Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aggressive multiple sclerosis: proposed definition and treatment algorithm

Key Points

  • Patients with aggressive multiple sclerosis (MS) are at increased risk of rapid accrual of disability and disease progression, so early detection is critical

  • The window of opportunity for treating patients with aggressive MS is narrow, thus, conventional treatment paradigms need to be reconsidered

  • Aggressive disease warrants aggressive treatment

  • Therapeutic agents vary extensively throughout the world in terms of their availability, licensing, usage experience and logistics of implementation

  • Diligent monitoring is crucial for the timely discovery of suboptimal response to therapy

Abstract

Multiple sclerosis (MS) is a CNS disorder characterized by inflammation, demyelination and neurodegeneration, and is the most common cause of acquired nontraumatic neurological disability in young adults. The course of the disease varies between individuals: some patients accumulate minimal disability over their lives, whereas others experience a rapidly disabling disease course. This latter subset of patients, whose MS is marked by the rampant progression of disability over a short time period, is often referred to as having 'aggressive' MS. Treatment of patients with aggressive MS is challenging, and optimal strategies have yet to be defined. It is important to identify patients who are at risk of aggressive MS as early as possible and implement an effective treatment strategy. Early intervention might protect patients from irreversible damage and disability, and prevent the development of a secondary progressive course, which thus far lacks effective therapy.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Proposed treatment algorithm for aggressive MS.

References

  1. Trapp, B. D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).

    CAS  PubMed  Google Scholar 

  2. Frischer, J. M. et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132, 1175–1189 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. 2. Predictive value of the early clinical course. Brain 112, 1419–1428 (1989).

    PubMed  Google Scholar 

  4. Ebers, G. C. Prognostic factors for multiple sclerosis: the importance of natural history studies. J. Neurol. 252, 15–20 (2005).

    Google Scholar 

  5. Lublin, F. D. et al. Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 46, 907–911 (1996).

    CAS  PubMed  Google Scholar 

  6. Lublin, F. D. et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83, 278–286 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Gholipour, T., Healy, B., Baruch, N. F., Weiner, H. L. & Chitnis, T. Demographic and clinical characteristics of malignant multiple sclerosis. Neurology 76, 1996–2001 (2011).

    CAS  PubMed  Google Scholar 

  8. Menon, S. et al. Characterising aggressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 84, 1192–1198 (2013).

    PubMed  Google Scholar 

  9. Saccardi, R. et al. A prospective, randomized, controlled trial of autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: a position paper. Mult. Scler. 18, 825–834 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Confavreux, C., Vukusic, S. & Adeleine, P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain 126, 770–782 (2003).

    PubMed  Google Scholar 

  11. Scalfari, A. et al. The natural history of multiple sclerosis, a geographically based study. 10. Relapses and long-term disability. Brain 133, 1914–1929 (2010).

    PubMed  PubMed Central  Google Scholar 

  12. Fisniku, K. L. et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 131, 808–817 (2008).

    CAS  PubMed  Google Scholar 

  13. Freedman, M. S. Induction versus escalation of therapy for relapsing multiple sclerosis: the evidence. Neurol. Sci. 29 (Suppl. 2), S250–S252 (2008).

    PubMed  Google Scholar 

  14. Havla, J. B. et al. Rebound of disease activity after withdrawal of fingolimod (FTY720) treatment. Arch. Neurol. 69, 262–264 (2012).

    PubMed  Google Scholar 

  15. Hakiki, B. et al. Withdrawal of fingolimod treatment for relapsing remitting multiple sclerosis: report of six cases. Mult. Scler. 18, 1636–1639 (2012).

    PubMed  Google Scholar 

  16. Killestein, J. et al. Natalizumab drug holiday in multiple sclerosis: poorly tolerated. Ann. Neurol. 68, 392–395 (2010).

    PubMed  Google Scholar 

  17. O'Connor, P. W. et al. Disease activity return during natalizumab treatment interruption in patients with multiple sclerosis. Neurology 76, 1858–1865 (2011).

    CAS  PubMed  Google Scholar 

  18. Cohen, J. A. et al. Fingolimod versus intramuscular interferon in patient subgroups from TRANSFORMS. J. Neurol. 260, 2023–2032 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hutchinson, M. et al. The efficacy of natalizumab in patients with relapsing remitting multiple sclerosis:subgroup analysis of AFFIRM and SENTINEL. J. Neurol. 256, 405–415 (2009).

    CAS  PubMed  Google Scholar 

  20. Freedman, M. S., Kaplan, J. M. & Markovic-Plese, S. Insights into the mechanisms of the therapeutic efficacy of alemtuzumab in multiple sclerosis. J. Clin. Cell. Immunol. 4, 1000152 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. Coles, A. J. Alemtuzumab therapy for multiple sclerosis. Neurotherapeutics 10, 29–33 (2013).

    CAS  PubMed  Google Scholar 

  22. Coles, A. J. et al. The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J. Neurol. 253, 98–108 (2006).

    PubMed  Google Scholar 

  23. Comi, G. Induction vs. escalating therapy in multiple sclerosis: practical implications. Neurol. Sci. 29 (Suppl. 2), S253–S255 (2008).

    PubMed  Google Scholar 

  24. Reickmann, P. Concepts of induction and escalation therapy in multiple sclerosis. J. Neurol. Sci. 277 (Suppl. 1), S42–S45 (2009).

    Google Scholar 

  25. Edan, G. & Le Page, E. Induction therapy for patients with multiple sclerosis: why? When? How? CNS Drugs 27, 403–409 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Coles, A. J. et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380, 1829–1839 (2012).

    CAS  PubMed  Google Scholar 

  27. Cossburn, M. et al. Autoimmune disease after alemtuzumab treatment for multiple sclerosis in a multicenter cohort. Neurology 77, 573–579 (2011).

    CAS  PubMed  Google Scholar 

  28. Coles, A. J. et al. Efficacy and safety of alemtuzumab in treatment-naive with relapsing–remitting multiple sclerosis: four-year follow-up of the CARE-MS I study. Mult. Scler. 20 (Suppl. 1), P090 (2014).

    Google Scholar 

  29. Hartung, H. et al. Efficacy and safety of alemtuzumab in patients with relapsing–remitting multiple sclerosis who relapsed on prior therapy: four-year follow-up of the CARE-MS II study. Mult. Scler. 20 (Suppl. 1), P043 (2014).

    Google Scholar 

  30. Liliemark, J. The clinical pharmacokinetics of cladribine. Clin. Pharmacokinet. 32, 120–131 (1997).

    CAS  PubMed  Google Scholar 

  31. Romine, J. S., Sipe, J. C., Koziol, J. A., Zyroff, J. & Beutler, E. A double-blind, placebo-controlled, randomized trial of cladribine in relapsing–remitting multiple sclerosis. Proc. Assoc. Am. Physicians 111, 35–44 (1999).

    CAS  PubMed  Google Scholar 

  32. Rice, G. P., Filippi, M. & Comi, G. Cladribine and progressive MS: a clinical and MRI outcomes of multicenter controlled trial. Cladribine MRI Study Group. Neurology 54, 1145–1155 (2000).

    CAS  PubMed  Google Scholar 

  33. Giovannoni, G. et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N. Engl. J. Med. 362, 416–426 (2010).

    CAS  PubMed  Google Scholar 

  34. Montalban, X. et al. Oral cladribine as add on to IFN-β therapy in patients with active multiple sclerosis: results from the phase II ONWARD study. Neurology 80 (1_MeetingAbstracts), P07.099 (2013).

  35. Leist, T. P. et al. Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): a phase 3 randomised trial. Lancet Neurol. 13, 257–267 (2014).

    CAS  PubMed  Google Scholar 

  36. Awad, A. & Stuve, O. Cyclophosphamide in multiple sclerosis: scientific rationale, history and novel treatment paradigms. Ther. Adv. Neurol. Disord. 6, 50–61 (2009).

    Google Scholar 

  37. Hauser, S. L. et al. Intensive immunosuppression in progressive multiple sclerosis. A randomized, three-arm study of high-dose intravenous cyclophosphamide, plasma exchange, and ACTH. N. Engl. J. Med. 308, 173–180 (1983).

    CAS  PubMed  Google Scholar 

  38. [No authors listed] The Canadian cooperative trial of cyclophosphamide and plasma exchange in progressive multiple sclerosis. The Canadian Cooperative Multiple Sclerosis Study Group. Lancet 337, 441–446 (1991).

  39. Weinstock-Guttman, B. Treatment of fulminant multiple sclerosis with intravenous cyclophosphamide. Neurologist 3, 178–185 (1997).

    Google Scholar 

  40. Hohol, M. J. et al. Treatment of progressive multiple sclerosis with pulse cyclophosphamide/methylprednisolone: response to therapy is linked to the duration of progressive disease. Mult. Scler. 5, 403–409 (1999).

    CAS  PubMed  Google Scholar 

  41. Khan, O. A. et al. Effect of monthly intravenous cyclophosphamide in rapidly deteriorating multiple sclerosis patients resistant to conventional therapy. Mult. Scler. 7, 185–188 (2001).

    CAS  PubMed  Google Scholar 

  42. Perini, P. & Gallo, P. Cyclophosphamide is effective in rapidly deteriorating secondary progressive multiple sclerosis. J. Neurol. 250, 834–838 (2003).

    CAS  PubMed  Google Scholar 

  43. Gladstone, D. E. et al. High-dose cyclophosphamide for moderate to severe refractory multiple sclerosis. Arch. Neurol. 63, 1388–1393 (2006).

    PubMed  Google Scholar 

  44. de Bittencourt, P. R. & Gomes-da-Silva, M. M. Multiple sclerosis: long-term remission after a high dose of cyclophosphamide. Acta Neurol. Scand. 111, 195–198 (2005).

    CAS  PubMed  Google Scholar 

  45. Schwartzman, R. J. et al. High-dose cyclophosphamide in the treatment of multiple sclerosis. CNS Neurosci. Ther. 15, 118–127 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gobbini, M. I., Smith, M. E., Richert, N. D., Frank, J. A. & McFarland, H. F. Effect of open label pulse cyclophosphamide therapy on MRI measures of disease activity in five patients with refractory relapsing–remitting multiple sclerosis. J. Neuroimmunol. 99, 142–149 (1999).

    CAS  PubMed  Google Scholar 

  47. Krishnan, C. et al. Reduction of disease activity and disability with high-dose cyclophosphamide in patients with aggressive multiple sclerosis. Arch. Neurol. 65, 1044–1051 (2008).

    PubMed  PubMed Central  Google Scholar 

  48. Patti, F. et al. A double blind, placebo-controlled, phase II, add-on study of cyclophosphamide (CTX) for 24 months in patients affected by multiple sclerosis on a background therapy with interferon-beta study denomination: CYCLIN. J. Neurol. Sci. 223, 69–71 (2004).

    CAS  PubMed  Google Scholar 

  49. Smith, D. R. et al. A randomized blinded trial of combination therapy with cyclophosphamide in patients-with active multiple sclerosis on interferon beta. Mult. Scler. 11, 573–582 (2005).

    CAS  PubMed  Google Scholar 

  50. Lebrun, C. et al. Cancer risk and impact of disease-modifying treatments in patients with multiple sclerosis. Mult. Scler. 14, 399–405 (2008).

    PubMed  Google Scholar 

  51. Gbadamosi, J. et al. Effects of mitoxantrone on multiple scleoris patients' lymphocyte subpopulations and production of immunoglobulin, TNF-alpha and IL-10. Eur. Neurol. 49, 137–141 (2003).

    CAS  PubMed  Google Scholar 

  52. Hartung, H. P. et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360, 2018–2025 (2002).

    PubMed  Google Scholar 

  53. Edan, G. et al. Therapeutic effect of mitoxantrone combined with methylprednisolone in multiple sclerosis: a randomised multicentre study of active disease using MRI and clinical criteria. J. Neurol. Neurosurg. Psychiatry 62, 112–118 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Martinelli Boneschi, F. et al. Mitoxantrone for multiple sclerosis. Cochrane Database of Systematic Reviews, Issue 5. Art. No.: CD002127. http://dx.doi.org/10.1002/14651858.CD002127.pub3.

  55. Le Page, E. et al. Mitoxantrone as induction treatment in aggressive relapsing remitting multiple sclerosis: treatment response factors in a 5 year follow-up observational study of 100 consecutive patients. J. Neurol. Neurosurg. Psychiatry 79, 52–56 (2008).

    PubMed  Google Scholar 

  56. Edan, G. et al. Mitoxantrone prior to interferon beta-1b in aggressive relapsing multiple sclerosis: a 3-year randomised trial. J. Neurol. Neurosurg. Psychiatry 82, 1344–1350 (2011).

    CAS  PubMed  Google Scholar 

  57. Ramtahal, J., Jacob, A., Das, K. & Boggild, M. Sequential maintenance treatment with glatiramer acetate after mitoxantrone is safe and can limit exposure to immunosuppression in very active, relapsing remitting multiple sclerosis. J. Neurol. 253, 1160–1164 (2006).

    CAS  PubMed  Google Scholar 

  58. Vollmer, T. et al. Glatiramer acetate after induction therapy with mitoxantrone in relapsing multiple sclerosis. Mult. Scler. 14, 663–670 (2008).

    CAS  PubMed  Google Scholar 

  59. Barun, B. & Bar-Or, A. Treatment of multiple sclerosis with anti-CD20 antibodies. Clin. Immunol. 142, 31–37 (2012).

    CAS  PubMed  Google Scholar 

  60. Kappos, L. et al. Ocrelizumab in relapsing–remitting multiple sclerosis: a phase II, randomised, placebo-controlled, multicenter trial. Lancet 387, 1179–1187 (2011).

    Google Scholar 

  61. Naismith, R. T. et al. Rituximab add-on therapy for breakthrough relapsing multiple sclerosis: a 52-week phase II trial. Neurology 74, 1860–1867 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing–remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    CAS  PubMed  Google Scholar 

  63. Pfender, N., Saccardi, R. & Martin, R. Autologous hematopoietic stem cell transplantation as a treatment option for aggressive multiple sclerosis. Curr. Treat. Options Neurol. 15, 270–280 (2013).

    PubMed  Google Scholar 

  64. Mancardi, G. & Saccardi, R. Autologous haematopoietic stem-cell transplantation in multiple sclerosis. Lancet Neurol. 7, 626–636 (2008).

    PubMed  Google Scholar 

  65. Burt, R. K. et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing–remitting multiple sclerosis: a phase I/II study. Lancet Neurol. 8, 244–253 (2009).

    CAS  PubMed  Google Scholar 

  66. Burt, R. et al. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing–remitting multiple sclerosis. JAMA 313, 275–284 (2015).

    PubMed  Google Scholar 

  67. Nash, R. A. et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing–remitting multiple sclerosis (HALT-MS): a 3 year interim report. JAMA Neurol. 72, 159–169 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Mancardi, G. L. et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology 84, 981–989 (2015).

    CAS  PubMed  Google Scholar 

  69. Bevan, C. J. & Cree, B. A. Disease activity free status: a new end point for a new era in multiple sclerosis clinical research? JAMA Neurol. 71, 269–270 (2014).

    PubMed  Google Scholar 

  70. Prosser, L. A., Kuntz, K. M., Bar-Or, A. & Weinstein, M. C. The relationship between risk attitude and treatment choice in patients with relapsing–remitting multiple sclerosis. Med. Decis. Making 22, 506–513 (2002).

    PubMed  Google Scholar 

  71. Johnson, F. R. et al. Multiple sclerosis patients' benefit–risk preferences: serious adverse event risks versus treatment efficacy. J. Neurol. 256, 554–562 (2009).

    PubMed  Google Scholar 

  72. Heesen, C. et al. Risk perception in natalizumab-treated multiple sclerosis patients and their neurologists. Mult. Scler. 16, 1507–1512 (2010).

    PubMed  Google Scholar 

  73. Atkins, H. L. & Freedman, M. S. Hematopoietic stem cell therapy for multiple sclerosis: top 10 lessons learned. Neurotherapeutics 10, 68–76 (2013).

    CAS  PubMed  Google Scholar 

  74. Kantarci, O. et al. Survival and predictors of disability in Turkish MS patients. Turkish Multiple Sclerosis Study Group (TUMSSG). Neurology 51, 765–772 (1998).

    CAS  PubMed  Google Scholar 

  75. Tremlett, H., Paty, D. & Devonshire, V. Disability progression in multiple sclerosis is slower than previously reported. Neurology 66, 172–177 (2006).

    PubMed  Google Scholar 

  76. Confavreux, C., Aimard, G. & Devic, M. Course and prognosis of multiple sclerosis assessed by the computerized data processing of 349 patients. Brain 103, 281–300 (1980).

    CAS  PubMed  Google Scholar 

  77. Held, U. et al. Predictors of relapse rate in MS clinical trials. Neurology 65, 1769–1773 (2005).

    CAS  PubMed  Google Scholar 

  78. Cree, B. A. et al. Clinical characteristics of African Americans vs Caucasian Americans with multiple sclerosis. Neurology 14, 2039–2045 (2004).

    Google Scholar 

  79. Jeannin, S., Deschamps, R., Chausson, N. & Cabre, P. Response to interferon-beta treatment in Afro-Caribbeans with multiple sclerosis. Mult. Scler. Int. 2011, 950126 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Correale, J. et al. Management of relapsing–remitting multiple sclerosis in Latin America: practical recommendations for treatment optimization. J. Neurol. Sci. 339, 196–206 (2014).

    CAS  PubMed  Google Scholar 

  81. Amato, M. P., Ponziani, G., Bartolozzi, M. L. & Siracusa, G. A prospective study on the natural history of multiple sclerosis: clues to the conduct and interpretation of clinical trials. J. Neurol. Sci. 168, 96–106 (1999).

    CAS  PubMed  Google Scholar 

  82. Kraft, G. H., Freal, J. E., Coryell, J. K., Hanan, C. L. & Chitnis, N. Multiple sclerosis: early prognostic guidelines. Arch. Phys. Med. Rehabil. 62, 54–58 (1981).

    CAS  PubMed  Google Scholar 

  83. Wolfson, C. & Confavreux, C. Improvements to a simple Markov model of the natural history of multiple sclerosis. I. Short-term prognosis. Neuroepidemiology 6, 101–115 (1987).

    CAS  PubMed  Google Scholar 

  84. Bergamaschi, R., Berzuini, C., Romani, A. & Cosi, V. Predicting secondary progression in relapsing–remitting multiple sclerosis: a Bayesian analysis. J. Neurol. Sci. 189, 13–21 (2001).

    CAS  PubMed  Google Scholar 

  85. Scott, T. F. & Schramke, C. J. Poor recovery after the first two attacks of multiple sclerosis is associated with poor outcome five years later. J. Neurol. Sci. 292, 52–56 (2010).

    PubMed  Google Scholar 

  86. Trojano, M. et al. Multivariate analysis of predictive factors of multiple sclerosis course with a validated method to assess clinical events. J. Neurol. Neurosurg. Psychiatry 58, 300–306 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Weinshenker, B. G., Issa, M. & Baskerville, J. Long-term and short-term outcome of multiple sclerosis: a 3-year follow-up study. Arch. Neurol. 53, 353–358 (1996).

    CAS  PubMed  Google Scholar 

  88. Phadke, J. G. Clinical aspect of multiple sclerosis in north-east Scotland with particular reference to its course and prognosis. Brain 113, 1597–1628 (1990).

    PubMed  Google Scholar 

  89. Citterio, A., Azan, G., Bergamaschi, R., Erbetta, A., Cosi, V. Multiple sclerosis: disability and mortality in a cohort of clinically diagnosed patients. Neuroepidemiology 8, 249–253 (1989).

    CAS  PubMed  Google Scholar 

  90. Runmarker, B. & Andersen, O. Prognostic factors in a multiple sclerosis incidence cohort with twenty five years of follow-up. Brain 116, 117–134 (1993).

    PubMed  Google Scholar 

  91. Langer-Gould, A. et al. Clinical and demographic predictors of long-term disability in patients with relapsing–remitting multiple sclerosis: a systematic review. Arch. Neurol. 63, 1686–1691 (2006).

    PubMed  Google Scholar 

  92. Zarei, M., Chandran, S., Compston, A. J. & Hodges, J. Cognitive presentation of multiple sclerosis: evidence for a cortical variant. J. Neurol. Neurosurg. Psychiatry 74, 872–877 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. 4. Applications to planning and interpretation of clinical therapeutic trials. Brain 114, 1057–1067 (1991).

    PubMed  Google Scholar 

  94. Rudick, R. A., Lee, J. C., Simon, J. & Fisher, E. Significance of T2 lesions in multiple sclerosis: a 13-year longitudinal study. Ann. Neuro. 60, 236–242 (2006).

    Google Scholar 

  95. Brex, P. A. et al. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N. Engl. J. Med. 346, 158–164 (2002).

    PubMed  Google Scholar 

  96. Filippi, M. et al. Quantitative brain MRI lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis. Neurology 44, 635–641 (1994).

    CAS  PubMed  Google Scholar 

  97. O'Riordan, J. I. et al. The prognostic value of brain MRI in clinically isolated syndromes of the CNS. A 10-year follow-up. Brain 121, 495–503 (1998).

    PubMed  Google Scholar 

  98. Kappos, L. et al. Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Gadolinium MRI Meta-analysis Group. Lancet 353, 964–969 (1999).

    CAS  PubMed  Google Scholar 

  99. Tomassini, V. et al. Predictors of long-term clinical response to interferon beta in relapsing remitting multiple sclerosis. J. Neurol. 253, 283–293 (2006).

    Google Scholar 

  100. Kornek, B. & Lassmann, H. Neuropathology of multiple sclerosis-new concepts. Brain Res. Bull. 61, 321–326 (2003).

    CAS  PubMed  Google Scholar 

  101. Lukas, C. et al. Early central atrophy rate predicts 5 year clinical outcome in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 81, 1351–1356 (2010).

    PubMed  Google Scholar 

  102. Sailer, M. et al. Quantitative MRI in patients with clinically isolated syndromes suggestive of demyelination. Neurology 52, 599–606 (1999).

    CAS  PubMed  Google Scholar 

  103. Prosperini, L., Gallo, V., Petsas, N., Borriello, G. & Pozzilic, C. One-year MRI scan predicts clinical response to interferon beta in relapsing remitting multiple sclerosis. Eur. J. Neurol. 16, 1202–1209 (2009).

    CAS  PubMed  Google Scholar 

  104. Rio, J. et al. Relationship between MRI lesion activity and response to IFN-β in relapsing remitting multiple sclerosis patients. Mult. Scler. 14, 479–484 (2008).

    CAS  PubMed  Google Scholar 

  105. Lemtrada annex I: summary of product characteristics. European Medicines Agency [online], (2013).

  106. Cohen, J. A. et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing–remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380, 1819–1828 (2012).

    CAS  PubMed  Google Scholar 

  107. Sipe, J. C. et al. Cladribine in treatment of chronic progressive multiple sclerosis. Lancet 344, 9–13 (1994).

    CAS  PubMed  Google Scholar 

  108. Rivera, V. M., Jeffery, D. R., Weinstock-Guttman, B., Bock, D. & Dangond, F. Results from the 5-year, phase IV RENEW (registry to evaluate novantrone effects in worsening multiple sclerosis) study. BMC Neurology 13, 80 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Cocco, E. et al. Frequency and risk factors of mitoxantrone-induced amenorrhea in multiple sclerosis: the FEMIMS study. Mult. Scler. 9, 1225–1233 (2008).

    Google Scholar 

  110. Marriott, J. J., Miyasaki, J. M., Gronseth, G. & O'Connor, P. W. Evidence report: the efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 74, 1463–1670 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Stillwell, T. J. et al. Cyclophosphamide-induced hemorrhagic cystitis in Ewing's sarcoma. J. Clin. Oncol. 6, 76–82 (1988).

    CAS  PubMed  Google Scholar 

  112. Berkson, B. M., Lome, L. G. & Shapiro, I. Severe cystitis induced by cyclophosphamide. Role of surgical management. JAMA 225, 605–606 (1973).

    CAS  PubMed  Google Scholar 

  113. De Ridder, D. et al. Bladder cancer in patients with multiple sclerosis treated with cyclophosphamide. J. Urol. 159, 1881–1884 (1998).

    CAS  PubMed  Google Scholar 

  114. Kanter, I. C. et al. Cyclophosphamide for anti-GAD antibody-positive refractory status epilepticus. Epilepsia 49, 914–920 (2008).

    CAS  PubMed  Google Scholar 

  115. Wetzels, J. F. Cyclophosphamide-induced gonadal toxicity: a treatment dilemma in patients with lupus nephritis. Neth. J. Med. 62, 347–352 (2004).

    CAS  PubMed  Google Scholar 

  116. Chen, J. T. et al. Brain atrophy after immunoablation and stem cell transplantation in multiple sclerosis. Neurology 66, 1935–1937 (2006).

    CAS  PubMed  Google Scholar 

  117. Roccatagliata, L. et al. The long-term effect of AHSCT on MRI measures of MS evolution: a five year follow-up study. Mult. Scler. 13, 1068–1070 (2007).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to researching data for the article, writing the article and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Carolina A. Rush.

Ethics declarations

Competing interests

C.A.R. has acted as a consultant or advisor for Biogen, EMD Serono, Genzyme and Teva. H.J.M. has acted as a consultant or advisor for Biogen and Novartis. M.S.F. has acted as a consultant, advisor or steering-committee member for Actelion, Bayer Healthcare, Biogen, EMD Serono, Genzyme, Novartis, Opexa, Sanofi and Teva. He is a member of Genzyme's speakers' bureau, and has served on a study adjudication committee for Chugai.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rush, C., MacLean, H. & Freedman, M. Aggressive multiple sclerosis: proposed definition and treatment algorithm. Nat Rev Neurol 11, 379–389 (2015). https://doi.org/10.1038/nrneurol.2015.85

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.85

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing