Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modulating the pain network—neurostimulation for central poststroke pain

Key Points

  • Central poststroke pain (CPSP) is an under-recognized and severe complication of stroke, and remains extremely difficult to treat by conventional pharmacological means

  • Pathophysiologically, CPSP might be best understood as a network reorganization disorder that leads to a maladaptive central state in which selective disruption of spinothalamic sensory pathways is a key feature

  • The network reorganization hypothesis offers insight into nonpharmacological treatments for CPSP—such as neurostimulation—that target specific network nodes

  • Of the invasive neuromodulatory strategies, electrical motor cortex stimulation is the most efficient, but the benefits must be carefully balanced against the risks of invasive treatments

  • Noninvasive repetitive transcranial magnetic stimulation of the motor cortex is currently the preferred treatment approach, but must be applied repeatedly to maintain its effect

  • A greater understanding of the pathophysiology of CPSP, together with technological innovation, could lead to safer, more-practical and more-efficient treatments

Abstract

Central poststroke pain (CPSP) is one of the most under-recognized consequences of stroke, occurring in up to 10% of patients, and is also one of the most difficult to treat. The condition characteristically develops after selective lesions to the spinothalamic system, most often to the ventral posterior thalamus. Here, we suggest that CPSP is best characterized as a disorder of brain network reorganization, and that this characterization offers insight into the inadequacy of most current pharmacological treatments. Accordingly, we review the progress in identification of nonpharmacological treatments, which could ultimately lead to mechanism-based therapeutics. Of the invasive neurostimulation treatments available, electrical motor cortex stimulation seems to be superior to deep brain stimulation of the thalamus or brainstem, but enthusiasm for clinical use of the procedure is limited by its invasiveness. The current preference is for noninvasive transcranial magnetic stimulation, which, though effective, requires repeated application, causing logistical difficulties. Although CPSP is often severe and remains difficult to treat, future characterization of the precise underlying neurophysiological mechanisms, together with technological innovation, should allow new treatments to evolve.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lesion sites associated with central poststroke pain.
Figure 2: Neurostimulation targets in the CNS.

Similar content being viewed by others

References

  1. Dejerine, J. & Roussy, G. Le syndrome thalamique. Rev. Neurol. (Paris) 14, 521–532 (1906).

    Google Scholar 

  2. Kim, J. S. Post-stroke pain. Expert Rev. Neurother. 9, 711–721 (2009).

    CAS  PubMed  Google Scholar 

  3. Klit, H., Finnerup, N. B. & Jensen, T. S. Central post-stroke pain: clinical characteristics, pathophysiology, and management. Lancet Neurol. 8, 857–868 (2009).

    PubMed  Google Scholar 

  4. IASP Taxonomy. International Association for the Study of Pain [online], (2014).

  5. Kim, J. S. Pharmacological management of central post-stroke pain: a practical guide. CNS Drugs 28, 787–797 (2014).

    CAS  PubMed  Google Scholar 

  6. Andersen, G., Vestergaard, K., Ingeman-Nielsen, M. & Jensen, T. S. Incidence of central post-stroke pain. Pain 61, 187–193 (1995).

    CAS  PubMed  Google Scholar 

  7. Bowsher, D. Stroke and central poststroke pain in an elderly population. J. Pain 2, 258–261 (2001).

    CAS  PubMed  Google Scholar 

  8. Weimar, C., Kloke, M., Schlott, M., Katsarava, Z. & Diener, H. C. Central poststroke pain in a consecutive cohort of stroke patients. Cerebrovasc. Dis. 14, 261–263 (2002).

    PubMed  Google Scholar 

  9. Widar, M., Samuelsson, L., Karlsson-Tivenius, S. & Ahlström, G. Long-term pain conditions after a stroke. J. Rehabil. Med. 34, 165–170 (2002).

    PubMed  Google Scholar 

  10. Kong, K. H., Woon, V. C. & Yang, S. Y. Prevalence of chronic pain and its impact on health-related quality of life in stroke survivors. Arch. Phys. Med. Rehabil. 85, 35–40 (2004).

    PubMed  Google Scholar 

  11. Jönsson, A. C., Lindgren, I., Hallström, B., Norrving, B. & Lindgren, A. Prevalence and intensity of pain after stroke: a population based study focusing on patients' perspectives. J. Neurol. Neurosurg. Psychiatry 77, 590–595 (2006).

    PubMed  Google Scholar 

  12. Lundström, E., Smits, A., Terent, A. & Borg, J. Risk factors for stroke-related pain 1 year after first-ever stroke. Eur. J. Neurol. 16, 188–193 (2009).

    PubMed  Google Scholar 

  13. Klit, H., Finnerup, N. B., Andersen, G. & Jensen, T. S. Central poststroke pain: a population-based study. Pain 152, 818–824 (2011).

    PubMed  Google Scholar 

  14. Raffaeli, W., Minella, C. E., Magnani, F. & Sarti, D. Population-based study of central post-stroke pain in Rimini district, Italy. J. Pain Res. 6, 705–711 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. Harno, H. et al. Central poststroke pain in young ischemic stroke survivors in the Helsinki Young Stroke Registry. Neurology 83, 1147–1154 (2014).

    PubMed  Google Scholar 

  16. O'Donnell, M. J. et al. Chronic pain syndromes after ischemic stroke: PRoFESS trial. Stroke 44, 1238–1243 (2013).

    PubMed  Google Scholar 

  17. Boivie, J., Leijon, G. & Johansson, I. Central post-stroke pain—a study of the mechanisms through analyses of the sensory abnormalities. Pain 37, 173–185 (1989).

    CAS  PubMed  Google Scholar 

  18. Holmgren, H., Leijon, G., Boivie, J., Johansson, I. & Ilievska, L. Central post-stroke pain—somatosensory evoked potentials in relation to location of the lesion and sensory signs. Pain 40, 43–52 (1990).

    CAS  PubMed  Google Scholar 

  19. Vestergaard, K. et al. Sensory abnormalities in consecutive, unselected patients with central post-stroke pain. Pain 61, 177–186 (1995).

    CAS  PubMed  Google Scholar 

  20. Leijon, G., Boivie, J. & Johansson, I. Central post-stroke pain—neurological symptoms and pain characteristics. Pain 36, 13–25 (1989).

    CAS  PubMed  Google Scholar 

  21. Bowsher, D., Leijon, G. & Thuomas, K. A. Central poststroke pain: correlation of MRI with clinical pain characteristics and sensory abnormalities. Neurology 51, 1352–1358 (1998).

    CAS  PubMed  Google Scholar 

  22. MacGowan, D. J. et al. Central poststroke pain and Wallenberg's lateral medullary infarction: frequency, character, and determinants in 63 patients. Neurology 49, 120–125 (1997).

    CAS  PubMed  Google Scholar 

  23. Lampl, C., Yazdi, K. & Roper, C. Amitriptyline in the prophylaxis of central poststroke pain. Preliminary results of 39 patients in a placebo-controlled, long-term study. Stroke 33, 3030–3032 (2002).

    CAS  PubMed  Google Scholar 

  24. Lenz, F. A. et al. Thermal and pain sensations evoked by microstimulation in the area of human ventrocaudal nucleus. J. Neurophysiol. 70, 200–212 (1993).

    CAS  PubMed  Google Scholar 

  25. Kumar, B., Kalita, J., Kumar, G. & Misra, U. K. Central poststroke pain: a review of pathophysiology and treatment. Anesth. Analg. 108, 1645–1657 (2009).

    PubMed  Google Scholar 

  26. Kumar, G. & Soni, C. R. Central post-stroke pain: current evidence. J. Neurol. Sci. 284, 10–17 (2009).

    PubMed  Google Scholar 

  27. Flaster, M., Meresh, E., Rao, M. & Biller, J. Central poststroke pain: current diagnosis and treatment. Top. Stroke Rehabil. 20, 116–123 (2013).

    PubMed  Google Scholar 

  28. Krause, T. et al. Thalamic sensory strokes with and without pain: differences in lesion patterns in the ventral posterior thalamus. J. Neurol. Neurosurg. Psychiatry 83, 776–784 (2012).

    PubMed  Google Scholar 

  29. Sprenger, T. et al. Assessing the risk of central post-stroke pain of thalamic origin by lesion mapping. Brain 135, 2536–2545 (2012).

    PubMed  Google Scholar 

  30. Craig, A. D., Bushnell, M. C., Zhang, E. T. & Blomqvist, A. A thalamic nucleus specific for pain and temperature sensation. Nature 372, 770–773 (1994).

    CAS  PubMed  Google Scholar 

  31. Kim, J. S. Central post-stroke pain or paresthesia in lenticulocapsular hemorrhages. Neurology 61, 679–682 (2003).

    PubMed  Google Scholar 

  32. Garcia-Larrea, L. et al. Operculo-insular pain (parasylvian pain): a distinct central pain syndrome. Brain 133, 2528–2539 (2010).

    PubMed  Google Scholar 

  33. Kim, J. S. Patterns of sensory abnormality in cortical stroke: evidence for a dichotomized sensory system. Neurology 68, 174–180 (2007).

    PubMed  Google Scholar 

  34. Treede, R. D. et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 70, 1630–1635 (2008).

    CAS  PubMed  Google Scholar 

  35. Bowsher, D. Central pain: clinical and physiological characteristics. J. Neurol. Neurosurg. Psychiatry 61, 62–69 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Melzack, R. & Wall, P. D. Pain mechanisms: a new theory. Science 150, 971–979 (1965).

    CAS  Google Scholar 

  37. Vogt, B. A. & Sikes, R. W. The medial pain system, cingulate cortex, and parallel processing of nociceptive information. Prog. Brain Res. 122, 223–235 (2000).

    CAS  PubMed  Google Scholar 

  38. Apkarian, A. V., Baliki, M. N. & Geha, P. Y. Towards a theory of chronic pain. Prog. Neurobiol. 87, 81–97 (2009).

    PubMed  Google Scholar 

  39. Mano, H. & Seymour, B. Pain: a distributed brain information network? PLoS Biol. 13, e1002037 (2015).

    PubMed  PubMed Central  Google Scholar 

  40. Greenspan, J. D., Ohara, S., Sarlani, E. & Lenz, F. A. Allodynia in patients with post-stroke central pain (CPSP) studied by statistical quantitative sensory testing within individuals. Pain 109, 357–366 (2004).

    CAS  PubMed  Google Scholar 

  41. Lenz, F. A., Kwan, H. C., Dostrovsky, J. O. & Tasker, R. R. Characteristics of the bursting pattern of action potentials that occurs in the thalamus of patients with central pain. Brain Res. 496, 357–360 (1989).

    CAS  PubMed  Google Scholar 

  42. Craig, A. D., Reiman, E. M., Evans, A. & Bushnell, M. C. Functional imaging of an illusion of pain. Nature 384, 258–260 (1996).

    CAS  PubMed  Google Scholar 

  43. Craig, A. D. in Central Neuropathic Pain: Focus on Poststroke Pain (eds Henry, J. L. et al.) 81–99 (IASP Press, 2007).

    Google Scholar 

  44. Craig, A. D. & Bushnell, M. C. The thermal grill illusion: unmasking the burn of cold pain. Science 265, 252–255 (1994).

    CAS  PubMed  Google Scholar 

  45. Kern, D., Pelle-Lancien, E., Luce, V. & Bouhassira, D. Pharmacological dissection of the paradoxical pain induced by a thermal grill. Pain 135, 291–299 (2008).

    CAS  PubMed  Google Scholar 

  46. Craig, A. D. Can the basis for central neuropathic pain be identified by using a thermal grill? Pain 135, 215–216 (2008).

    PubMed  Google Scholar 

  47. Kim, J. H., Greenspan, J. D., Coghill, R. C., Ohara, S. & Lenz, F. A. Lesions limited to the human thalamic principal somatosensory nucleus (ventral caudal) are associated with loss of cold sensations and central pain. J. Neurosci. 27, 4995–5004 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Garcia-Larrea, L. et al. Laser-evoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain. Brain 125, 2766–2781 (2002).

    PubMed  Google Scholar 

  49. Radhakrishnan, V. et al. A comparison of the burst activity of lateral thalamic neurons in chronic pain and non-pain patients. Pain 80, 567–575 (1999).

    CAS  PubMed  Google Scholar 

  50. Wang, G. & Thompson, S. M. Maladaptive homeostatic plasticity in a rodent model of central pain syndrome: thalamic hyperexcitability after spinothalamic tract lesions. J. Neurosci. 28, 11959–11969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ducreux, D., Attal, N., Parker, F. & Bouhassira, D. Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain 129, 963–976 (2006).

    PubMed  Google Scholar 

  52. Casey, K. L. et al. Psychophysical and cerebral responses to heat stimulation in patients with central pain, painless central sensory loss, and in healthy persons. Pain 153, 331–341 (2012).

    PubMed  Google Scholar 

  53. Willoch, F. et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 108, 213–220 (2004).

    CAS  PubMed  Google Scholar 

  54. Krause, T. et al. The cortical signature of central poststroke pain: gray matter decreases in somatosensory, insular, and prefrontal cortices. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhu177.

  55. Soria, E. D. & Fine, E. J. Disappearance of thalamic pain after parietal subcortical stroke. Pain 44, 285–288 (1991).

    CAS  PubMed  Google Scholar 

  56. Helmchen, C., Lindig, M., Petersen, D. & Tronnier, V. Disappearance of central thalamic pain syndrome after contralateral parietal lobe lesion: implications for therapeutic brain stimulation. Pain 98, 325–330 (2002).

    CAS  PubMed  Google Scholar 

  57. Baliki, M. N., Mansour, A. R., Baria, A. T. & Apkarian, A. V. Functional reorganization of the default mode network across chronic pain conditions. PLoS ONE 9, e106133 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Farmer, M. A., Baliki, M. N. & Apkarian, A. V. A dynamic network perspective of chronic pain. Neurosci. Lett. 520, 197–203 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Frese, A., Husstedt, I. W., Ringelstein, E. B. & Evers, S. Pharmacologic treatment of central post-stroke pain. Clin. J. Pain 22, 252–260 (2006).

    CAS  PubMed  Google Scholar 

  60. Leijon, G. & Boivie, J. Central post-stroke pain—a controlled trial of amitriptyline and carbamazepine. Pain 36, 27–36 (1989).

    CAS  PubMed  Google Scholar 

  61. Vestergaard, K., Andersen, G., Gottrup, H., Kristensen, B. T. & Jensen, T. S. Lamotrigine for central poststroke pain: a randomized controlled trial. Neurology 56, 184–190 (2001).

    CAS  PubMed  Google Scholar 

  62. Attal, N. et al. Intravenous lidocaine in central pain: a double-blind, placebo-controlled, psychophysical study. Neurology 54, 564–574 (2000).

    CAS  PubMed  Google Scholar 

  63. Canavero, S. & Bonicalzi, V. Intravenous subhypnotic propofol in central pain: a double-blind, placebo-controlled, crossover study. Clin. Neuropharmacol. 27, 182–186 (2004).

    CAS  PubMed  Google Scholar 

  64. Vranken, J. H. et al. Pregabalin in patients with central neuropathic pain: a randomized, double-blind, placebo-controlled trial of a flexible-dose regimen. Pain 136, 150–157 (2008).

    CAS  PubMed  Google Scholar 

  65. Kim, J. S. et al. Safety and efficacy of pregabalin in patients with central post-stroke pain. Pain 152, 1018–1023 (2011).

    CAS  PubMed  Google Scholar 

  66. Jungehulsing, G. J. et al. Levetiracetam in patients with central neuropathic post-stroke pain—a randomized, double-blind, placebo-controlled trial. Eur. J. Neurol. 20, 331–337 (2013).

    CAS  PubMed  Google Scholar 

  67. Mazars, G. J. Intermittent stimulation of nucleus ventralis posterolateralis for intractable pain. Surg. Neurol. 4, 93–95 (1975).

    CAS  PubMed  Google Scholar 

  68. Hosobuchi, Y., Adams, J. E. & Rutkin, B. Chronic thalamic stimulation for the control of facial anesthesia dolorosa. Arch. Neurol. 29, 158–161 (1973).

    CAS  PubMed  Google Scholar 

  69. Adams, J. E., Hosobuchi, Y. & Fields, H. L. Stimulation of internal capsule for relief of chronic pain. J. Neurosurg. 41, 740–744 (1974).

    CAS  PubMed  Google Scholar 

  70. Richardson, D. E. & Akil, H. Long term results of periventricular gray self-stimulation. Neurosurgery 1, 199–202 (1977).

    CAS  PubMed  Google Scholar 

  71. Turnbull, I. M., Shulman, R. & Woodhurst, W. B. Thalamic stimulation for neuropathic pain. J. Neurosurg. 52, 486–493 (1980).

    CAS  PubMed  Google Scholar 

  72. Hosobuchi, Y. Subcortical electrical stimulation for control of intractable pain in humans. Report of 122 cases (1970–1984). J. Neurosurg. 64, 543–553 (1986).

    CAS  PubMed  Google Scholar 

  73. Levy, R. M., Lamb, S. & Adams, J. E. Treatment of chronic pain by deep brain stimulation: long term follow-up and review of the literature. Neurosurgery 21, 885–893 (1987).

    CAS  PubMed  Google Scholar 

  74. Kumar, K., Toth, C. & Nath, R. K. Deep brain stimulation for intractable pain: a 15-year experience. Neurosurgery 40, 736–746 (1997).

    CAS  PubMed  Google Scholar 

  75. Katayama, Y. et al. Motor cortex stimulation for post-stroke pain: comparison of spinal cord and thalamic stimulation. Stereotact. Funct. Neurosurg. 77, 183–186 (2001).

    CAS  PubMed  Google Scholar 

  76. Hamani, C. et al. Deep brain stimulation for chronic neuropathic pain: long-term outcome and the incidence of insertional effect. Pain 125, 188–196 (2006).

    PubMed  Google Scholar 

  77. Owen, S. L., Green, A. L., Stein, J. F. & Aziz, T. Z. Deep brain stimulation for the alleviation of post-stroke neuropathic pain. Pain 120, 202–206 (2006).

    PubMed  Google Scholar 

  78. Rasche, D., Rinaldi, P. C., Young, R. F. & Tronnier, V. M. Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg. Focus 21, E8 (2006).

    PubMed  Google Scholar 

  79. Boccard, S. G. et al. Targeting the affective component of chronic pain: a case series of deep brain stimulation of the anterior cingulate cortex. Neurosurgery 74, 628–635 (2014).

    PubMed  Google Scholar 

  80. Cruccu, G. et al. EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur. J. Neurol. 14, 952–970 (2007).

    CAS  PubMed  Google Scholar 

  81. Nguyen, J. P., Nizard, J., Keravel, Y. & Lefaucheur, J. P. Invasive brain stimulation for the treatment of neuropathic pain. Nat. Rev. Neurol. 7, 699–709 (2011).

    CAS  PubMed  Google Scholar 

  82. Bittar, R. G. et al. Deep brain stimulation for pain relief: a meta-analysis. J. Clin. Neurosci. 12, 515–519 (2005).

    PubMed  Google Scholar 

  83. Dworkin, R. H. et al. Interventional management of neuropathic pain: NeuPSIG recommendations. Pain 154, 2249–2261 (2013).

    PubMed  PubMed Central  Google Scholar 

  84. Levy, R., Deer, T. R. & Henderson, J. Intracranial neurostimulation for pain control: a review. Pain Physician 13, 157–165 (2010).

    PubMed  Google Scholar 

  85. Tsubokawa, T., Katayama, Y., Yamamoto, T., Hirayama, T. & Koyama, S. Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir. Suppl. (Wien) 52, 137–139 (1991).

    CAS  Google Scholar 

  86. Tsubokawa, T., Katayama, Y., Yamamoto, T., Hirayama, T. & Koyama, S. Chronic motor cortex stimulation in patients with thalamic pain. J. Neurosurg. 78, 393–401 (1993).

    CAS  PubMed  Google Scholar 

  87. Tsubokawa, T., Katayama, Y., Yamamoto, T., Hirayama, T. & Koyama, S. Treatment of thalamic pain by chronic motor cortex stimulation. Pacing Clin. Electrophysiol. 14, 131–134 (1991).

    CAS  PubMed  Google Scholar 

  88. Katayama, Y., Fukaya, C. & Yamamoto, T. Poststroke pain control by chronic motor cortex stimulation: neurological characteristics predicting a favorable response. J. Neurosurg. 89, 585–591 (1998).

    CAS  PubMed  Google Scholar 

  89. Nguyen, J. P. et al. Chronic motor cortex stimulation in the treatment of central and neuropathic pain. Correlations between clinical, electrophysiological and anatomical data. Pain 82, 245–251 (1999).

    CAS  PubMed  Google Scholar 

  90. Nandi, D. et al. Peri-ventricular grey stimulation versus motor cortex stimulation for post stroke neuropathic pain. J. Clin. Neurosci. 9, 557–561 (2002).

    PubMed  Google Scholar 

  91. Brown, J. A. & Pilitsis, J. G. Motor cortex stimulation for central and neuropathic facial pain: a prospective study of 10 patients and observations of enhanced sensory and motor function during stimulation. Neurosurgery 56, 290–297 (2005).

    PubMed  Google Scholar 

  92. Gharabaghi, A. et al. Volumetric image guidance for motor cortex stimulation: integration of three-dimensional cortical anatomy and functional imaging. Neurosurgery 57, 114–120 (2005).

    PubMed  Google Scholar 

  93. Nuti, C. et al. Motor cortex stimulation for refractory neuropathic pain: four year outcome and predictors of efficacy. Pain 118, 43–52 (2005).

    PubMed  Google Scholar 

  94. Pirotte, B. et al. Combination of functional magnetic resonance imaging-guided neuronavigation and intraoperative cortical brain mapping improves targeting of motor cortex stimulation in neuropathic pain. Neurosurgery 56 (2 Suppl.), 344–359 (2005).

    PubMed  Google Scholar 

  95. Rasche, D., Ruppolt, M., Stippich, C., Unterberg, A. & Tronnier, V. M. Motor cortex stimulation for long-term relief of chronic neuropathic pain: a 10 year experience. Pain 121, 43–52 (2006).

    PubMed  Google Scholar 

  96. Hosomi, K. et al. Electrical stimulation of primary motor cortex within the central sulcus for intractable neuropathic pain. Clin. Neurophysiol. 119, 993–1001 (2008).

    PubMed  Google Scholar 

  97. Velasco, F. et al. Efficacy of motor cortex stimulation in the treatment of neuropathic pain: a randomized double-blind trial. J. Neurosurg. 108, 698–706 (2008).

    PubMed  Google Scholar 

  98. Lefaucheur, J. P., Keravel, Y. & Nguyen, J. P. Treatment of poststroke pain by epidural motor cortex stimulation with a new octopolar lead. Neurosurgery 68 (1 Suppl. Operative), 180–187 (2011).

    PubMed  Google Scholar 

  99. Tanei, T. et al. Efficacy of motor cortex stimulation for intractable central neuropathic pain: comparison of stimulation parameters between post-stroke pain and other central pain. Neurol. Med. Chir. (Tokyo) 51, 8–14 (2011).

    Google Scholar 

  100. Sachs, A. J., Babu, H., Su, Y. F., Miller, K. J. & Henderson, J. M. Lack of efficacy of motor cortex stimulation for the treatment of neuropathic pain in 14 patients. Neuromodulation 17, 303–310 (2014).

    PubMed  Google Scholar 

  101. Fontaine, D., Hamani, C. & Lozano, A. Efficacy and safety of motor cortex stimulation for chronic neuropathic pain: critical review of the literature. J. Neurosurg. 110, 251–256 (2009).

    PubMed  Google Scholar 

  102. Saitoh, Y. & Yoshimine, T. Stimulation of primary motor cortex for intractable deafferentation pain. Acta Neurochir. Suppl. 97, 51–56 (2007).

    CAS  PubMed  Google Scholar 

  103. Lefaucheur, J. P., Ménard-Lefaucheur, I., Goujon, C., Keravel, Y. & Nguyen, J. P. Predictive value of rTMS in the identification of responders to epidural motor cortex stimulation therapy for pain. J. Pain 12, 1102–1111 (2011).

    PubMed  Google Scholar 

  104. André-Obadia, N. et al. Transcranial magnetic stimulation for pain control. Double-blind study of different frequencies against placebo, and correlation with motor cortex stimulation efficacy. Clin. Neurophysiol. 117, 1536–1544 (2006).

    PubMed  Google Scholar 

  105. André-Obadia, N. et al. Is life better after motor cortex stimulation for pain control? Results at long-term and their prediction by preoperative rTMS. Pain Physician 17, 53–62 (2014).

    PubMed  Google Scholar 

  106. Migita, K., Uozumi, T., Arita, K. & Monden, S. Transcranial magnetic coil stimulation of motor cortex in patients with central pain. Neurosurgery 36, 1037–1039 (1995).

    CAS  PubMed  Google Scholar 

  107. de Oliveira, R. A. et al. Repetitive transcranial magnetic stimulation of the left premotor/dorsolateral prefrontal cortex does not have analgesic effect on central post-stroke pain. J. Pain 15, 1271–1281 (2014).

    PubMed  Google Scholar 

  108. Lefaucheur, J. P., Drouot, X., Keravel, Y. & Nguyen, J. P. Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex. Neuroreport 12, 2963–2965 (2001).

    CAS  PubMed  Google Scholar 

  109. Lefaucheur, J. P., Drouot, X. & Nguyen, J. P. Interventional neurophysiology for pain control: duration of pain relief following repetitive transcranial magnetic stimulation of the motor cortex. Neurophysiol. Clin. 31, 247–252 (2001).

    CAS  PubMed  Google Scholar 

  110. Lefaucheur, J. P. et al. Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the origin and the site of pain. J. Neurol. Neurosurg. Psychiatry 75, 612–616 (2004).

    PubMed  PubMed Central  Google Scholar 

  111. Khedr, E. M. et al. Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain. J. Neurol. Neurosurg. Psychiatry 76, 833–838 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hirayama, A. et al. Reduction of intractable deafferentation pain by navigation-guided repetitive transcranial magnetic stimulation of the primary motor cortex. Pain 122, 22–27 (2006).

    PubMed  Google Scholar 

  113. Lefaucheur, J. P., Drouot, X., Menard-Lefaucheur, I., Keravel, Y. & Nguyen, J. P. Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology 67, 1568–1574 (2006).

    CAS  PubMed  Google Scholar 

  114. Saitoh, Y. et al. Reduction of intractable deafferentation pain due to spinal cord or peripheral lesion by high-frequency repetitive transcranial magnetic stimulation of the primary motor cortex. J. Neurosurg. 107, 555–559 (2007).

    PubMed  Google Scholar 

  115. André-Obadia, N., Mertens, P., Gueguen, A., Peyron, R. & Garcia-Larrea, L. Pain relief by rTMS: differential effect of current flow but no specific action on pain subtypes. Neurology 71, 833–840 (2008).

    PubMed  Google Scholar 

  116. Lefaucheur, J. P., Drouot, X., Ménard-Lefaucheur, I., Keravel, Y. & Nguyen, J. P. Motor cortex rTMS in chronic neuropathic pain: pain relief is associated with thermal sensory perception improvement. J. Neurol. Neurosurg. Psychiatry 79, 1044–1049 (2008).

    PubMed  Google Scholar 

  117. André-Obadia, N., Magnin, M. & Garcia-Larrea, L. On the importance of placebo timing in rTMS studies for pain relief. Pain 152, 1233–1237 (2011).

    PubMed  Google Scholar 

  118. Hosomi, K. et al. Daily repetitive transcranial magnetic stimulation of primary motor cortex for neuropathic pain: a randomized, multicenter, double-blind, crossover, sham-controlled trial. Pain 154, 1065–1072 (2013).

    PubMed  Google Scholar 

  119. Goto, T. et al. Diffusion tensor fiber tracking in patients with central post-stroke pain; correlation with efficacy of repetitive transcranial magnetic stimulation. Pain 140, 509–518 (2008).

    PubMed  Google Scholar 

  120. O'Connell, N. E., Wand, B. M., Marston, L., Spencer, S. & Desouza, L. H. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database of Systematic Reviews, Issue 4. Art No.: CD008208. http://dx.doi.org/10.1002/14651858.CD008208.pub3.

  121. Lefaucheur, J. P. et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 125, 2150–2206 (2014).

    PubMed  Google Scholar 

  122. Leung, A. et al. rTMS for suppressing neuropathic pain: a meta-analysis. J. Pain 10, 1205–1216 (2009).

    PubMed  Google Scholar 

  123. Lima, M. C. & Fregni, F. Motor cortex stimulation for chronic pain: systematic review and meta-analysis of the literature. Neurology 70, 2329–2337 (2008).

    PubMed  Google Scholar 

  124. Lefaucheur, J. P. Principles of therapeutic use of transcranial and epidural cortical stimulation. Clin. Neurophysiol. 119, 2179–2184 (2008).

    PubMed  Google Scholar 

  125. Hosomi, K. et al. Cortical excitability changes after high-frequency repetitive transcranial magnetic stimulation for central poststroke pain. Pain 154, 1352–1357 (2013).

    PubMed  Google Scholar 

  126. Ohn, S. H. et al. Neural correlates of the antinociceptive effects of repetitive transcranial magnetic stimulation on central pain after stroke. Neurorehabil. Neural Repair 26, 344–352 (2012).

    PubMed  Google Scholar 

  127. Lefaucheur, J. P. The use of repetitive transcranial magnetic stimulation (rTMS) in chronic neuropathic pain. Neurophysiol. Clin. 36, 117–124 (2006).

    CAS  PubMed  Google Scholar 

  128. Simpson, B. A. Spinal cord stimulation in 60 cases of intractable pain. J. Neurol. Neurosurg. Psychiatry 54, 196–199 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Aly, M. M. et al. Spinal cord stimulation for central poststroke pain. Neurosurgery 67 (2 Suppl. Operative), ons206–ons212 (2010).

    PubMed  Google Scholar 

  130. Linderoth, B. Spinal cord stimulation: a brief update on mechanisms of action. Eur. J. Pain. Supp. 3, 89–93 (2009).

    Google Scholar 

  131. Yakhnitsa, V., Linderoth, B. & Meyerson, B. A. Spinal cord stimulation attenuates dorsal horn neuronal hyperexcitability in a rat model of mononeuropathy. Pain 79, 223–233 (1999).

    CAS  PubMed  Google Scholar 

  132. Kishima, H. et al. Modulation of neuronal activity after spinal cord stimulation for neuropathic pain; H215O PET study. Neuroimage 49, 2564–2569 (2010).

    PubMed  Google Scholar 

  133. Hayashi, M. et al. Outcome after pituitary radiosurgery for thalamic pain syndrome. Int. J. Radiat. Oncol. Biol. Phys. 69, 852–857 (2007).

    PubMed  Google Scholar 

  134. Bae, S. H., Kim, G. D. & Kim, K. Y. Analgesic effect of transcranial direct current stimulation on central post-stroke pain. Tohoku J. Exp. Med. 234, 189–195 (2014).

    PubMed  Google Scholar 

  135. Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L. & Sporns, O. Modeling the impact of lesions in the human brain. PLoS Comput. Biol. 5, e1000408 (2009).

    PubMed  PubMed Central  Google Scholar 

  136. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    CAS  PubMed  Google Scholar 

  137. Bainton, T., Fox, M., Bowsher, D. & Wells, C. A double-blind trial of naloxone in central post-stroke pain. Pain 48, 159–162 (1992).

    CAS  PubMed  Google Scholar 

  138. Attal, N. et al. Effects of IV morphine in central pain: a randomized placebo-controlled study. Neurology 58, 554–563 (2002).

    CAS  PubMed  Google Scholar 

  139. Vranken, J. H., Dijkgraaf, M. G., Kruis, M. R., van Dasselaar, N. T. & van der Vegt, M. H. Iontophoretic administration of S+-ketamine in patients with intractable central pain: a placebo-controlled trial. Pain 118, 224–231 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms Keiko Sano for her assistance in preparing artwork. K.H., B.S. and Y.S. are supported by the Strategic Research Program for Brain Sciences from the Ministry of Education, Culture, Sports, Science and Technology of Japan. B.S. is also funded by the Wellcome Trust (UK) and the National Institute of Information and Communications Technology (Japan). Y.S. is also supported by the Japanese Ministry of Health, Labour and Welfare.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, discussion of the content, writing the article and reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Youichi Saitoh.

Ethics declarations

Competing interests

K.H. and Y.S. have received support from Teijin Pharma. B.S. declares no competing interests.

Supplementary information

Supplementary Table 1

Stimulation targets in studies of deep brain stimulation (DOCX 21 kb)

Supplementary Table 2

Details of experimental design in studies of high-frequency repetitive transcranial magnetic stimulation of the primary motor cortex (DOCX 25 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosomi, K., Seymour, B. & Saitoh, Y. Modulating the pain network—neurostimulation for central poststroke pain. Nat Rev Neurol 11, 290–299 (2015). https://doi.org/10.1038/nrneurol.2015.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing