Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Brain health and shared risk factors for dementia and stroke

Abstract

Impaired brain health encompasses a range of clinical outcomes, including stroke, dementia, vascular cognitive impairment, cognitive ageing, and vascular functional impairment. Conditions associated with poor brain health represent leading causes of global morbidity and mortality, with projected increases in public health burden as the population ages. Many vascular risk factors are shared predictors for poor brain health. Moreover, subclinical brain MRI markers of vascular damage are risk factors shared between stroke and dementia, and can be used for risk stratification and early intervention. The broad concept of brain health has resulted in a conceptual shift from vascular risk factors to determinants of brain health. Global campaigns to reduce cardiovascular diseases by targeting modifiable risk factors are necessary and will have a broad impact on brain health. Research is needed on the distinct and overlapping aetiologies of brain health conditions, and to define MRI markers to help clinicians identify patients who will benefit from aggressive prevention measures.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The ideal cardiovascular health factors.
Figure 2: Cardiovascular health factors correlate with cognitive processing speed.
Figure 3: Examples of WMHs as seen on MRI.

References

  1. Dhamoon, M. S., Dong, C., Elkind, M.S. & Sacco, R. L. Ideal cardiovascular health predicts functional status independently of vascular events: the Northern Manhattan Study. J. Am. Heart Assoc. http://dx.doi.org/10.1161/JAHA.114.001322.

  2. Feigin, V. L. et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 383, 245–254 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  3. Murray, C. J. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

    Article  PubMed  Google Scholar 

  4. Ferri, C. P. et al. Global prevalence of dementia: a Delphi consensus study. Lancet 366, 2112–2117 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  5. Brookmeyer, R., Johnson, E., Ziegler-Graham, K. & Arrighi, H. M. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement. 3, 186–191 (2007).

    PubMed  Article  Google Scholar 

  6. World Health Report 2003—Shaping the Future. World Health Organization [online], (2003).

  7. Wimo, A. et al. The worldwide economic impact of dementia 2010. Alzheimers Dement. 9, 1.e3–11.e3 (2013).

    Google Scholar 

  8. Leblanc, G. G., Meschia, J. F., Stuss, D. T. & Hachinski, V. Genetics of vascular cognitive impairment: the opportunity and the challenges. Stroke 37, 248–255 (2006).

    PubMed  Article  Google Scholar 

  9. Rundek, T. et al. Insulin resistance and risk of ischemic stroke among nondiabetic individuals from the Northern Manhattan study. Arch. Neurol. 67, 1195–1200 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  10. Boden-Albala, B. et al. Metabolic syndrome and ischemic stroke risk: Northern Manhattan Study. Stroke 39, 30–35 (2008).

    PubMed  Article  Google Scholar 

  11. Willey, J. Z. et al. Population attributable risks of hypertension and diabetes for cardiovascular disease and stroke in the northern Manhattan study. J. Am. Heart Assoc. 3, e001106 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  12. Suk, S. H. et al. Abdominal obesity and risk of ischemic stroke: the Northern Manhattan Stroke Study. Stroke 34, 1586–1592 (2003).

    PubMed  Article  Google Scholar 

  13. Elkind, M. S. et al. Infectious burden and risk of stroke: the northern Manhattan study. Arch. Neurol. 67, 33–38 (2010).

    PubMed  Article  Google Scholar 

  14. Boden-Albala, B. et al. Daytime sleepiness and risk of stroke and vascular disease: findings from the Northern Manhattan Study (NOMAS). Circ. Cardiovasc. Qual. Outcomes 5, 500–507 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  15. Monteith, T. S., Gardener, H., Rundek, T., Elkind, M. S. & Sacco, R. L. Migraine and risk of stroke in older adults: Northern Manhattan Study. Neurology 85, 715–721 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  16. Gardener, H. et al. Adiponectin and risk of vascular events in the Northern Manhattan study. Atherosclerosis 226, 483–489 (2013).

    CAS  PubMed  Article  Google Scholar 

  17. Nickolas, T. L. et al. The association between kidney disease and cardiovascular risk in a multiethnic cohort: findings from the Northern Manhattan Study (NOMAS). Stroke 39, 2876–2879 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  18. Rundek, T. et al. Carotid plaque, a subclinical precursor of vascular events: the Northern Manhattan Study. Neurology 70, 1200–1207 (2008).

    CAS  PubMed  Article  Google Scholar 

  19. Elkind, M. S. et al. Moderate alcohol consumption reduces risk of ischemic stroke: the Northern Manhattan Study. Stroke 37, 13–19 (2006).

    PubMed  Article  Google Scholar 

  20. Sacco, R. L. et al. The protective effect of moderate alcohol consumption on ischemic stroke. JAMA 281, 53–60 (1999).

    CAS  PubMed  Article  Google Scholar 

  21. Sacco, R. L. et al. Leisure-time physical activity and ischemic stroke risk: the Northern Manhattan Stroke Study. Stroke 29, 380–387 (1998).

    CAS  PubMed  Article  Google Scholar 

  22. Gardener, H. et al. Mediterranean-style diet and risk of ischemic stroke, myocardial infarction, and vascular death: the Northern Manhattan Study. Am. J. Clin. Nutr. 94, 1458–1464 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Gardener, H., Rundek, T., Wright, C. B., Elkind, M. S. & Sacco, R. L. Dietary sodium and risk of stroke in the Northern Manhattan study. Stroke 43, 1200–1205 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Hsei, F. I. & Chiou, H. Y. Stroke: morbidity, risk factors, and care in Taiwan. J. Stroke 16, 59–64 (2014).

    Article  Google Scholar 

  25. Vasiliadis, A. V. & Zikic, M. Current status of stroke epidemiology in Greece: a panorama. Neurol. Neurochir. Pol. 49, 449–457 (2014).

    Article  Google Scholar 

  26. Avezum, Á., Costa-Filho, F. F., Pieri, A., Martins, S. O. & Marin-Neto, J. A. Stroke in Latin America: burden of disease and opportunities for prevention. Glob. Heart http://dx.doi.org/10.1016/j.gheart.2014.01.006.

  27. Sherzai, A. Z. & Elkind, M. S. Advances in stroke prevention. Ann. N. Y. Acad. Sci. 1338, 1–15 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  28. Kannel, W., McGee, D. & Gordon, T. A general cardiovascular risk profile: the Framingham Study. Am. J. Cardiol. 38, 46–51 (1976).

    CAS  PubMed  Article  Google Scholar 

  29. Sacco, R. L. et al. Improving global vascular risk prediction with behavioral and anthropometric factors. The multiethnic NOMAS (Northern Manhattan Cohort Study). J. Am. Coll. Cardiol. 54, 2303–2311 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  30. Committee on the Public Health Dimensions of Cognitive Aging, Board on Health Sciences Policy, Institute of Medicine. Cognitive Aging: Progress in Understanding and Opportunities for Action (eds Blazer, D. G. et al.). (National Academies Press, 2015).

  31. Anstey, K. J., von Sanden, C., Salim, A. & O'Kearney, R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am. J. Epidemiol. 166, 367–378 (2007).

    PubMed  Article  Google Scholar 

  32. Parrott, M. D. & Greenwood, C. E. Dietary influences on cognitive function with aging: from high-fat diets to healthful eating. Ann. N. Y. Acad. Sci. 1114, 389–397 (2007).

    CAS  PubMed  Article  Google Scholar 

  33. Laurin, D., Verreault, R., Lindsay, J., MacPherson, K. & Rockwood, K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch. Neurol. 58, 498–504 (2001).

    CAS  PubMed  Article  Google Scholar 

  34. Wolf, P. A. et al. Relation of obesity to cognitive function: importance of central obesity and synergistic influence of concomitant hypertension. The Framingham Heart Study. Curr. Alzheimer Res. 4, 111–116 (2007).

    CAS  PubMed  Article  Google Scholar 

  35. Hassing, L. B. et al. Comorbid type 2 diabetes mellitus and hypertension exacerbates cognitive decline: evidence from a longitudinal study. Age Ageing 33, 355–361 (2004).

    PubMed  Article  Google Scholar 

  36. Knopman, D. et al. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology 56, 42–48 (2001).

    CAS  PubMed  Article  Google Scholar 

  37. Goldstein, F. C. et al. Effects of hypertension and hypercholesterolemia on cognitive functioning in patients with Alzheimer disease. Alzheimer Dis. Assoc. Disord. 22, 336–342 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  38. Nooyens, A. C., van Gelder, B. M. & Verschuren, W. M. Smoking and cognitive decline among middle-aged men and women: the Doetinchem Cohort Study. Am. J. Public Health 98, 2244–2250 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  39. Arvanitakis, Z., Wilson, R. S., Bienias, J. L., Evans, D. A. & Bennett, D. A. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch. Neurol. 61, 661–666 (2004).

    Article  PubMed  Google Scholar 

  40. Schuur, M. et al. Insulin-resistance and metabolic syndrome are related to executive function in women in a large family-based study. Eur. J. Epidemiol. 25, 561–568 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Breteler, M. M. Vascular involvement in cognitive decline and dementia. Epidemiologic evidence from the Rotterdam Study and the Rotterdam Scan Study. Ann. N. Y. Acad. Sci. 903, 457–465 (2000).

    CAS  PubMed  Article  Google Scholar 

  42. Cerhan, J. R. et al. Correlates of cognitive function in middle-aged adults. Atherosclerosis Risk in Communities (ARIC) Study Investigators. Gerontology 44, 95–105 (1998).

    CAS  PubMed  Article  Google Scholar 

  43. Wright, C. B., Elkind, M. S., Luo, X., Paik, M. C. & Sacco, R. L. Reported alcohol consumption and cognitive decline: the Northern Manhattan study. Neuroepidemiology 27, 201–207 (2006).

    PubMed  Article  Google Scholar 

  44. Vieira, J. R. et al. The metabolic syndrome and cognitive performance: the Northern Manhattan Study. Neuroepidemiology 37, 153–159 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  45. Levin, B. E. et al. Modeling metabolic syndrome and its association with cognition: the Northern Manhattan study. J. Int. Neuropsychol. Soc. 20, 951–960 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  46. Knopman, D. S., Mosley, T. H., Catellier, D. J. & Coker, L. H. Fourteen-year longitudinal study of vascular risk factors, APOE genotype, and cognition: the ARIC MRI Study. Alzheimers Dement. 5, 207–214 (2009).

    PubMed  Article  Google Scholar 

  47. Rawlings, A. M. et al. Diabetes in midlife and cognitive change over 20 years: a cohort study. Ann. Intern. Med. 161, 785–793 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  48. Lloyd-Jones, D. M. et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association's strategic Impact Goal through 2020 and beyond. Circulation 121, 586–613 (2010).

    PubMed  Article  Google Scholar 

  49. Dong, C. et al. Ideal cardiovascular health predicts lower risks of myocardial infarction, stroke, and vascular death across whites, blacks, and hispanics: the Northern Manhattan study. Circulation 125, 2975–2984 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  50. Reis, J. P. et al. Cardiovascular health through young adulthood and cognitive functioning in midlife. Ann. Neurol. 73, 170–179 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  51. Crichton, G. E., Elias, M. F., Davey, A. & Alkerwi, A. Cardiovascular health and cognitive function: the Maine–Syracuse Longitudinal Study. PLoS ONE 9, e89317 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. Nishtala, A. et al. Midlife cardiovascular risk impacts executive function: Framingham offspring study. Alzheimer Dis. Assoc. Disord. 28, 16–22 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Joosten, H. et al. Cardiovascular risk profile and cognitive function in young, middle-aged, and elderly subjects. Stroke 44, 1543–1549 (2013).

    CAS  PubMed  Article  Google Scholar 

  54. Unverzagt, F. W. et al. Vascular risk factors and cognitive impairment in a stroke-free cohort. Neurology 77, 1729–1736 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Kaffashian, S. et al. Predicting cognitive decline: a dementia risk score vs. the Framingham vascular risk scores. Neurology 80, 1300–1306 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  56. Conijn, M. M. et al. Cerebral microbleeds on MR imaging: comparison between 1.5 and 7T. Am. J. Neuroradiol. 32, 1043–1049 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. van Veluw, S. J. et al. Cortical microinfarcts on 3T MRI: Clinical correlates in memory-clinic patients. Alzheimers Dement. http://dx.doi.org/10.1016/j.jalz.2014.12.010.

  58. Prabhakaran, S. et al. Presence of calcified carotid plaque predicts vascular events: the Northern Manhattan Study. Atherosclerosis 195, e197–e201 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Jeerakathil, T. et al. Stroke risk profile predicts white matter hyperintensity volume: the Framingham Study. Stroke 35, 1857–1861 (2004).

    PubMed  Article  Google Scholar 

  60. Martinez-Ramirez, S., Greenberg, S. M. & Viswanathan, A. Cerebral microbleeds: overview and implications in cognitive impairment. Alzheimers Res. Ther. 6, 33 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  61. Marcus, J. et al. Baseline and longitudinal increases in diastolic blood pressure are associated with greater white matter hyperintensity volume: the Northern Manhattan study. Stroke 42, 2639–2641 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  62. Dufouil, C., Alpérovitch, A. & Tzourio, C. Influence of education on the relationship between white matter lesions and cognition. Neurology 60, 831–836 (2003).

    CAS  PubMed  Article  Google Scholar 

  63. Stern, Y. What is cognitive reserve? Theory and research application of the reserve concept. J. Int. Neuropsychol Soc. 8, 448–460 (2002).

    Article  PubMed  Google Scholar 

  64. Lyall, D. M. et al. Are APOE ε genotype and TOMM40 poly-T repeat length associations with cognitive ageing mediated by brain white matter tract integrity? Transl. Psychiatry 4, e449 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  66. Fisher, C. M. Lacunes: small, deep, cerebral infarcts. Neurology 15, 774–784 (1965).

    CAS  PubMed  Article  Google Scholar 

  67. Vermeer, S. E., Longstreth, W. T. Jr & Koudstaal, P. J. Silent brain infarcts: a systematic review. Lancet Neurol. 6, 611–619 (2007).

    PubMed  Article  Google Scholar 

  68. Scarmeas, N. et al. Mediterranean diet and magnetic resonance imaging-assessed cerebrovascular disease. Ann. Neurol. 69, 257–268 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  69. Windham, B. G. et al. Small brain lesions and incident stroke and mortality: a cohort study. Ann. Intern. Med. 163, 22–31 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  70. Yu, L. et al. Purpose in life and cerebral infarcts in community-dwelling older people. Stroke 46, 1071–1076 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  71. Viswanathan, A. & Chabriat, H. Cerebral microhemorrhage. Stroke 37, 550–555 (2006).

    PubMed  Article  Google Scholar 

  72. Staals, J., Makin, S. D., Doubal, F. N., Dennis, M. S. & Wardlaw, J. M. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology 83, 1228–1234 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  73. Ovbiagele, B. & Saver, J. L. Cerebral white matter hyperintensities on MRI: current concepts and therapeutic implications. Cerebrovasc. Dis. 22, 83–90 (2006).

    PubMed  Article  Google Scholar 

  74. Maniega, S. M. et al. White matter hyperintensities and normal-appearing white matter integrity in the aging brain. Neurobiol. Aging 36, 909–918 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  75. Wardlaw, J. M., Valdés Hernández, M. C. & Muñoz-Maniega, S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J. Am. Heart Assoc. http://dx.doi.org/10.1161/JAHA.114.001140.

  76. Debette S. & Markus, H. S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341, c3666 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  77. Debette, S. et al. Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham Offspring Study. Stroke 41, 600–606 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  78. Vermeer, S. E. et al. Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke 34, 1126–1129 (2003).

    PubMed  Article  Google Scholar 

  79. Wright, C. B. et al. White matter hyperintensities and subclinical infarction: associations with psychomotor speed and cognitive flexibility. Stroke 39, 800–805 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  80. Jeerakathil, T. et al. Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke 35, 1831–1835 (2014).

    Article  Google Scholar 

  81. Haley, K. E., Greenberg, S. M. & Gurol, M. E. Cerebral microbleeds and macrobleeds: should they influence our recommendations for antithrombotic therapies? Curr. Cardiol. Rep. 15, 425 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  82. Romero, J. R. et al. Risk factors, stroke prevention treatments, and prevalence of cerebral microbleeds in the Framingham Heart Study. Stroke 45, 1492–1494 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  83. Wiegman, A. F. et al. Cerebral microbleeds in a multiethnic elderly community: demographic and clinical correlates. J. Neurol. Sci. 345, 125–130 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  84. Sveinbjornsdottir, S. et al. Cerebral microbleeds in the population based AGES-Reykjavik study: prevalence and location. J. Neurol. Neurosurg. Psychiatry 79, 1002–1006 (2008).

    CAS  PubMed  Article  Google Scholar 

  85. Akoudad, S. et al. Cerebral microbleeds are associated with an increased risk of stroke: the Rotterdam Study. Circulation 132, 509–516 (2015).

    PubMed  Article  Google Scholar 

  86. Miwa, K. et al. Multiple or mixed cerebral microbleeds and dementia in patients with vascular risk factors. Neurology 83, 646–653 (2014).

    PubMed  Article  Google Scholar 

  87. Gutierrez, J. Dolichoectasia and the risk of stroke and vascular disease: a critical appraisal. Curr. Cardiol. Rep. 16, 525 (2014).

    PubMed  Article  Google Scholar 

  88. Dong, C. et al. Cognitive correlates of white matter lesion load and brain atrophy: the Northern Manhattan Study. Neurology 85, 441–449 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  89. Cao, J. J. et al. Association of carotid artery intima-media thickness, plaques, and C-reactive protein with future cardiovascular disease and all-cause mortality: the Cardiovascular Health Study. Circulation 116, 32–38 (2007).

    PubMed  Article  Google Scholar 

  90. Zakai, N. A. et al. Inflammation and hemostasis biomarkers and cardiovascular risk in the elderly: the Cardiovascular Health Study. J. Throm Haemost. 5, 1128–1135 (2007).

    CAS  Article  Google Scholar 

  91. Ballantyne, C. M. et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident ischemic stroke in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Arch. Intern. Med. 165, 2479–2484 (2005).

    CAS  PubMed  Article  Google Scholar 

  92. Luna, J. M. et al. High-sensitivity C-reactive protein and interleukin-6-dominant inflammation and ischemic stroke risk: the Northern Manhattan study. Stroke 45, 979–987 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Heneka, M. T. et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 14, 388–405 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Engelhart, M. J. et al. Inflammatory proteins in plasma and the risk of dementia: the Rotterdam Study. Arch. Neurol. 61, 668–672 (2004).

    PubMed  Article  Google Scholar 

  95. Elkind, M. S. et al. Infectious burden and carotid plaque thickness: the Northern Manhattan study. Stroke 41, e117–e122 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  96. Katan, M. et al. Infectious burden and cognitive function: the Northern Manhattan Study. Neurology 80, 1209–1215 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  97. Wright, C. B. et al. Infectious burden and cognitive decline in the Northern Manhattan Study. J. Am. Geriatr. Soc. 63, 1540–1545 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  98. Smith, S. C. Jr et al. Our time: a call to save preventable death from cardiovascular disease (heart disease and stroke). Circulation 126, 2769–2775 (2012).

    PubMed  Article  Google Scholar 

  99. Smith, S. C. Jr et al. Moving from political declaration to action on reducing the global burden of cardiovascular diseases: a statement from the global cardiovascular disease taskforce. Circulation 128, 2546–2548 (2013).

    PubMed  Article  Google Scholar 

  100. Zoghbi, W. A. et al. Sustainable development goals and the future of cardiovascular health: a statement from the Global Cardiovascular Disease Taskforce. J. Am. Heart Assoc. 3, e000504 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  101. Beery, K. E. The VMI Developmental Test of Visual Motor Integration (Modern Curriculum Press, 1989).

    Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the National Institute of Neurological Disorders and Stroke (R01 NS29993) and the Evelyn F. McKnight Brain Institute at the Miller School of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching literature for the article, and provided substantial contributions to discussion of the content, and writing, reviewing and editing of the article.

Corresponding author

Correspondence to Ralph L. Sacco.

Ethics declarations

Competing interests

C.B.W. receives royalties for two chapters on vascular dementia in UptoDate.com. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gardener, H., Wright, C., Rundek, T. et al. Brain health and shared risk factors for dementia and stroke. Nat Rev Neurol 11, 651–657 (2015). https://doi.org/10.1038/nrneurol.2015.195

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.195

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing