in patients with Parkinson's disease with freezing: a comparison between two physical therapy protocols using visual and auditory cues with or without treadmill training. Mov. Disord. 24, 1139–1143 (2009).

    Article  PubMed  Google Scholar 

  104. Miyai, I. et al. Long-term effect of body weight–supported treadmill training in Parkinson's disease: a randomized controlled trial. Arch. Phys. Med. Rehabil. 83, 1370–1373 (2002).

    Article  PubMed  Google Scholar 

  105. Picelli, A. et al. Robot-assisted gait training versus equal intensity treadmill training in patients with mild to moderate Parkinson's disease: a randomized controlled trial. Parkinsonism Relat. Disord. 19, 605–610 (2013).

    Article  PubMed  Google Scholar 

  106. Carda, S. et al. Robotic gait training is not superior to conventional treadmill training in Parkinson disease: a single-blind randomized controlled trial. Neurorehabil. Neural Repair. 26, 1027–1034 (2012).

    Article  PubMed  Google Scholar 

  107. Mehrholz, J. et al. Treadmill training for patients with Parkinson's disease. Cochrane Database Syst. Rev. 1, CD007830 (2010).

    Google Scholar 

  108. Goodwin, V. A., Richards, S. H., Taylor, R. S., Taylor, A. H. & Campbell, J. L. The effectiveness of exercise interventions for people with Parkinson's disease: a systematic review and meta-analysis. Mov. Disord. 23, 631–640 (2008).

    Article  PubMed  Google Scholar 

  109. Ashburn, A. et al. A randomised controlled trial of a home based exercise programme to reduce the risk of falling among people with Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 78, 678–684 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Canning, C. G. et al. Exercise for falls prevention in Parkinson disease: a randomized controlled trial. Neurology 84, 304–312 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sparrow, D. et al. Highly challenging balance program reduces fall rate in Parkinson disease. J. Neurol. Phys. Ther. 40, 24–30 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wong-Yu, I. S. & Mak, M. K. Multi-dimensional balance training programme improves balance and gait performance in people with Parkinson's disease: a pragmatic randomised controlled trial with 12-month follow-up. Parkinsonism Relat. Disord. 21, 615–621 (2015).

    Article  PubMed  Google Scholar 

  113. Palamara, G. et al. Land plus aquatic therapy versus land-based rehabilitation alone for the treatment of balance dysfunction in Parkinson disease: a randomized controlled study with 6-month follow-up. Arch. Phys. Med. Rehabil. 98, 1077–1085 (2017).

    Article  PubMed  Google Scholar 

  114. Ni, X., Liu, S., Lu, F., Shi, X. & Guo, X. Efficacy and safety of Tai Chi for Parkinson's disease: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 9, e99377 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Amano, S. et al. The effect of tai chi exercise on gait initiation and gait performance in persons with Parkinson's disease. Parkinsonism Relat. Disord. 19, 955–960 (2013).

    Article  PubMed  Google Scholar 

  116. Gao, Q. et al. Effects of tai chi on balance and fall prevention in Parkinson's disease: a randomized controlled trial. Clin. Rehabil. 28, 748–753 (2014).

    Article  PubMed  Google Scholar 

  117. Hackney, M. E. & Earhart, G. M. Tai chi improves balance and mobility in people with Parkinson disease. Gait Posture 28, 456–460 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Li, F. et al. A randomized controlled trial of patient-reported outcomes with tai chi exercise in Parkinson's disease. Mov. Disord. 29, 539–545 (2014).

    Article  PubMed  Google Scholar 

  119. Choi, H. J. et al. Therapeutic effects of tai chi in patients with Parkinson's disease. ISRN Neurol. 2013, 548240 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Duncan, R. P. & Earhart, G. M. Randomized controlled trial of community-based dancing to modify disease progression in Parkinson disease. Neurorehabil. Neural Repair. 26, 132–143 (2012).

    Article  PubMed  Google Scholar 

  121. Hackney, M. E. & Earhart, G. M. Effects of dance on movement control in Parkinson's disease: a comparison of Argentine tango and American ballroom. J. Rehabil. Med. 41, 475–481 (2009).

    Article  PubMed  Google Scholar 

  122. Hackney, M. E. & Earhart, G. M. Health-related quality of life and alternative forms of exercise in Parkinson disease. Parkinsonism Relat. Disord. 15, 644–648 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hackney, M. E., Kantorovich, S., Levin, R. & Earhart, G. M. Effects of tango on functional mobility in Parkinson's disease: a preliminary study. J. Neurol. Phys. Ther. 31, 173 (2007).

    Article  PubMed  Google Scholar 

  124. Romenets, S. R., Anang, J., Fereshtehnejad, S.-M., Pelletier, A. & Postuma, R. Tango for treatment of motor and non-motor manifestations in Parkinson's disease: a randomized control study. Complement. Ther. Med. 23, 175–184 (2015).

    Article  Google Scholar 

  125. Volpe, D., Signorini, M., Marchetto, A., Lynch, T. & Morris, M. E. A comparison of Irish set dancing and exercises for people with Parkinson's disease: a phase II feasibility study. BMC Geriatr. 13, 1 (2013).

    Article  Google Scholar 

  126. Mujika, I. & Padilla, S. Detraining: loss of training-induced physiological & performance adaptations. Part I: short term insufficient training stimulus. Sports Med. 30, 79–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Garber, C. E. et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc. 43, 1334–1359 (2011).

    Article  PubMed  Google Scholar 

  128. Steffen, T. & Seney, M. Test-retest reliability and minimal detectable change on balance and ambulation tests, the 36-item short-form health survey, and the unified Parkinson disease rating scale in people with Parkinsonism. Phys. Ther. 88, 733 (2008).

    Article  PubMed  Google Scholar 

  129. Muslimovic, D., Post, B., Speelman, J. D. & Schmand, B. Motor procedural learning in Parkinson's disease. Brain 130, 2887–2897 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Shulman, L. M. et al. The clinically important difference on the unified Parkinson's disease rating scale. Arch. Neurol. 67, 64–70 (2010).

    Article  PubMed  Google Scholar 

  131. Fisher, B. E. et al. Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson's disease. Neuroreport 24, 509–514 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Svensson, M., Lexell, J. & Deierborg, T. Effects of physical exercise on neuroinflammation, neuroplasticity, neurodegeneration, and behavior: what we can learn from animal models in clinical settings. Neurorehabil. Neural Repair. 29, 577–589 (2015).

    Article  PubMed  Google Scholar 

  133. Koo, J. H., Cho, J. Y. & Lee, U. B. Treadmill exercise alleviates motor deficits and improves mitochondrial import machinery in an MPTP-induced mouse model of Parkinson's disease. Exp. Gerontol. 89, 20–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Monteiro-Junior, R. S. et al. We need to move more: neurobiological hypotheses of physical exercise as a treatment for Parkinson's disease. Med. Hypotheses 85, 537–541 (2015).

    Article  PubMed  Google Scholar 

  135. Zigmond, M. J. & Smeyne, R. J. Exercise: is it a neuroprotective and if so, how does it work? Parkinsonism Relat. Disord. 20, S123–S127 (2014).

    Article  PubMed  Google Scholar 

  136. Petzinger, G. et al. The effects of exercise on dopamine neurotransmission in Parkinson's disease: targeting neuroplasticity to modulate basal ganglia circuitry. Brain Plast. 1, 29–39 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fisher, B. E. et al. The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson's disease. Arch. Phys. Med. Rehabil. 89, 1221–1229 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Frazzitta, G. et al. Intensive rehabilitation increases BDNF serum levels in Parkinsonian patients: a randomized study. Neurorehabil. Neural Repair. 28, 163–168 (2014).

    Article  PubMed  Google Scholar 

  139. Fontanesi, C. et al. Intensive rehabilitation enhances lymphocyte BDNF–TrkB signaling in patients with Parkinson's disease. Neurorehabil. Neural Repair. 30, 411–418 (2016).

    Article  PubMed  Google Scholar 

  140. Sehm, B. et al. Structural brain plasticity in Parkinson's disease induced by balance training. Neurobiol. Aging 35, 232–239 (2014).

    Article  PubMed  Google Scholar 

  141. Duchesne, C. et al. Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson's disease individuals. Neuroimage Clin. 12, 559–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Abbruzzese, G., Marchese, R., Avanzino, L. & Pelosin, E. Rehabilitation for Parkinson's disease: current outlook and future challenges. Parkinsonism Relat. Disord. 22, S60–S64 (2016).

    Article  PubMed  Google Scholar 

  143. Speelman, A. D., van Nimwegen, M., Bloem, B. R. & Munneke, M. Evaluation of implementation of the ParkFit program: a multifaceted intervention aimed to promote physical activity in patients with Parkinson's disease. Physiotherapy 100, 134–141 (2014).

    Article  PubMed  Google Scholar 

  144. Ellis, T. et al. Barriers to exercise in people with Parkinson disease. Phys. Ther. 93, 628 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Cress, M. E. et al. Best practices for physical activity programs and behavior counseling in older adult populations. J. Aging. Phys. Act. 13, 61–74 (2005).

    Article  PubMed  Google Scholar 

  146. Rosser, B. A., Vowles, K. E., Keogh, E., Eccleston, C. & Mountain, G. A. Technologically-assisted behaviour change: a systematic review of studies of novel technologies for the management of chronic illness. J. Telemed. Telecare 15, 327–338 (2009).

    Article  PubMed  Google Scholar 

  147. Barry, G., Galna, B. & Rochester, L. The role of exergaming in Parkinson's disease rehabilitation: a systematic review of the evidence. J. Neuroeng. Rehabil. 11, 33 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Moore, C. G. et al. Study in Parkinson disease of exercise (SPARX): translating high-intensity exercise from animals to humans. Contemp. Clin. Trials 36, 90–98 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Earhart, G. M., Duncan, R. P., Huang, J. L., Perlmutter, J. S. & Pickett, K. A. Comparing interventions and exploring neural mechanisms of exercise in Parkinson disease: a study protocol for a randomized controlled trial. BMC Neurol. 15, 9 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Angelucci, F. et al. The effects of motor rehabilitation training on clinical symptoms and serum BDNF levels in Parkinson's disease subjects. Can. J. Physiol. Pharmacol. 94, 455–461 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Ferraye, M. U., Fraix, V., Pollak, P., Bloem, B. R. & DebÛ, B. The laser-shoe: a new form of continuous ambulatory cueing for patients with Parkinson's disease. Parkinsonism Relat. Disord. 29, 127 (2016).

    Article  PubMed  Google Scholar 

  152. Zhao, Y. et al. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson's disease. J. Neurol. 263, 1156–1165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Horak, F. B., King, L. & Mancini, M. Role of body-worn movement monitor technology for balance and gait rehabilitation. Phys. Ther. 95, 461–470 (2015).

    Article  PubMed  Google Scholar 

  154. Ekker, M. S., Janssen, S., Nonnekes, J., Bloem, B. R. & de Vries, N. M. Neurorehabilitation for Parkinson's disease: future perspectives for behavioural adaptation. Parkinsonism Relat. Disord. 22, S73–S77 (2016).

    Article  PubMed  Google Scholar 

  155. Hely, M. A., Morris, J. G., Reid, W. G. & Trafficante, R. Sydney multicenter study of Parkinson's disease: non L-dopa responsive problems dominate at 15 years. Mov. Disord. 20, 190–199 (2005).

    Article  PubMed  Google Scholar 

  156. Seppi, K. et al. The Movement Disorder Society Evidence-Based Medicine review update: treatments for the non-motor symptoms of Parkinson's disease. Mov. Disord. 26, S42–S80 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Cusso, M. E., Donald, K. J. & Khoo, T. K. The impact of physical activity on non-motor symptoms in Parkinson's disease: a systematic review. Front. Med. (Lausanne) 3, 35 (2016).

    Google Scholar 

  158. Duchesne, C. et al. Enhancing both motor and cognitive functioning in Parkinson's disease: aerobic exercise as a rehabilitative intervention. Brain Cogn. 99, 68–77 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Reynolds, G. O., Otto, M. W., Ellis, T. D. & Cronin-Golomb, A. The therapeutic potential of exercise to improve mood, cognition, and sleep in Parkinson's disease. Mov. Disord. 31, 23–38 (2016).

    Article  PubMed  Google Scholar 

  160. Van der Kolk, N. M. et al. Design of the Park-in-Shape study: a phase II double blind randomized controlled trial evaluating the effects of exercise on motor and non-motor symptoms in Parkinson's disease. BMC Neurol. 15, 56 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the researching, discussion writing and review of this manuscript.

Corresponding author

Correspondence to Margaret K. Mak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Study characteristics (DOC 151 kb)

PowerPoint slides

Glossary

Walking economy

The steady-state aerobic demand for a given sub-maximal speed of walking, as measured by VO2 uptake.

Walking capacity

The distance a person is capable of walking over a period of time, typically measured by 6-min walk distance.

Hoehn and Yahr rating scale

A commonly used scale (from stages 1 to 5) for describing how the symptoms of Parkinson disease progress.

Double-support phase

A phase in the gait cycle when the body weight is supported by both legs.

Set-shifting

The ability to move back and forth between tasks in response to changing goals or environmental experiences.

Limit of stability

A measurement of the maximum centre of pressure displacement with respect to a person's base of support.

Anticipatory postural adjustments

The automatic feedforward postural activities to counteract the destabilizing effects of voluntary movements.

Reactive postural responses

The automatic postural responses against external perturbation with or without a change in a person's base of support.

Supervised programme

Any training that was supervised by either a physical therapist or exercise trainer in a one-to-one or small-group basis.

Progressive resistance training

A style of strength training exercise that involves the steady utilization of resistance via a loading source.

Aerobic endurance training

An exercise training method to improve cardiopulmonary fitness.

Nordic walking

A total body version of walking activity using specially designed walking poles (similar to ski poles).

Minimal detectable change

A statistical estimate of the smallest amount of change that can be detected by a measure that corresponds to a noticeable change in ability.

Exergaming

A term used for video games that are also a form of exercise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mak, M., Wong-Yu, I., Shen, X. et al. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat Rev Neurol 13, 689–703 (2017). https://doi.org/10.1038/nrneurol.2017.128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing