Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genome engineering: a new approach to gene therapy for neuromuscular disorders

Key Points

  • Genetic neuromuscular conditions are debilitating and often prematurely fatal, and few standard treatment options are available

  • Genome engineering provides a viable method of correcting the underlying genetic mutations in neuromuscular diseases

  • A recent discovery, the highly adaptable CRISPR–Cas9 system, is already finding widespread use for cell therapy and in vivo gene editing

  • Ongoing challenges include efficient gene delivery, identification and reduction of off-target interactions, and immunogenicity of genome engineering tools, delivery vectors and other neoantigens

Abstract

For many neuromuscular disorders, including Duchenne muscular dystrophy, spinal muscular atrophy and myotonic dystrophy, the genetic causes are well known. Gene therapy holds promise for the treatment of these monogenic neuromuscular diseases, and many such therapies have made substantial strides toward clinical translation. Recently, genome engineering tools, including targeted gene editing and gene regulation, have become available to correct the underlying genetic mutations that cause these diseases. In particular, meganucleases, zinc finger nucleases, TALENs, and the CRISPR–Cas9 system have been harnessed to make targeted and specific modifications to the genome. However, for most gene therapy applications, including genome engineering, gene delivery remains the primary hurdle to clinical translation. In preclinical models, genome engineering tools have been delivered via gene-modified cells or by non-viral or viral vectors to correct a diverse array of genetic diseases. In light of the positive results of these studies, genome engineering therapies are being enthusiastically explored for several genetic neuromuscular disorders. This Review summarizes the genome engineering strategies that are currently under preclinical evaluation for the treatment of degenerative neuromuscular disorders, with a focus on the molecular tools that show the greatest potential for clinical translation of these therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies for genome editing.
Figure 2: Genome engineering tools.
Figure 3: Gene activation or repression.
Figure 4: Genome engineering for Duchenne muscular dystrophy.
Figure 5: In vivo gene editing in the mdx mouse restores dystrophin expression.
Figure 6: Genome engineering for other neuromuscular disorders.

Similar content being viewed by others

References

  1. Stoddard, B. L. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19, 7–15 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

    CAS  PubMed  Google Scholar 

  3. Gersbach, C. A., Gaj, T. & Barbas, C. F. 3rd. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc. Chem. Res. 47, 2309–2318 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bogdanove, A. J. & Voytas, D. F. TAL effectors: customizable proteins for DNA targeting. Science 333, 1843–1846 (2011).

    CAS  PubMed  Google Scholar 

  5. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cox, D. B., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Maeder, M. L. & Gersbach, C. A. Genome-editing technologies for gene and cell therapy. Mol. Ther. 24, 430–446 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, H. et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475, 217–221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Genovese, P. et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510, 235–240 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cirak, S. et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378, 595–605 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bowles, D. E. et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol. Ther. 20, 443–455 (2012).

    CAS  PubMed  Google Scholar 

  13. van Deutekom, J. C. et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N. Engl. J. Med. 357, 2677–2686 (2007).

    CAS  PubMed  Google Scholar 

  14. Goemans, N. M. Systemic administration of PRO051 in Duchenne's muscular dystrophy. N. Engl. J. Med. 364, 1513–1522 (2011).

    CAS  PubMed  Google Scholar 

  15. Finkel, R. S. et al. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLoS ONE 8, e81302 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. Tinsley, J. M. et al. Daily treatment with SMTC1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. PLoS ONE 6, e19189 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Amenta, A. R. et al. Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice. Proc. Natl Acad. Sci. USA 108, 762–767 (2011).

    CAS  PubMed  Google Scholar 

  18. Wood, M. J. Toward an oligonucleotide therapy for Duchenne muscular dystrophy: a complex development challenge. Sci. Transl Med. 2, 25ps15 (2010).

    PubMed  Google Scholar 

  19. Lu, Q. L. et al. The status of exon skipping as a therapeutic approach to duchenne muscular dystrophy. Mol. Ther. 19, 9–15 (2011).

    CAS  PubMed  Google Scholar 

  20. Verhaart, I. E. & Aartsma-Rus, A. Gene therapy for Duchenne muscular dystrophy. Curr. Opin. Neurol. 25, 588–596 (2012).

    CAS  PubMed  Google Scholar 

  21. Foster, H., Popplewell, L. & Dickson, G. Genetic therapeutic approaches for Duchenne muscular dystrophy. Hum. Gene Ther. 23, 676–687 (2012).

    CAS  PubMed  Google Scholar 

  22. Seto, J. T., Bengtsson, N. E. & Chamberlain, J. S. Therapy of genetic disorders — novel therapies for Duchenne muscular dystrophy. Curr. Pediatr. Rep. 2, 102–112 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Al-Zaidy, S., Rodino-Klapac, L. & Mendell, J. R. Gene therapy for muscular dystrophy: moving the field forward. Pediatr. Neurol. 51, 607–618 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Faravelli, I., Nizzardo, M., Comi, G. P. & Corti, S. Spinal muscular atrophy — recent therapeutic advances for an old challenge. Nat. Rev. Neurol. 11, 351–359 (2015).

    CAS  PubMed  Google Scholar 

  25. Klein, A. F., Dastidar, S., Furling, D. & Chuah, M. K. Therapeutic approaches for dominant muscle diseases: highlight on myotonic dystrophy. Curr. Gene Ther. 15, 329–337 (2015).

    CAS  PubMed  Google Scholar 

  26. Bonnemann, C. G. The collagen VI-related myopathies: muscle meets its matrix. Nat. Rev. Neurol. 7, 379–390 (2011).

    PubMed  PubMed Central  Google Scholar 

  27. Ross, C. A. et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat. Rev. Neurol. 10, 204–216 (2014).

    CAS  PubMed  Google Scholar 

  28. Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A. & Kucherlapati, R. S. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230–234 (1985).

    CAS  PubMed  Google Scholar 

  29. Thomas, K. R., Folger, K. R. & Capecchi, M. R. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44, 419–428 (1986).

    CAS  PubMed  Google Scholar 

  30. Rouet, P., Smih, F. & Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl Acad. Sci. USA 91, 6064–6068 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    PubMed  Google Scholar 

  32. Perez-Pinera, P., Ousterout, D. G., Brown, M. T. & Gersbach, C. A. Gene targeting to the ROSA26 locus directed by engineered zinc finger nucleases. Nucleic Acids Res. 40, 3741–3752 (2012).

    CAS  PubMed  Google Scholar 

  33. Hermann, M. et al. Evaluation of OPEN zinc finger nucleases for direct gene targeting of the ROSA26 locus in mouse embryos. PLoS ONE 7, e41796 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol. 27, 851–857 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. DeKelver, R. C. et al. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res. 20, 1133–1142 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, H. J., Kim, E. & Kim, J. S. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 20, 81–89 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sollu, C. et al. Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion. Nucleic Acids Res. 38, 8269–8276 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Colleaux, L. et al. Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Cell 44, 521–533 (1986).

    CAS  PubMed  Google Scholar 

  39. Silva, G. et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr. Gene Ther. 11, 11–27 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rosen, L. E. et al. Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res. 34, 4791–4800 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Doyon, J. B., Pattanayak, V., Meyer, C. B. & Liu, D. R. Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J. Am. Chem. Soc. 128, 2477–2484 (2006).

    CAS  PubMed  Google Scholar 

  42. Arnould, S. et al. Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J. Mol. Biol. 355, 443–458 (2006).

    CAS  PubMed  Google Scholar 

  43. Ashworth, J. et al. Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441, 656–659 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wolfe, S. A., Nekludova, L. & Pabo, C. O. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29, 183–212 (2000).

    CAS  PubMed  Google Scholar 

  45. Pavletich, N. P. & Pabo, C. O. Zinc finger-DNA recognition: crystal structure of a Zif268–DNA complex at 2.1 A. Science 252, 809–817 (1991).

    CAS  PubMed  Google Scholar 

  46. Liu, Q., Segal, D. J., Ghiara, J. B. & Barbas, C. F. 3rd. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl Acad. Sci. USA 94, 5525–5530 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA 93, 1156–1160 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Beerli, R. R., Dreier, B. & Barbas, C. F. 3rd. Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl Acad. Sci. USA 97, 1495–1500 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Akopian, A., He, J., Boocock, M. R. & Stark, W. M. Chimeric recombinases with designed DNA sequence recognition. Proc. Natl Acad. Sci. USA 100, 8688–8691 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gordley, R. M., Gersbach, C. A. & Barbas, C. F. 3rd. Synthesis of programmable integrases. Proc. Natl Acad. Sci. USA 106, 5053–5058 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kay, S., Hahn, S., Marois, E., Hause, G. & Bonas, U. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318, 648–651 (2007).

    CAS  PubMed  Google Scholar 

  52. Romer, P. et al. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318, 645–648 (2007).

    PubMed  Google Scholar 

  53. Moscou, M. J. & Bogdanove, A. J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009).

    CAS  PubMed  Google Scholar 

  54. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    CAS  PubMed  Google Scholar 

  55. Moore, R., Chandrahas, A. & Bleris, L. Transcription activator-like effectors: a toolkit for synthetic biology. ACS Synth. Biol. 3, 708–716 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757–761 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Morbitzer, R., Romer, P., Boch, J. & Lahaye, T. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc. Natl Acad. Sci. USA 107, 21617–21622 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011).

    CAS  PubMed  Google Scholar 

  59. Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149–153 (2011).

    PubMed  PubMed Central  Google Scholar 

  60. Mercer, A. C., Gaj, T., Fuller, R. P. & Barbas, C. F. 3rd. Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. 40, 11163–11172 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    CAS  PubMed  Google Scholar 

  63. Makarova, K. S. et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9, 467–477 (2011).

    CAS  PubMed  Google Scholar 

  64. Barrangou, R. & Doudna, J. A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34, 933–941 (2016).

    CAS  PubMed  Google Scholar 

  65. Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    PubMed  Google Scholar 

  69. Zhou, Y. et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509, 487–491 (2014).

    CAS  PubMed  Google Scholar 

  70. Koike-Yusa, H., Li, Y., Tan, E. P., Velasco-Herrera Mdel, C. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267–273 (2014).

    CAS  PubMed  Google Scholar 

  71. Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    CAS  PubMed  Google Scholar 

  72. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014).

    CAS  PubMed  Google Scholar 

  73. Thakore, P. I., Black, J. B., Hilton, I. B. & Gersbach, C. A. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13, 127–137 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Beerli, R. R., Segal, D. J., Dreier, B. & Barbas, C. F. 3rd. Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc. Natl Acad. Sci. USA 95, 14628–14633 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR–Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cong, L., Zhou, R., Kuo, Y. C., Cunniff, M. & Zhang, F. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat. Commun. 3, 968 (2012).

    PubMed  Google Scholar 

  79. Thakore, P. I. et al. Highly specific epigenome editing by CRISPR–Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Carvin, C. D., Parr, R. D. & Kladde, M. P. Site-selective in vivo targeting of cytosine-5 DNA methylation by zinc-finger proteins. Nucleic Acids Res. 31, 6493–6501 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Maeder, M. L. et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE–TET1 fusion proteins. Nat. Biotechnol. 31, 1137–1142 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hilton, I. B. et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu, H. H. et al. Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy. Int. J. Mol. Sci. 17, 1668 (2016).

    PubMed Central  Google Scholar 

  85. Chen, Y. et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum. Mol. Genet. 24, 3764–3774 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Palmieri, B. & Tremblay, J. P. Myoblast transplantation: a possible surgical treatment for a severe pediatric disease. Surg. Today 40, 902–908 (2010).

    PubMed  PubMed Central  Google Scholar 

  87. Darabi, R. et al. Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10, 610–619 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Riolobos, L. et al. HLA engineering of human pluripotent stem cells. Mol. Ther. 21, 1232–1241 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, H. L. et al. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR–Cas9. Stem Cell Rep. 4, 143–154 (2015).

    CAS  Google Scholar 

  90. Young, C. S. et al. A single CRISPR–Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 18, 533–540 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhao, C. et al. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells. PLoS ONE 9, e96279 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. Maggio, I., Chen, X. Y. & Goncalves, M. A. The emerging role of viral vectors as vehicles for DMD gene editing. Genome Med. 8, 59 (2016).

    PubMed  PubMed Central  Google Scholar 

  93. Gruber, K. Europe gives gene therapy the green light. Lancet 380, e10 (2012).

    PubMed  Google Scholar 

  94. Arruda, V. R. et al. Safety and efficacy of factor IX gene transfer to skeletal muscle in murine and canine hemophilia B models by adeno-associated viral vector serotype 1. Blood 103, 85–92 (2004).

    CAS  PubMed  Google Scholar 

  95. Wang, Z. et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat. Biotechnol. 23, 321–328 (2005).

    CAS  PubMed  Google Scholar 

  96. Inagaki, K. et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol. Ther. 14, 45–53 (2006).

    CAS  PubMed  Google Scholar 

  97. Wu, Z., Asokan, A. & Samulski, R. J. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther. 14, 316–327 (2006).

    CAS  PubMed  Google Scholar 

  98. Asokan, A., Schaffer, D. V. & Samulski, R. J. The AAV vector toolkit: poised at the clinical crossroads. Mol. Ther. 20, 699–708 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. McCarty, D. M., Young Jr, S. M. & Samulski, R. J. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu. Rev. Genet. 38, 819–845 (2004).

    CAS  PubMed  Google Scholar 

  100. Deyle, D. R. & Russell, D. W. Adeno-associated virus vector integration. Curr. Opin. Mol. Ther. 11, 442–447 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Seto, J. T., Ramos, J. N., Muir, L., Chamberlain, J. S. & Odom, G. L. Gene replacement therapies for duchenne muscular dystrophy using adeno-associated viral vectors. Curr. Gene Ther. 12, 139–151 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80–86 (2010).

    CAS  PubMed  Google Scholar 

  103. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kotterman, M. A. & Schaffer, D. V. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 15, 445–451 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Maheshri, N., Koerber, J. T., Kaspar, B. K. & Schaffer, D. V. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 24, 198–204 (2006).

    CAS  PubMed  Google Scholar 

  106. Li, W. et al. Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol. Ther. 16, 1252–1260 (2008).

    CAS  PubMed  Google Scholar 

  107. Asokan, A. et al. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat. Biotechnol. 28, 79–82 (2010).

    CAS  PubMed  Google Scholar 

  108. Shen, S. et al. Engraftment of a galactose receptor footprint onto adeno-associated viral capsids improves transduction efficiency. J. Biol. Chem. 288, 28814–28823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang, L. et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc. Natl Acad. Sci. USA 106, 3946–3951 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Schmidt, F. & Grimm, D. CRISPR genome engineering and viral gene delivery: a case of mutual attraction. Biotechnol. J. 10, 258–272 (2015).

    CAS  PubMed  Google Scholar 

  111. Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407 (2016).

    CAS  PubMed  Google Scholar 

  112. Tabebordbar, M. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407–411 (2016).

    CAS  PubMed  Google Scholar 

  113. Long, C. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400–403 (2016).

    CAS  PubMed  Google Scholar 

  114. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007).

    CAS  PubMed  Google Scholar 

  115. Persons, D. A. Lentiviral vector gene therapy: effective and safe? Mol. Ther. 18, 861–862 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kabadi, A. M., Ousterout, D. G., Hilton, I. B. & Gersbach, C. A. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 42, e147 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. Izmiryan, A., Basmaciogullari, S., Henry, A., Paques, F. & Danos, O. Efficient gene targeting mediated by a lentiviral vector-associated meganuclease. Nucleic Acids Res. 39, 7610–7619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Cai, Y., Bak, R. O. & Mikkelsen, J. G. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. eLife 3, e01911 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. Holkers, M. et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 41, e63 (2013).

    CAS  PubMed  Google Scholar 

  120. Wang, D. et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum. Gene Ther. 26, 432–442 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Raper, S. E. et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80, 148–158 (2003).

    CAS  PubMed  Google Scholar 

  122. Geutskens, S. B. et al. Recombinant adenoviral vectors have adjuvant activity and stimulate T cell responses against tumor cells. Gene Ther. 7, 1410–1416 (2000).

    CAS  PubMed  Google Scholar 

  123. Glover, D. J., Lipps, H. J. & Jans, D. A. Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet. 6, 299–310 (2005).

    CAS  PubMed  Google Scholar 

  124. Nelson, C. E. & Gersbach, C. A. Engineering delivery vehicles for genome editing. Annu. Rev. Chem. Biomol. Eng. 7, 637–662 (2016).

    CAS  PubMed  Google Scholar 

  125. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    CAS  PubMed  Google Scholar 

  126. Wooddell, C. I. et al. Dose response in rodents and nonhuman primates after hydrodynamic limb vein delivery of naked plasmid DNA. Hum. Gene Ther. 22, 889–903 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, G. et al. Functional efficacy of dystrophin expression from plasmids delivered to mdx mice by hydrodynamic limb vein injection. Hum. Gene Ther. 21, 221–237 (2010).

    CAS  PubMed  Google Scholar 

  128. Lu, Q. L., Bou-Gharios, G. & Partridge, T. A. Non-viral gene delivery in skeletal muscle: a protein factory. Gene Ther. 10, 131–142 (2003).

    CAS  PubMed  Google Scholar 

  129. Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32, 551–553 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Rando, T. A. Non-viral gene therapy for Duchenne muscular dystrophy: progress and challenges. Biochim. Biophys. Acta 1772, 263–271 (2007).

    CAS  PubMed  Google Scholar 

  131. McNeer, N. A. et al. Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo. Gene Ther. 20, 658–669 (2013).

    CAS  PubMed  Google Scholar 

  132. Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).

    CAS  PubMed  Google Scholar 

  133. Long, C., Amoasii, L., Bassel-Duby, R. & Olson, E. N. Genome editing of monogenic neuromuscular diseases: a systematic review. JAMA Neurol. 73, 1349–1355 (2016).

    PubMed  PubMed Central  Google Scholar 

  134. Robinson-Hamm, J. N. & Gersbach, C. A. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Hum. Genet. 135, 1029–1040 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Davies, K. E. & Nowak, K. J. Molecular mechanisms of muscular dystrophies: old and new players. Nat. Rev. Mol. Cell Biol. 7, 762–773 (2006).

    CAS  PubMed  Google Scholar 

  136. Davie, A. M. & Emery, A. E. Estimation of proportion of new mutants among cases of Duchenne muscular dystrophy. J. Med. Genet. 15, 339–345 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Bushby, K. et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 9, 77–93 (2010).

    PubMed  Google Scholar 

  138. Larkindale, J. et al. Cost of illness for neuromuscular diseases in the United States. Muscle Nerve 49, 431–438 (2014).

    PubMed  Google Scholar 

  139. Wang, B., Li, J. & Xiao, X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc. Natl Acad. Sci. USA 97, 13714–13719 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu, M. et al. Adeno-associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury. Mol. Ther. 11, 245–256 (2005).

    CAS  PubMed  Google Scholar 

  141. Zhang, Y. & Duan, D. Novel mini–dystrophin gene dual adeno-associated virus vectors restore neuronal nitric oxide synthase expression at the sarcolemma. Hum. Gene Ther. 23, 98–103 (2012).

    PubMed  Google Scholar 

  142. Aartsma-Rus, A. et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum. Mutat. 30, 293–299 (2009).

    PubMed  Google Scholar 

  143. Goyenvalle, A. et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306, 1796–1799 (2004).

    CAS  PubMed  Google Scholar 

  144. Mendell, J. R. et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann. Neurol. 79, 257–271 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Goyenvalle, A. et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat. Med. 21, 270–275 (2015).

    CAS  PubMed  Google Scholar 

  146. Chapdelaine, P., Pichavant, C., Rousseau, J., Paques, F. & Tremblay, J. P. Meganucleases can restore the reading frame of a mutated dystrophin. Gene Ther. 17, 846–858 (2010).

    CAS  PubMed  Google Scholar 

  147. Popplewell, L. et al. Gene correction of a Duchenne muscular dystrophy mutation by meganuclease-enhanced exon knock-in. Hum. Gene Ther. 24, 692–701 (2013).

    CAS  PubMed  Google Scholar 

  148. Ousterout, D. G. et al. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol. Ther. 23, 523–532 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ousterout, D. G. et al. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol. Ther. 21, 1718–1726 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Ousterout, D. G. et al. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat. Commun. 6, 6244 (2015).

    CAS  PubMed  Google Scholar 

  151. Maggio, I. et al. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Res. 44, 1449–1470 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Iyombe-Engembe, J. P. et al. Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method. Mol. Ther. Nucleic Acids 5, e283 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Xu, L. et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol. Ther. 24, 564–569 (2015).

    PubMed  Google Scholar 

  154. Bengtsson, N. E. et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat. Commun. 8, 14454 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Hartmann, J. & Croteau, S. E. 2017 clinical trials update: innovations in hemophilia therapy. Am. J. Hematol. 91, 1252–1260 (2016).

    CAS  PubMed  Google Scholar 

  156. Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Kasparek, P. et al. Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett. 588, 3982–3988 (2014).

    CAS  PubMed  Google Scholar 

  158. Remy, S. et al. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases. Genome Res. 24, 1371–1383 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Sato, T. et al. Genome editing in mouse spermatogonial stem cell lines using TALEN and double-nicking CRISPR/Cas9. Stem Cell Rep. 5, 75–82 (2015).

    CAS  Google Scholar 

  160. Quadros, R. M., Harms, D. W., Ohtsuka, M. & Gurumurthy, C. B. Insertion of sequences at the original provirus integration site of mouse ROSA26 locus using the CRISPR/Cas9 system. FEBS Open Bio 5, 191–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Benabdallah, B. F. et al. Targeted gene addition of microdystrophin in mice skeletal muscle via human myoblast transplantation. Mol. Ther. Nucleic Acids 2, e68 (2013).

    PubMed  PubMed Central  Google Scholar 

  162. Tinsley, J., Robinson, N. & Davies, K. E. Safety, tolerability, and pharmacokinetics of SMT C1100, a 2-arylbenzoxazole utrophin modulator, following single- and multiple-dose administration to healthy male adult volunteers. J. Clin. Pharmacol. 55, 698–707 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Corbi, N. et al. The artificial zinc finger coding gene 'Jazz' binds the utrophin promoter and activates transcription. Gene Ther. 7, 1076–1083 (2000).

    CAS  PubMed  Google Scholar 

  164. Di Certo, M. G. et al. The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dystrophic pathology in mdx mice. Hum. Mol. Genet. 19, 752–760 (2010).

    CAS  PubMed  Google Scholar 

  165. Strimpakos, G. et al. Novel adeno-associated viral vector delivering the utrophin gene regulator Jazz counteracts dystrophic pathology in mdx mice. J. Cell. Physiol. 229, 1283–1291 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Onori, A. et al. The artificial 4-zinc-finger protein Bagly binds human utrophin promoter A at the endogenous chromosomal site and activates transcription. Biochem. Cell Biol. 85, 358–365 (2007).

    CAS  PubMed  Google Scholar 

  167. Onori, A. et al. UtroUp is a novel six zinc finger artificial transcription factor that recognises 18 base pairs of the utrophin promoter and efficiently drives utrophin upregulation. BMC Mol. Biol. 14, 3 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    CAS  PubMed  Google Scholar 

  169. Duque, S. et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol. Ther. 17, 1187–1196 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Foust, K. D. et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat. Biotechnol. 28, 271–274 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. DiMatteo, D., Callahan, S. & Kmiec, E. B. Genetic conversion of an SMN2 gene to SMN1: a novel approach to the treatment of spinal muscular atrophy. Exp. Cell Res. 314, 878–886 (2008).

    CAS  PubMed  Google Scholar 

  172. Corti, S. et al. Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci. Transl Med. 4, 165ra162 (2012).

    PubMed  PubMed Central  Google Scholar 

  173. Passini, M. A. et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci. Transl Med. 3, 72ra18 (2011).

    PubMed  PubMed Central  Google Scholar 

  174. Porensky, P. N. et al. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum. Mol. Genet. 21, 1625–1638 (2012).

    CAS  PubMed  Google Scholar 

  175. Wijmenga, C. et al. Location of facioscapulohumeral muscular dystrophy gene on chromosome 4. Lancet 336, 651–653 (1990).

    CAS  PubMed  Google Scholar 

  176. van Deutekom, J. C. et al. FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum. Mol. Genet. 2, 2037–2042 (1993).

    CAS  PubMed  Google Scholar 

  177. Gabellini, D., Green, M. R. & Tupler, R. Inappropriate gene activation in FSHD: a repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 110, 339–348 (2002).

    CAS  PubMed  Google Scholar 

  178. Lemmers, R. J. et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 329, 1650–1653 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. van Overveld, P. G. et al. Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy. Nat. Genet. 35, 315–317 (2003).

    CAS  PubMed  Google Scholar 

  180. Lek, A., Rahimov, F., Jones, P. L. & Kunkel, L. M. Emerging preclinical animal models for FSHD. Trends Mol. Med. 21, 295–306 (2015).

    PubMed  PubMed Central  Google Scholar 

  181. Tupler, R. et al. Monosomy of distal 4q does not cause facioscapulohumeral muscular dystrophy. J. Med. Genet. 33, 366–370 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Tawil, R. & Van Der Maarel, S. M. Facioscapulohumeral muscular dystrophy. Muscle Nerve 34, 1–15 (2006).

    CAS  PubMed  Google Scholar 

  183. Wallace, L. M. et al. DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Ann. Neurol. 69, 540–552 (2011).

    CAS  PubMed  Google Scholar 

  184. Pandey, S. N., Lee, Y. C., Yokota, T. & Chen, Y. W. Morpholino treatment improves muscle function and pathology of Pitx1 transgenic mice. Mol. Ther. 22, 390–396 (2014).

    CAS  PubMed  Google Scholar 

  185. Gabellini, D. et al. Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1. Nature 439, 973–977 (2006).

    CAS  PubMed  Google Scholar 

  186. Feeney, S. J. et al. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1). PLoS ONE 10, e0117665 (2015).

    PubMed  PubMed Central  Google Scholar 

  187. Bortolanza, S. et al. AAV6-mediated systemic shRNA delivery reverses disease in a mouse model of facioscapulohumeral muscular dystrophy. Mol. Ther. 19, 2055–2064 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Wallace, L. M. et al. RNA interference inhibits DUX4-induced muscle toxicity in vivo: implications for a targeted FSHD therapy. Mol. Ther. 20, 1417–1423 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Himeda, C. L., Jones, T. I. & Jones, P. L. CRISPR/dCas9-mediated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Mol. Ther. 24, 527–535 (2015).

    PubMed  PubMed Central  Google Scholar 

  190. Richard, G. F. Shortening trinucleotide repeats using highly specific endonucleases: a possible approach to gene therapy? Trends Genet. 31, 177–186 (2015).

    CAS  PubMed  Google Scholar 

  191. Godinho, B. M., Malhotra, M., O'Driscoll, C. M. & Cryan, J. F. Delivering a disease-modifying treatment for Huntington's disease. Drug Discov. Today 20, 50–64 (2015).

    CAS  PubMed  Google Scholar 

  192. Richard, G. F., Dujon, B. & Haber, J. E. Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats. Mol. Gen. Genet. 261, 871–882 (1999).

    CAS  PubMed  Google Scholar 

  193. Mittelman, D. et al. Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc. Natl Acad. Sci. USA 106, 9607–9612 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Garriga-Canut, M. et al. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc. Natl Acad. Sci. USA 109, E3136–E3145 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Richard, G. F. et al. Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast. PLoS ONE 9, e95611 (2014).

    PubMed  PubMed Central  Google Scholar 

  196. De Michele, G. & Filla, A. Movement disorders: Friedreich ataxia today — preparing for the final battle. Nat. Rev. Neurol. 11, 188–190 (2015).

    PubMed  Google Scholar 

  197. Campuzano, V. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    CAS  PubMed  Google Scholar 

  198. Gerard, C. et al. An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models. Mol. Ther. Methods Clin. Dev. 1, 14044 (2014).

    PubMed  PubMed Central  Google Scholar 

  199. Chapdelaine, P., Coulombe, Z., Chikh, A., Gerard, C. & Tremblay, J. P. A potential new therapeutic approach for Friedreich ataxia: induction of frataxin expression with TALE proteins. Mol. Ther. Nucleic Acids 2, e119 (2013).

    PubMed  PubMed Central  Google Scholar 

  200. Li, Y. J. et al. Excision of expanded GAA repeats alleviates the molecular phenotype of Friedreich's ataxia. Mol. Ther. 23, 1055–1065 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Victor, M., Hayes, R. & Adams, R. D. Oculopharyngeal muscular dystrophy. A familial disease of late life characterized by dysphagia and progressive ptosis of the eyelids. N. Engl. J. Med. 267, 1267–1272 (1962).

    CAS  PubMed  Google Scholar 

  202. Brais, B. et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat. Genet. 18, 164–167 (1998).

    CAS  PubMed  Google Scholar 

  203. Brais, B. et al. The oculopharyngeal muscular dystrophy locus maps to the region of the cardiac alpha and beta myosin heavy chain genes on chromosome 14q11.2–q13. Hum. Mol. Genet. 4, 429–434 (1995).

    CAS  PubMed  Google Scholar 

  204. Ravikumar, B., Duden, R. & Rubinsztein, D. C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117 (2002).

    CAS  PubMed  Google Scholar 

  205. Abu-Baker, A. & Rouleau, G. A. Oculopharyngeal muscular dystrophy: recent advances in the understanding of the molecular pathogenic mechanisms and treatment strategies. Biochim. Biophys. Acta 1772, 173–185 (2007).

    CAS  PubMed  Google Scholar 

  206. Davies, J. E., Sarkar, S. & Rubinsztein, D. C. Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy. Hum. Mol. Genet. 15, 23–31 (2006).

    CAS  PubMed  Google Scholar 

  207. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02015481 (2016).

  208. Perie, S. et al. Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study. Mol. Ther. 22, 219–225 (2014).

    CAS  PubMed  Google Scholar 

  209. Harish, P., Malerba, A., Dickson, G. & Bachtarzi, H. Progress on gene therapy, cell therapy, and pharmacological strategies toward the treatment of oculopharyngeal muscular dystrophy. Hum. Gene Ther. 26, 286–292 (2015).

    CAS  PubMed  Google Scholar 

  210. Shelbourne, P. & Johnson, K. Myotonic dystrophy: another case of too many repeats? Hum. Mutat. 1, 183–189 (1992).

    CAS  PubMed  Google Scholar 

  211. Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    CAS  PubMed  Google Scholar 

  212. Harley, H. G. et al. Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355, 545–546 (1992).

    CAS  PubMed  Google Scholar 

  213. Brook, J. D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    CAS  PubMed  Google Scholar 

  214. Udd, B. & Krahe, R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol. 11, 891–905 (2012).

    CAS  PubMed  Google Scholar 

  215. Xia, G. et al. Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells. Stem Cells 33, 1829–1838 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhang, W. et al. Treatment of type 1 myotonic dystrophy by engineering site-specific RNA endonucleases that target (CUG)n repeats. Mol. Ther. 22, 312–320 (2014).

    CAS  PubMed  Google Scholar 

  217. Krahn, M. et al. A naturally occurring human minidysferlin protein repairs sarcolemmal lesions in a mouse model of dysferlinopathy. Sci. Transl Med. 2, 50ra69 (2010).

    PubMed  Google Scholar 

  218. Sondergaard, P. C. et al. AAV.dysferlin overlap vectors restore function in dysferlinopathy animal models. Ann. Clin. Transl Neurol. 2, 256–270 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Lostal, W. et al. Efficient recovery of dysferlin deficiency by dual adeno-associated vector-mediated gene transfer. Hum. Mol. Genet. 19, 1897–1907 (2010).

    CAS  PubMed  Google Scholar 

  220. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02710500 (2016).

  221. Tedesco, F. S. et al. Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci. Transl Med. 4, 140ra189 (2012).

    Google Scholar 

  222. Turan, S., Farruggio, A. P., Srifa, W., Day, J. W. & Calos, M. P. Precise correction of disease mutations in induced pluripotent stem cells derived from patients with limb girdle muscular dystrophy. Mol. Ther. 24, 685–696 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Liu, J. & Harper, S. Q. RNAi-based gene therapy for dominant limb girdle muscular dystrophies. Curr. Gene Ther. 12, 307–314 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Liu, J. et al. RNAi-mediated gene silencing of mutant myotilin improves myopathy in LGMD1A mice. Mol. Ther. Nucleic Acids 3, e160 (2014).

    PubMed  PubMed Central  Google Scholar 

  225. Cohn, R. D. & Campbell, K. P. Molecular basis of muscular dystrophies. Muscle Nerve 23, 1456–1471 (2000).

    CAS  PubMed  Google Scholar 

  226. Oldfors, A. Hereditary myosin myopathies. Neuromuscul. Disord. 17, 355–367 (2007).

    PubMed  Google Scholar 

  227. Schroder, R. & Schoser, B. Myofibrillar myopathies: a clinical and myopathological guide. Brain Pathol. 19, 483–492 (2009).

    PubMed  PubMed Central  Google Scholar 

  228. Udd, B. Distal myopathies — new genetic entities expand diagnostic challenge. Neuromuscul. Disord. 22, 5–12 (2012).

    PubMed  Google Scholar 

  229. Udd, B. Distal myopathies. Curr. Neurol. Neurosci. Rep. 14, 434 (2014).

    PubMed  Google Scholar 

  230. Kemaladewi, D. U. et al. Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nat. Med. 23, 984–989 (2017).

    CAS  PubMed  Google Scholar 

  231. Vannoy, C. H. et al. Adeno-associated virus-mediated overexpression of LARGE rescues α-dystroglycan function in dystrophic mice with mutations in the fukutin-related protein. Hum. Gene Ther. Methods 25, 187–196 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Yu, M. et al. Adeno-associated viral-mediated LARGE gene therapy rescues the muscular dystrophic phenotype in mouse models of dystroglycanopathy. Hum. Gene Ther. 24, 317–330 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Xu, L., Zhao, P., Mariano, A. & Han, R. Targeted myostatin gene editing in multiple mammalian species directed by a single pair of TALE nucleases. Mol. Ther. Nucleic Acids 2, e112 (2013).

    PubMed  PubMed Central  Google Scholar 

  234. Buckland, K. F. & Bobby Gaspar, H. Gene and cell therapy for children — new medicines, new challenges? Adv. Drug Deliv. Rev. 73, 162–169 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Arnett, A. L. et al. Adeno-associated viral vectors do not efficiently target muscle satellite cells. Mol. Ther. Methods Clin. Dev. 1, 14038 (2014).

    PubMed  PubMed Central  Google Scholar 

  236. Stitelman, D. H. et al. Developmental stage determines efficiency of gene transfer to muscle satellite cells by in utero delivery of adeno-associated virus vector serotype 2/9. Mol. Ther. Methods Clin. Dev. 1, 14040 (2014).

    PubMed  PubMed Central  Google Scholar 

  237. Kimura, E., Li, S., Gregorevic, P., Fall, B. M. & Chamberlain, J. S. Dystrophin delivery to muscles of mdx mice using lentiviral vectors leads to myogenic progenitor targeting and stable gene expression. Mol. Ther. 18, 206–213 (2010).

    CAS  PubMed  Google Scholar 

  238. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    CAS  PubMed  Google Scholar 

  239. Shen, B. et al. Efficient genome modification by CRISPR–Cas9 nickase with minimal off-target effects. Nat. Methods 11, 399–402 (2014).

    CAS  PubMed  Google Scholar 

  240. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    CAS  PubMed  Google Scholar 

  241. Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Mingozzi, F. & High, K. A. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122, 23–36 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Mingozzi, F. et al. CD8+ T-cell responses to adeno-associated virus capsid in humans. Nat. Med. 13, 419–422 (2007).

    CAS  PubMed  Google Scholar 

  244. Mingozzi, F. et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci. Transl Med. 5, 194ra192 (2013).

    Google Scholar 

  245. Madsen, D., Cantwell, E. R., O'Brien, T., Johnson, P. A. & Mahon, B. P. Adeno-associated virus serotype 2 induces cell-mediated immune responses directed against multiple epitopes of the capsid protein VP1. J. Gen. Virol. 90, 2622–2633 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Faust, S. M. et al. CpG-depleted adeno-associated virus vectors evade immune detection. J. Clin. Invest. 123, 2994–3001 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Wu, T. L. et al. CD8+ T cell recognition of epitopes within the capsid of adeno-associated virus 8-based gene transfer vectors depends on vectors' genome. Mol. Ther. 22, 42–51 (2014).

    PubMed  Google Scholar 

  248. Chew, W. L. et al. A multifunctional AAV-CRISPR–Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Mendell, J. R. et al. Dystrophin immunity in Duchenne's muscular dystrophy. N. Engl. J. Med. 363, 1429–1437 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work has been supported by the Muscular Dystrophy Association (grant MDA277360), a Duke–Coulter Translational Partnership Grant, a Duke/UNC-Chapel Hill CTSA Consortium Collaborative Translational Research Award, a Hartwell Foundation Individual Biomedical Research Award, a March of Dimes Foundation Basil O'Connor Starter Scholar Award, NIH grants R01AR069085 and UH3TR000505, an NIH Director's New Innovator Award (DP2-OD008586), the Office of the Assistant Secretary of Defense for Health Affairs, through the Duchenne Muscular Dystrophy Research Program under awards W81XWH-15-1-0469 and W81XWH-16-1-0221, the Thorek Memorial Foundation, and the Allen Distinguished Investigator Program, through The Paul G. Allen Frontiers Group. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the NIH or Department of Defense. C.E.N. is supported by a Hartwell Foundation Postdoctoral Fellowship and J.R.H. is supported by a National Science Foundation Graduate Research Fellowship and American Heart Association Predoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of the manuscript.

Corresponding author

Correspondence to Charles A. Gersbach.

Ethics declarations

Competing interests

C.A.G., C.E.N. and J.R.H. are inventors on patent applications related to genome engineering for neuromuscular diseases.

PowerPoint slides

Glossary

Exon skipping

A technique in which antisense oligonucleotides are introduced that bind motifs within an mRNA, promoting alternative splicing and excluding the targeted exon from the final transcript.

Nonsense readthrough compounds

Small molecules that suppress stop codon recognition and allow ribosomes to translate an mRNA, despite nonsense mutations.

Morpholino

A non-ionic synthetic nucleic acid with DNA bases covalently attached to morpholine rings with a phosphorodiamidate backbone.

Homology-directed repair

(HDR). A precise method of DNA repair that uses the sister chromosome or a provided DNA template to restore the damaged genome or introduce new DNA sequences.

Safe-harbour locus

A genomic region where targeted integrations can be performed without disrupting endogenous gene activity or negatively affecting cell function.

Non-homologous end joining

(NHEJ). A DNA repair pathway that religates double-strand breaks, with the possibility of producing small insertions or deletions that might lead to gene knockout.

Directed evolution

A process that uses multiple rounds of mutagenesis and user-defined selection to alter the function of a protein or nucleic acid.

Cys2–His2 zinc finger domain

A finger-like structure of 30 amino acids that recognizes three or four base pairs. Proteins containing multiple Cys2–His2 zinc finger domains can be used for sequence-specific DNA targeting.

Golden Gate assembly

A cloning method that allows scarless ligation of multiple DNA fragments and is well-suited for cloning repetitive sequences, including TALE arrays.

Protospacer adjacent motif

(PAM). A sequence motif that is recognized by the Cas9 enzyme. Several CRISPR systems have been described with varying PAM requirements.

Small interfering RNA

Short, double-stranded RNA that mediates sequence-specific silencing of targeted mRNAs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, C., Robinson-Hamm, J. & Gersbach, C. Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat Rev Neurol 13, 647–661 (2017). https://doi.org/10.1038/nrneurol.2017.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.126

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research