The tension between early diagnosis and misdiagnosis of multiple sclerosis

Diagnosis of multiple sclerosis (MS) can be challenging, and misdiagnosis remains a persistent problem with considerable consequences for patients and health-care systems. Common syndromes are frequently mistaken for MS. Misapplication of MS diagnostic criteria in patients with abnormal radiographic findings and clinical presentations that are atypical for MS is a frequent cause of misdiagnosis. Delays in diagnosis of MS and initiation of disease-modifying therapy (DMT) are associated with an increased risk of disability, putting pressure on physicians to make therapeutic decisions for patients whose diagnosis remains uncertain. DMT is associated with unnecessary risks and morbidity in misdiagnosed patients. This tension between the benefits of an early diagnosis and the risk of misdiagnosis is a pressing problem. For patients who present with brain MRI abnormalities and clinical syndromes that are atypical for MS, strict adherence to MS diagnostic criteria and further clinical, laboratory and radiographic evaluation is prudent and likely to clarify a diagnosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: MRI observations that are compatible with MS and other disorders.

References

  1. 1

    Poser, C. M. & Brinar, V. V. Diagnostic criteria for multiple sclerosis: an historical review. Clin. Neurol. Neurosurg. 106, 147–158 (2004).

    PubMed  Article  Google Scholar 

  2. 2

    McDonald, W. I. et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 50, 121–127 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann. Neurol. 58, 840–846 (2005).

    PubMed  Article  Google Scholar 

  4. 4

    Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Miller, D. H., Grossman, R. I., Reingold, S. C. & McFarland, H. F. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 121, 3–24 (1998).

    PubMed  Article  Google Scholar 

  6. 6

    Rocca, M. A., Anzalone, N., Falini, A. & Filippi, M. Contribution of magnetic resonance imaging to the diagnosis and monitoring of multiple sclerosis. Radiol. Med. 118, 251–264 (2013).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Filippi, M. et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 15, 292–303 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Klawiter, E. C. Current and new directions in MRI in multiple sclerosis. Continuum (Minneap. Minn.) 19, 1058–1073 (2013).

    Google Scholar 

  9. 9

    Odenthal, C. & Coulthard, A. The prognostic utility of MRI in clinically isolated syndrome: a literature review. Am. J. Neuroradiol. 36, 425–431 (2015).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Brownlee, W. J. & Miller, D. H. Clinically isolated syndromes and the relationship to multiple sclerosis. J. Clin. Neurosci. 21, 2065–2071 (2014).

    PubMed  Article  Google Scholar 

  11. 11

    Granberg, T., Martola, J., Kristoffersen-Wiberg, M., Aspelin, P. & Fredrikson, S. Radiologically isolated syndrome — incidental magnetic resonance imaging findings suggestive of multiple sclerosis, a systematic review. Mult. Scler. 19, 271–280 (2013).

    PubMed  Article  Google Scholar 

  12. 12

    Okuda, D. T. et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology 72, 800–805 (2009).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Giovannoni, G. et al. Brain health: time matters in multiple sclerosis. Mult. Scler. Relat. Disord. 9 (Suppl. 1), S5–S48 (2016).

    PubMed  Article  Google Scholar 

  14. 14

    Freedman, M. S. et al. Moving toward earlier treatment of multiple sclerosis: findings from a decade of clinical trials and implications for clinical practice. Mult. Scler. Relat. Disord. 3, 147–155 (2014).

    PubMed  Article  Google Scholar 

  15. 15

    Makary, M. A. & Daniel, M. Medical error — the third leading cause of death in the US. BMJ 353, i2139 (2016).

    PubMed  Article  Google Scholar 

  16. 16

    Graber, M. L. The incidence of diagnostic error in medicine. BMJ Qual. Saf. 22, ii21–ii27 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17

    Zwaan, L., Schiff, G. D. & Singh, H. Advancing the research agenda for diagnostic error reduction. BMJ Qual. Saf. 22, ii52–ii57 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Solomon, A. J. & Weinshenker, B. G. Misdiagnosis of multiple sclerosis: frequency, causes, effects, and prevention. Curr. Neurol. Neurosci. Rep. 13, 403 (2013).

    PubMed  Article  CAS  Google Scholar 

  19. 19

    Hankey, G. J. & Stewart-Wynne, E. G. Pseudo-multiple sclerosis: a clinico-epidemiological study. Clin. Exp. Neurol. 24, 11–19 (1987).

    CAS  PubMed  Google Scholar 

  20. 20

    Herndon, R. M., B. B. Misdiagnosis of multiple sclerosis. Semin. Neurol. 5, 94–98 (1985).

    Article  Google Scholar 

  21. 21

    Engell, T. A clinico-pathoanatomical study of multiple sclerosis diagnosis. Acta Neurol. Scand. 78, 39–44 (1988).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Solomon, A. J. & Klein, E. P. & Bourdette, D. “Undiagnosing” multiple sclerosis: the challenge of misdiagnosis in MS. Neurology 78, 1986–1991 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Rudick, R. A. & Miller, A. E. Multiple sclerosis or multiple possibilities: the continuing problem of misdiagnosis. Neurology 78, 1904–1906 (2012).

    PubMed  Article  Google Scholar 

  24. 24

    Rudick, R. A., Schiffer, R. B., Schwetz, K. M. & Herndon, R. M. Multiple sclerosis. The problem of incorrect diagnosis. Arch. Neurol. 43, 578–583 (1986).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Poser, C. M. Misdiagnosis of multiple sclerosis and β-interferon. Lancet 349, 1916 (1997).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Solomon, A. J. et al. The contemporary spectrum of multiple sclerosis misdiagnosis: a multicenter study. Neurology 87, 1393–1399 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Carmosino, M. J., Brousseau, K. M., Arciniegas, D. B. & Corboy, J. R. Initial evaluations for multiple sclerosis in a university multiple sclerosis center: outcomes and role of magnetic resonance imaging in referral. Arch. Neurol. 62, 585–590 (2005).

    PubMed  Article  Google Scholar 

  28. 28

    Murray, T. J. & Murray, S. J. Characteristics of patients found not to have multiple sclerosis. Can. Med. Assoc. J. 131, 336–337 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Miller, D. H. et al. Differential diagnosis of suspected multiple sclerosis: a consensus approach. Mult. Scler. 14, 1157–1174 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    Toledano, M., Weinshenker, B. G. & Solomon, A. J. A clinical approach to the differential diagnosis of multiple sclerosis. Curr. Neurol. Neurosci. Rep. 15, 57 (2015).

    PubMed  Article  Google Scholar 

  31. 31

    Confavreux, C. & Vukusic, S. Natural history of multiple sclerosis: a unifying concept. Brain 129, 606–616 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Lublin, F. D. et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83, 278–286 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Charil, A. et al. MRI and the diagnosis of multiple sclerosis: expanding the concept of “no better explanation”. Lancet Neurol. 5, 841–852 (2006).

    PubMed  Article  Google Scholar 

  34. 34

    Liu, S. et al. Prevalence of brain magnetic resonance imaging meeting Barkhof and McDonald criteria for dissemination in space among headache patients. Mult. Scler. 19, 1101–1105 (2013).

    PubMed  Article  Google Scholar 

  35. 35

    Kim, S. S., Richman, D. P., Johnson, W. O., Hald, J. K. & Agius, M. A. Limited utility of current MRI criteria for distinguishing multiple sclerosis from common mimickers: primary and secondary CNS vasculitis, lupus and Sjogren's syndrome. Mult. Scler. 20, 57–63 (2013).

    PubMed  Article  Google Scholar 

  36. 36

    Petzold, A. Intrathecal oligoclonal IgG synthesis in multiple sclerosis. J. Neuroimmunol. 262, 1–10 (2013).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Stangel, M. et al. The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat. Rev. Neurol. 9, 267–276 (2013).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Dobson, R., Ramagopalan, S., Davis, A. & Giovannoni, G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude. J. Neurol. Neurosurg. Psych. 84, 909–914 (2013).

    Article  Google Scholar 

  39. 39

    Selchen, D. et al. MS, MRI, and the 2010 McDonald criteria: a Canadian expert commentary. Neurology 79, S1–S15 (2012).

    PubMed  Article  Google Scholar 

  40. 40

    Poser, C. M. & Brinar, V. V. Problems with diagnostic criteria for multiple sclerosis. Lancet 358, 1746–1747 (2001).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Schiffer, R. B. et al. Perils and pitfalls of magnetic resonance imaging in the diagnosis of multiple sclerosis. The Rochester–Toronto MRI Study Group. J. Neuroimag. 3, 81–88 (1993).

    CAS  Article  Google Scholar 

  42. 42

    Whiting, P. et al. Accuracy of magnetic resonance imaging for the diagnosis of multiple sclerosis: systematic review. BMJ 332, 875–884 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Boster, A. et al. Failure to develop multiple sclerosis in patients with neurologic symptoms without objective evidence. Mult. Scler. 14, 804–808 (2008).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Uitdehaag, B. M. et al. Discrepancies in the interpretation of clinical symptoms and signs in the diagnosis of multiple sclerosis. A proposal for standardization. Mult. Scler. 11, 227–231 (2005).

    PubMed  Article  Google Scholar 

  45. 45

    Hawkes, C. H. & Giovannoni, G. The McDonald Criteria for Multiple Sclerosis: time for clarification. Mult. Scler. 16, 566–575 (2010).

    PubMed  Article  Google Scholar 

  46. 46

    Lumley, R., Davenport, R. & Williams, A. Most Scottish neurologists do not apply the 2010 McDonald criteria when diagnosing multiple sclerosis. J. R. Coll. Physicians Edinb. 45, 23–26 (2015).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Comabella, M. & Montalban, X. Body fluid biomarkers in multiple sclerosis. Lancet Neurol. 13, 113–126 (2014).

    PubMed  Article  Google Scholar 

  48. 48

    D'Ambrosio, A. et al. Peripheral blood biomarkers in multiple sclerosis. Autoimmun. Rev. 14, 1097–1110 (2015).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Raphael, I., Webb, J., Stuve, O., Haskins, W. & Forsthuber, T. Body fluid biomarkers in multiple sclerosis: how far we have come and how they could affect the clinic now and in the future. Expert Rev. Clin. Immunol. 11, 69–91 (2015).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Teunissen, C. E., Malekzadeh, A., Leurs, C., Bridel, C. & Killestein, J. Body fluid biomarkers for multiple sclerosis — the long road to clinical application. Nat. Rev. Neurol. 11, 585–596 (2015).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Chastre, A., Hafler, D. A. & O'Connor, K. C. Evaluation of KIR4.1 as an immune target in multiple sclerosis. N. Engl. J. Med. 374, 1495–1496 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Probstel, A. K. et al. Multiple sclerosis and antibodies against KIR4.1. N. Engl. J. Med. 374, 1496–1498 (2016).

    PubMed  Article  Google Scholar 

  53. 53

    Marino, M. et al. Low reliability of anti-KIR4183–120 peptide auto-antibodies in multiple sclerosis patients. Mult. Scler. http://dx.doi.org/10.1177/1352458517711275 (2017).

  54. 54

    Lockwood, S. Y., Summers, S., Eggenberger, E. & Spence, D. M. An in vitro diagnostic for multiple sclerosis based on C-peptide binding to erythrocytes. EBioMedicine 11, 249–252 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Beecham, A. H. et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Sawcer, S., Franklin, R. J. & Ban, M. Multiple sclerosis genetics. Lancet Neurol. 13, 700–709 (2014).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Regev, K. et al. Comprehensive evaluation of serum microRNAs as biomarkers in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 3, e267 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Vistbakka, J., Elovaara, I., Lehtimaki, T. & Hagman, S. Circulating microRNAs as biomarkers in progressive multiple sclerosis. Mult. Scler. 23, 403–412 (2017).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Spurlock III, C. F., Tossberg, J. T., Sriram, S., Crooke III, P. S. & Aune, T. M. Long non-coding RNA gene expression signatures to classify multiple sclerosis [abstract P002]. Mult. Scler. 23 (Suppl. 1), 11–12 (2017).

    Google Scholar 

  60. 60

    Selmaj, I. et al. Global exosome transcriptome profiling reveals biomarkers for multiple sclerosis. Ann. Neurol. 81 703–717 (2017).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Fog, T. On the vessel–plaque relationships in the brain in multiple sclerosis. Acta Neurol. Scand. 40 (Suppl. 10), 19–15 (1964).

    Google Scholar 

  62. 62

    Sati, P. et al. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat. Rev. Neurol. 12, 714–722 (2016).

    PubMed  Article  Google Scholar 

  63. 63

    Calabrese, M. & Castellaro, M. Cortical gray matter MR imaging in multiple sclerosis. Neuroimag. Clin. N. Am. 27, 301–312 (2017).

    Article  Google Scholar 

  64. 64

    Absinta, M. et al. Patients with migraine do not have MRI-visible cortical lesions. J. Neurol. 259, 2695–2698 (2012).

    PubMed  Article  Google Scholar 

  65. 65

    Watts, R., Solomon, A., Koeller, K. & Nickerson, J. Z-Score approach to the detection of cortical lesions in multiple sclerosis [abstract]. Proceedings of the 25th Annual Meeting of the International Society for Magnetic Resonance in Medicine http://dev.ismrm.org/2017/2539.html (2017).

  66. 66

    Preziosa, P. et al. Diagnosis of multiple sclerosis: a multicentre study to compare revised McDonald-2010 and Filippi-2010 criteria. J. Neurol. Neurosurg. Psychiatry 86, http://dx.doi.org/10.1136/jnnp-2017-315863 (2017).

  67. 67

    Aubert-Broche, B. et al. Regional brain atrophy in children with multiple sclerosis. Neuroimage 58, 409–415 (2011).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Azevedo, C. J. et al. Early CNS neurodegeneration in radiologically isolated syndrome. Neurol. Neuroimmunol. Neuroinflamm. 2, e102 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69

    Bergsland, N. et al. Subcortical and cortical gray matter atrophy in a large sample of patients with clinically isolated syndrome and early relapsing–remitting multiple sclerosis. Am. J. Neuroradiol. 33, 1573–1578 (2012).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Hyun, J. W. et al. Deep gray matter atrophy in neuromyelitis optica spectrum disorder and multiple sclerosis. Eur. J. Neurol. 24, 437–445 (2017).

    PubMed  Article  Google Scholar 

  71. 71

    Eshaghi, A. et al. Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest. Neurology 87, 2463–2470 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Solomon, A. J., Watts, R., Dewey, B. E. & Reich, D. S. MRI evaluation of thalamic volume differentiates MS from common mimics. Neurol. Neuroimmunol. Neuroinflamm. 4, e387 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Perrin, R. J., Fagan, A. M. & Holtzman, D. M. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature 461, 916–922 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Marrie, R. A. et al. Changes in the ascertainment of multiple sclerosis. Neurology 65, 1066–1070 (2005).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Marrie, R. A. et al. Comorbidity delays diagnosis and increases disability at diagnosis in MS. Neurology 72, 117–124 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Kingwell, E. et al. Factors associated with delay to medical recognition in two Canadian multiple sclerosis cohorts. J. Neurol. Sci. 292, 57–62 (2010).

    PubMed  Article  Google Scholar 

  77. 77

    Kelly, S. B. et al. Multiple sclerosis, from referral to confirmed diagnosis: an audit of clinical practice. Mult. Scler. 17, 1017–1021 (2011).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Adamec, I., Barun, B., Gabelic, T., Zadro, I. & Habek, M. Delay in the diagnosis of multiple sclerosis in Croatia. Clin. Neurol. Neurosurg. 115 (Suppl. 1), S70–S72 (2013).

    PubMed  Article  Google Scholar 

  79. 79

    Fernandez, O. et al. Characteristics of multiple sclerosis at onset and delay of diagnosis and treatment in Spain (the Novo Study). J. Neurol. 257, 1500–1507 (2010).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Tortorella, C. et al. Age-related gadolinium-enhancement of MRI brain lesions in multiple sclerosis. J. Neurol. Sci. 239, 95–99 (2005).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Filippi, M., Wolinsky, J. S., Sormani, M. P. & Comi, G. Enhancement frequency decreases with increasing age in relapsing–remitting multiple sclerosis. Neurology 56, 422–423 (2001).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Tremlett, H., Zhao, Y., Joseph, J. & Devonshire, V. Relapses in multiple sclerosis are age- and time-dependent. J. Neurol. Neurosurg. Psych. 79, 1368–1374 (2008).

    CAS  Article  Google Scholar 

  83. 83

    Scalfari, A. et al. Early relapses, onset of progression, and late outcome in multiple sclerosis. JAMA Neurol. 70, 214–222 (2013).

    PubMed  Article  Google Scholar 

  84. 84

    Scalfari, A., Neuhaus, A., Daumer, M., Muraro, P. A. & Ebers, G. C. Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J. Neurol. Neurosurg. Psych. 85, 67–75 (2014).

    Article  Google Scholar 

  85. 85

    Wingerchuk, D. M. & Weinshenker, B. G. Disease modifying therapies for relapsing multiple sclerosis. BMJ 354, i3518 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  86. 86

    Devonshire, V. et al. Relapse and disability outcomes in patients with multiple sclerosis treated with fingolimod: subgroup analyses of the double-blind, randomised, placebo-controlled FREEDOMS study. Lancet Neurol. 11, 420–428 (2012).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Miller, A. E. et al. Pre-specified subgroup analyses of a placebo-controlled phase III trial (TEMSO) of oral teriflunomide in relapsing multiple sclerosis. Mult. Scler. 18, 1625–1632 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88

    Viglietta, V. et al. Efficacy of delayed-release dimethyl fumarate in relapsing–remitting multiple sclerosis: integrated analysis of the phase 3 trials. Ann. Clin. Transl Neurol. 2, 103–118 (2015).

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Hutchinson, M. et al. The efficacy of natalizumab in patients with relapsing multiple sclerosis: subgroup analyses of AFFIRM and SENTINEL. J. Neurol. 256, 405–415 (2009).

    CAS  PubMed  Article  Google Scholar 

  90. 90

    Kappos, L. et al. Interferon beta-1b in secondary progressive MS: a combined analysis of the two trials. Neurology 63, 1779–1787 (2004).

    CAS  PubMed  Article  Google Scholar 

  91. 91

    Hawker, K. et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol. 66, 460–471 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92

    Secondary Progressive Efficacy Clinical Trial of Recombinant Interferon-beta-1a in MS (SPECTRIMS) Study Group. Randomized controlled trial of interferon-beta-1a in secondary progressive MS: clinical results. Neurology 56, 1496–1504 (2001).

  93. 93

    Signori, A., Schiavetti, I., Gallo, F. & Sormani, M. P. Subgroups of multiple sclerosis patients with larger treatment benefits: a meta-analysis of randomized trials. Eur. J. Neurol. 22, 960–966 (2015).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Kavaliunas, A. et al. Importance of early treatment initiation in the clinical course of multiple sclerosis. Mult. Scler. http://dx.doi.org/10.1177/1352458516675039 (2016).

  95. 95

    Goodin, D. S. et al. Survival in MS: a randomized cohort study 21 years after the start of the pivotal IFNβ-1b trial. Neurology 78, 1315–1322 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96

    Kappos, L. et al. The 11-year long-term follow-up study from the randomized BENEFIT CIS trial. Neurology 87, 978–987 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Okuda, D. et al. Multi-center, randomized, double-blinded assessment of dimethyl fumarate in extending the time to a first attack in radiologically isolated syndrome (RIS) (ARISE Trial). Neurology 84 (Suppl.), P7.207 (2015).

    Google Scholar 

  98. 98

    Winkelmann, A., Loebermann, M., Reisinger, E. C., Hartung, H. P. & Zettl, U. K. Disease-modifying therapies and infectious risks in multiple sclerosis. Nat. Rev. Neurol. 12, 217–233 (2016).

    CAS  PubMed  Article  Google Scholar 

  99. 99

    Clanet, M. C., Wolinsky, J. S., Ashton, R. J., Hartung, H. P. & Reingold, S. C. Risk evaluation and monitoring in multiple sclerosis therapeutics. Mult. Scler. 20, 1306–1311 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  100. 100

    Ontaneda, D., Cohn, S. & Fox, R. Risk stratification and mitigation multiple sclerosis. Mult. Scler. Relat. Disord. 3, 639–649 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  101. 101

    Calabresi, P. A. et al. Safety and efficacy of fingolimod in patients with relapsing–remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 545–556 (2014).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    Willis, M. D. et al. Alemtuzumab for multiple sclerosis: long term follow-up in a multi-centre cohort. Mult. Scler. 22, 1215–1223 (2016).

    CAS  PubMed  Article  Google Scholar 

  103. 103

    Ayzenberg, I. et al. Efficacy of glatiramer acetate in neuromyelitis optica spectrum disorder: a multicenter retrospective study. J. Neurol. 263, 575–582 (2016).

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Kleiter, I. et al. Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch. Neurol. 69, 239–245 (2012).

    PubMed  Article  Google Scholar 

  105. 105

    Palace, J., Leite, M. I., Nairne, A. & Vincent, A. Interferon beta treatment in neuromyelitis optica: increase in relapses and aquaporin 4 antibody titers. Arch. Neurol. 67, 1016–1017 (2010).

    PubMed  Article  Google Scholar 

  106. 106

    Yamout, B. I., Beaini, S., Zeineddine, M. M. & Akkawi, N. Catastrophic relapses following initiation of dimethyl fumarate in two patients with neuromyelitis optica spectrum disorder. Mult. Scler. http://dx.doi.org/10.1177/1352458517694086 (2017).

  107. 107

    Kleinschmidt-DeMasters, B. K. & Tyler, K. L. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N. Engl. J. Med. 353, 369–374 (2005).

    CAS  PubMed  Article  Google Scholar 

  108. 108

    Hartung, D. M., Bourdette, D. N., Ahmed, S. M. & Whitham, R. H. The cost of multiple sclerosis drugs in the US and the pharmaceutical industry: too big to fail? Neurol 84, 2185–2192 (2015).

    Article  Google Scholar 

  109. 109

    Truven Health Analytics. Red Book. Truvenhealth http://truvenhealth.com/products/micromedex/product-suites/clinical-knowledge/red-book (2016).

  110. 110

    Kister, I. & Corboy, J. R. Reducing costs while enhancing quality of care in MS. Neurology 87, 1617–1622 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  111. 111

    Kelly, S. B. et al. Using atypical symptoms and red flags to identify non-demyelinating disease. J. Neurol. Neurosurg. Psych. 83, 44–48 (2012).

    Article  Google Scholar 

  112. 112

    Nakamura, M., Morris, M., Cerghet, M., Schultz, L. & Elias, S. Longitudinal follow-up of a cohort of patients with incidental abnormal magnetic resonance imaging findings at presentation and their risk of developing multiple sclerosis. Int. J. MS Care 16, 111–115 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.J.S. acknowledges funding support from the National Multiple Sclerosis Society, the University of Vermont Department of Neurological Sciences, the University of Vermont Department of Radiology, the University of Vermont MRI Center for Biomedical Imaging, and the Intramural Research Program of the National Institute of Neurological Disorders and Stroke for research studies cited in this article. A.J.S. wishes to acknowledge Dr. Daniel S. Reich and the Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke for support and collaboration.

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to all stages of the manuscript.

Corresponding author

Correspondence to Andrew J. Solomon.

Ethics declarations

Competing interests

A.J.S. declares industry relationships in the form of consulting and advisory boards with Biogen, EMD Serono, Genentech and Teva. J.R.C. declares industry relationships with Med Day and Novartis, and honoraria from PRIME Education.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solomon, A., Corboy, J. The tension between early diagnosis and misdiagnosis of multiple sclerosis. Nat Rev Neurol 13, 567–572 (2017). https://doi.org/10.1038/nrneurol.2017.106

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing