Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Monoamine neurotransmitter disorders—clinical advances and future perspectives

Key Points

  • Monoamine neurotransmitter disorders are under-recognized and often misdiagnosed, as many mimic cerebral palsy and other neurological disorders

  • 'Red flag' symptoms of monoamine neurotransmitter disorders include diurnal variation of symptoms, a mixed movement disorder, autonomic disturbance, involvement of the eyes (ptosis, oculogyric crisis) and levodopa responsiveness

  • Many monoamine neurotransmitter disorders are amenable to treatment; appropriate therapy is curative in some disorders

  • Analysis of cerebrospinal fluid neurotransmitter levels aids identification of the specific monoamine pathway defect and is vital for accurate diagnosis of most primary neurotransmitter disorders and selection of appropriate disease-specific pharmacotherapy

  • Research in the past few years has identified novel monoamine neurotransmitter disorders that involve defects in dopamine transport and monoamine vesicle packaging

  • Discoveries of novel genetic defects and biomarkers in monoamine neurotransmitter disorders, together with novel disease models, will improve our understanding of pathophysiological mechanisms and facilitate the development of new treatments

Abstract

The monoamine neurotransmitter disorders are important genetic syndromes that cause disturbances in catecholamine (dopamine, noradrenaline and adrenaline) and serotonin homeostasis. These disorders result in aberrant monoamine synthesis, metabolism and transport. The clinical phenotypes are predominantly neurological, and symptoms resemble other childhood neurological disorders, such as dystonic or dyskinetic cerebral palsy, hypoxic ischaemic encephalopathy and movement disorders. As a consequence, monoamine neurotransmitter disorders are under-recognized and often misdiagnosed. The diagnosis of monoamine neurotransmitter disorders requires detailed clinical assessment, cerebrospinal fluid neurotransmitter analysis and further supportive diagnostic investigations. Prompt and accurate diagnosis of neurotransmitter disorders is paramount, as many are responsive to treatment. The treatment is usually mechanism-based, with the aim to reverse disturbances of monoamine synthesis and/or metabolism. Therapeutic intervention can lead to complete resolution of motor symptoms in some conditions, and considerably improve quality of life in others. In this Review, we discuss the clinical features, diagnosis and management of monoamine neurotransmitter disorders, and consider novel concepts, the latest advances in research and future prospects for therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of primary and secondary monoamine neurotransmitter disorders.
Figure 2: Monoamine synthesis and metabolism in neurons.
Figure 3: A guide to the clinical diagnosis of neurotransmitter disorders.
Figure 4: Neurotransmitter profiles, metabolite profiles and other diagnostic investigations in neurotransmitter disorders.

Similar content being viewed by others

References

  1. Goldstein, D. S. Catecholamines in the periphery. Overview. Adv. Pharmacol. 42, 529–539 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Yildiz, O., Smith, J. R. & Purdy, R. E. Serotonin and vasoconstrictor synergism. Life Sci. 62, 1723–1732 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Hoffmann, G. F. & Blau, N. (Eds) Congenital Neurotransmitter Disorders: A Clinical Approach (Nova Science Publishers, 2014).

    Google Scholar 

  4. Blau, N. & Thöny, B. PND database [online] (2015).

    Google Scholar 

  5. Pearl, P. L., Capp, P. K., Novotny, E. J. & Gibson, K. M. Inherited disorders of neurotransmitters in children and adults. Clin. Biochem. 38, 1051–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Assmann, B., Surtees, R. & Hoffmann, G. F. Approach to diagnosis of neurotransmitter diseases exemplified by the differential diagnosis of childhood-onset dystonia. Ann. Neurol. 54 (Suppl. 6), S18–S24 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Kurian, M. A., Gissen, P, Smith, M., Heales, S. Jr & Clayton, P. T. The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol. 10, 721–733 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Fernández-Alvarez, E. Movement disorders in children: recent advances in management. Indian J. Pediatr. 76, 531–536 (2009).

    Article  PubMed  Google Scholar 

  9. Marín-Valencia, I. et al. Biochemical diagnosis of dopaminergic disturbance in paediatric patients: analysis of cerebrospinal fluid homovanillic acid and other biogenic amines. Clin. Biochem. 41, 1306–1315 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Garelis, E., Young, S. N., Lal, S. & Sourkes, T. L. Monoamine metabolites in lumbar CSF: the question of their origin in relation to clinical studies. Brain Res. 79, 1–8 (1974).

    Article  CAS  PubMed  Google Scholar 

  11. McConnell, H. & Bianchine, J. Cerebrospinal fluid. in Neurology and Psychiatry. Ch. 3 35–42 (Chapman & Hall Medical, 1994).

    Google Scholar 

  12. Bräutigam, C., Weykamp, C., Hoffmann, G. F. & Wevers, R. A. Neurotransmitter metabolites in CSF: an external quality control scheme. J. Inherit. Metab. Dis. 25, 287–298 (2002).

    Article  PubMed  Google Scholar 

  13. Hyland, K. et al. Cerebrospinal fluid concentrations of pterins and metabolites of serotonin and dopamine in a pediatric reference population. Pediatr. Res. 34, 10–14 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Segawa, M. Hereditary progressive dystonia with marked diurnal fluctuation. Brain Dev. 33, 195–201 (2011).

    Article  PubMed  Google Scholar 

  15. Opladen, T., Hoffmann, G. F. & Blau, N. An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. J. Inherit. Metab. Dis. 35, 963–973 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Willemsen, M. A. et al. Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 133, 1810–1822 (2010).

    Article  PubMed  Google Scholar 

  17. Yeung, W. L., Lam, C. W., Hui, J., Tong, S. F. & Wu, S. P. Galactorrhea—a strong clinical clue towards the diagnosis of neurotransmitter disease. Brain Dev. 28, 389–391 (2006).

    Article  PubMed  Google Scholar 

  18. Aitkenhead, H. & Heales, S. J. Establishment of paediatric age-related reference intervals for serum prolactin to aid in the diagnosis of neurometabolic conditions affecting dopamine metabolism. Ann. Clin. Biochem. 50, 156–158 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Brun, L. et al. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology 75, 64–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Kurian, M. A. et al. Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism–dystonia. J. Clin. Invest. 119, 1595–1603 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kurian, M. A. et al. Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study. Lancet Neurol. 10, 54–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Rilstone, J. J., Alkhater, R. A. & Minassian, B. A. Brain dopamine–serotonin vesicular transport disease and its treatment. N. Engl. J. Med. 368, 543–550 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Saunders-Pullman, R. et al. Phenylalanine loading as a diagnostic test for DRD: interpreting the utility of the test. Mol. Genet. Metab. 83, 207–212 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Guldberg, P., Henriksen, K. F., Lou, H. C. & Güttler, F. Aberrant phenylalanine metabolism in phenylketonuria heterozygotes. J. Inherit. Metab. Dis. 21, 365–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Opladen, T., Hoffmann, G. F, Kühn, A. A. & Blau, N. Pitfalls in phenylalanine loading test in the diagnosis of dopa-responsive dystonia. Mol. Genet. Metab. 108, 195–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Segawa, M. Autosomal dominant GTP cyclohydrolase 1 (AD GCH 1) deficiency (Segawa disease, dystonia 5; DYT 5). Chang Gung Med. J. 32, 1–11 (2009).

    PubMed  Google Scholar 

  27. Friedman, J. et al. Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann. Neurol. 71, 520–530 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Clot, F. et al. Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with Dopa-responsive dystonia. Brain 132, 1753–1763 (2009).

    Article  PubMed  Google Scholar 

  29. Pons, R. et al. Levodopa-induced dyskinesias in tyrosine hydroxylase deficiency. Mov. Disord. 28, 1058–1063 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. López-Laso, E., Beyer, K., Opladen, T., Artuch, R. & Saunders-Pullman, R. Dyskinesias as a limiting factor in the treatment of Segawa disease. Pediatr. Neurol. 46, 404–406 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Leuzzi, V. et al. Phenotypic variability, neurological outcome and genetics background of 6-pyruvoyl-tetrahydrobiopterin synthase deficiency. Clin. Genet. 77, 249–257 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Ng, J. et al. Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood. Brain 137, 1107–1119 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Timmers, H. J., Deinum, J., Wevers, R. A. & Lenders, J. W. Congenital dopamine-β-hydroxylase deficiency in humans. Ann. N. Y. Acad. Sci. 1018, 520–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Blau, N., van Spronsen, F. J. & Levy, H. L. Phenylketonuria. Lancet 376, 1417–1427 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Furukawa, Y. GTP cyclohydrolase 1-deficient dopa-responsive dystonia. GeneReviews [online] (updated 2015).

    Google Scholar 

  36. Segawa, M., Hosaka, A., Miyagawa, F., Nomura, Y. & Imai, H. Hereditary progressive dystonia with marked diurnal fluctuation. Adv. Neurol. 14, 215–233 (1976).

    CAS  PubMed  Google Scholar 

  37. Trender-Gerhard, I. et al. Autosomal-dominant GTPCH1-deficient DRD: clinical characteristics and long-term outcome of 34 patients. J. Neurol. Neurosurg. Psychiatry 80, 839–845 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, J. H., Ki, C. S., Kim, D. S., Cho, J. W., Park, K. P. & Kim, S. Dopa-responsive dystonia with a novel initiation codon mutation in the GCH1 gene misdiagnosed as cerebral palsy. J. Korean Med. Sci. 26, 1244–1246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jan, M. M. Misdiagnoses in children with dopa-responsive dystonia. Pediatr. Neurol. 31, 298–303 (2004).

    Article  PubMed  Google Scholar 

  40. Dale, R. C. et al. Familial paroxysmal exercise-induced dystonia: atypical presentation of autosomal dominant GTP-cyclohydrolase 1 deficiency. Dev. Med. Child Neurol. 52, 583–586 (2010).

    Article  PubMed  Google Scholar 

  41. Mencacci, N. E. et al. Parkinson's disease in GTP cyclohydrolase 1 mutation carriers. Brain 137, 2480–2492 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lewthwaite, A. J. et al. Novel GCH1 variant in Dopa-responsive dystonia and Parkinson's disease. Parkinsonism Relat. Disord. 21, 394–397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thöny, B & Blau, N. Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase. Hum. Mutat. 27, 870–878 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Steinberger, D. et al., Utility of MLPA in deletion analysis of GCH1 in dopa-responsive dystonia. Neurogenetics 8, 51–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Hwang, W. J., Calne, D. B., Tsui, J. K. & de la Fuente-Fernández, R. The long-term response to levodopa in dopa-responsive dystonia. Parkinsonism Relat. Disord. 8, 1–5 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Sumi-Ichinose, C. et al. Catecholamines and serotonin are differently regulated by tetrahydrobiopterin. A study from 6-pyruvolytetrahydrobiopterin synthase knockout mice. J. Biol. Chem. 276, 41150–41160 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Opladen, T. et al. Clinical and biochemical characterization of patients with early infantile onset of autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia. Mov. Disord. 26, 157–161 (2011).

    Article  PubMed  Google Scholar 

  48. Bonafé, L., Thöny, B., Leimbacher, W., Kierat, L. & Blau, N. Diagnosis of dopa-responsive dystonia and other tetrahydrobiopterin disorders by the study of biopterin metabolism in fibroblasts. Clin. Chem. 47, 477–485 (2001).

    PubMed  Google Scholar 

  49. Horvath, G. A. et al. Autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia: evidence of a phenotypic continuum between dominant and recessive forms. Mol. Genet. Metab. 94, 127–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Longo, N. Disorders of biopterin metabolism. J. Inherit. Metab. Dis. 32, 333–342 (2009).

    Article  PubMed  Google Scholar 

  51. Smith, I. & Dhondt, J. L. Birthweight in patients with defective biopterin metabolism. Lancet 325, 818 (1985).

    Article  Google Scholar 

  52. Jäggi, L. et al. Outcome and long-term follow up of 36 patients with tetrahydrobiopterin deficiency. Mol. Genet. Metab. 93, 295–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Porta, F., Mussa, A., Concolino, D., Spada, M. & Ponzone, A. Dopamine agonists in 6-pyruvoyl tetrahydrobiopterin synthase deficiency. Neurology 73, 633–637 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Dill, P. et al. Child neurology: paroxysmal stiffening, upward gaze, and hypotonia: hallmarks of sepiapterin reductase deficiency. Neurology 78, e29–e32 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Leuzzi, V. et al. Very early pattern of movement disorders in sepiapterin reductase deficiency. Neurology 81, 2141–2142 (2013).

    Article  PubMed  Google Scholar 

  56. Friedman, J., Hyland, K., Blau, N. & MacCollin, M. Dopa-responsive hypersomnia and mixed movement disorder due to sepiapterin reductase deficiency. Neurology 67, 2032–2035 (2006).

    Article  PubMed  Google Scholar 

  57. Neville, B. G., Parascandalo, R., Farrugia, R. & Felice, A. Sepiapterin reductase deficiency: a congenital dopa-responsive motor and cognitive disorder. Brain 128, 2291–2296 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Bonafé, L., Thöny, B., Penzien, J. M., Czarnecki, B. & Blau, N. Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monamine-neurotransmitter deficiency without hyperphenylalaninemia. Am. J. Hum. Genet. 69, 269–277 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Crabtree, M. J. et al. Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin–eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydroxylase I expression. J. Biol. Chem. 284, 1136–1144 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Thöny, B. et al., Mutations in the pterin-4α-carbinolamine dehydratase (PCBD) gene cause a benign form of hyperphenylalaninemia. Hum. Genet. 103, 162–167 (1998).

    Article  PubMed  Google Scholar 

  61. Mendel, D. B. et al. Characterization of a cofactor that regulates dimerization of a mammalian homeodomain protein. Science 254, 1762–1767 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Ferrè, S. et al. Mutations in PCBD1 cause hypomagnesemia and renal magnesium wasting. J. Am. Soc. Nephrol. 25, 574–586 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Simaite, D. et al. Recessive mutations in PCBD1 cause a new type of early-onset diabetes. Diabetes 63, 3557–3564 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Mak, C. M. et al. Biochemical and molecular characterization of tyrosine hydroxylase deficiency in Hong Kong Chinese. Mol. Genet. Metab. 99, 431–433 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Giovanniello, T. et al. Tyrosine hydroxylase deficiency presenting with a biphasic clinical course. Neuropediatrics 38, 213–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Stamelou, M. et al. Myoclonus-dystonia syndrome due to tyrosine hydroxylase deficiency. Neurology 79, 435–441 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Espay, A. J. & Chen, R. Myoclonus. Continuum (Minneap. Minn.) 19, 1264–1286 (2013).

    Google Scholar 

  68. Ortez, C. et al. Cerebrospinal fluid synaptic proteins as useful biomarkers in tyrosine hydroxylase deficiency. Mol. Genet. Metab. 114, 34–40 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Blanchet, P. J., Konitsiotis, S. & Chase, T. N. Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys. Mov. Disord. 13, 798–802 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Lee, H. F., Tsai, C. R., Chi, C. S., Chang, T. M. & Lee, H. J. Aromatic L-amino acid decarboxylase deficiency in Taiwan. Eur. J. Paediatr. Neurol. 13, 135–140 (2009).

    Article  PubMed  Google Scholar 

  71. Mastrangelo, M., Caputi, C., Galosi, S., Giannini, M T. & Leuzzi, V. Transdermal rotigotine in the treatment of aromatic L-amino acid decarboxylase deficiency. Mov. Disord. 28, 556–557 (2013).

    Article  PubMed  Google Scholar 

  72. Arnoux, J. B. et al. Aromatic L-amino acid decarboxylase deficiency is a cause of long-fasting hypoglycaemia. J. Clin. Endocrinol. Metab. 98, 4279–4284 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Leuzzi, V. et al. Report of two never treated adult sisters with aromatic L-amino acid decarboxylase deficiency: a portrait of the natural history of the disease or an expanding phenotype? JIMD Rep. 15, 39–45 (2015).

    PubMed  Google Scholar 

  74. Chen, P. W. et al. Diagnosis of aromatic L-amino acid decarboxylase deficiency by measuring 3-O-methyldopa concentrations in dried blood spots. Clin. Chim. Acta 431, 19–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Atwal, P. S. et al. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma. Mol. Genet. Metab. 115, 91–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Surtees, R. & Hyland, K. L-3,4-dihydroxyphenylalanine (levodopa) lowers central nervous system S-adenosylmethionine concentrations in humans. J. Neurol. Neurosurg. Psychiatry 53, 569–572 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chang, Y. T. et al. Levodopa-responsive aromatic L-amino acid decarboxylase deficiency. Ann. Neurol. 55, 435–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Allen, G. F., Land, J. M. & Heales, S. J. A new perspective on the treatment of aromatic L-amino acid decarboxylase deficiency. Mol. Genet. Metab. 97, 6–14 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Manegold, C. et al. Aromatic L-amino acid decarboxylase deficiency: clinical features, drug therapy and follow-up. J. Inherit. Metab. Dis. 32, 371–380 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Allen, G. F. et al. Pyridoxal 5′-phosphate deficiency causes a loss of aromatic L-amino acid decarboxylase in patients and human neuroblastoma cells, implications for aromatic L-amino acid decarboxylase and vitamin B6 deficiency states. J. Neurochem. 114, 87–96 (2010).

    CAS  PubMed  Google Scholar 

  81. Pons, R. et al. Aromatic L-amino acid decarboxylase deficiency: clinical features, treatment and prognosis. Neurology 62, 1058–1065 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Hyland, K., Surtees, R A., Rodeck, C. & Clayton, P. T. Aromatic L-amino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a new inborn error of neurotransmitter amine synthesis. Neurology 42, 1980–1988 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Maller, A., Hyland, K., Milstein, S., Biaggioni, I. & Butler, I. J. Aromatic L-amino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a second family. J. Child Neurol. 12, 349–354 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Swoboda, K. J., Saul, J. P., McKenna, C. E., Speller, N. B. & Hyland, K. Aromatic L-amino acid decarboxylase deficiency: overview of clinical features and outcomes. Ann. Neurol. 54 (Suppl. 6), S49–S55 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Ng, J., Heales, S. J. & Kurian, M. A. Clinical features and pharmacotherapy of childhood monoamine neurotransmitter disorders. Paediatr. Drugs 16, 275–291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cawello, W. et al. Pharmacokinetics, safety and tolerability of rotigotine transdermal patch in health Japanese and Caucasian subjects. Clin. Drug Investig. 34, 95–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Mills, P. B. et al. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 133, 2148–2159 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mills, P. B. et al. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5′-phosphate oxidase. Hum. Mol. Genet. 14, 1077–1086 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Derwinska, K. et al. Clinical improvement of the aggressive neurobehavioral phenotype in a patient with a deletion of PITX3 and the absence of L-DOPA in the cerebrospinal fluid. Am. J. Med. Genet. B Neuropsychiatr. Genet. 159B, 236–242 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Stockler, S. et al. Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol. Genet. Metab. 104, 48–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Reddy, S. D. et al. Multiple coregulatory control of tyrosine hydroxylase gene transcription. Proc. Natl Acad. Sci. USA 108, 4200–4205 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hwang, D. Y. et al. 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson's disease. J. Neurosci. 25, 2132–2137 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hwang, D. Y., Ardayfio, P., Kang, U. J., Semina, E. V. & Kim, K. S. Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res. Mol. Brain Res. 114, 123–131 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Lenders, J. W. et al. Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes. J. Clin. Invest. 97, 1010–1019 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. O'Leary, R. E. et al. De novo microdeletion of Xp11.3 exclusively encompassing the monoamine oxidase A and B genes in a male infant with episodic hypotonia: a genomics approach to personalized medicine. Eur. J. Med. Genet. 55, 349–353 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gillman. P. K. Advances pertaining to the pharmacology and interactions of irreversible nonselective monoamine oxidase inhibitors. J. Clin. Psychopharmacol. 31, 66–74 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Whibley, A. et al. Deletion of MAOA and MAOB in a male patient causes severe developmental delay, intermittent hypotonia and stereotypical hand movements. Eur. J. Hum. Genet. 18, 1095–1099 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Saito, M. et al. MAOA/B deletion syndrome in male siblings with severe developmental delay and sudden loss of muscle tonus. Brain Dev. 36, 64–69 (2014).

    Article  PubMed  Google Scholar 

  99. Collins, F. A. et al. Clinical, biochemical, and neuropsychiatric evaluation of a patient with a contiguous gene syndrome due to a microdeletion Xp11.3 including the Norrie disease locus and monoamine oxidase (MAOA and MAOB) genes. Am. J. Med. Genet. 42, 127–134 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Chen, K., Holschneider, D. P., Wu, W., Rebrin, I. & Shih, J. C. A spontaneous point mutation produces monoamine oxidase A/B knock-out mice with greatly elevated monoamines and anxiety-like behaviour. J. Biol. Chem. 279, 39645–39652 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Robertson, D. & Garland, E. M. Dopamine beta-hydroxylase deficiency. GeneReviews [online] (updated 2013).

    Google Scholar 

  102. Wassenberg, T. et al. Clinical and biochemical characteristics of dopamine beta hydroxylase deficiency: expanding the clinical spectrum caused by norepinephrine and epinephrine deficiency [poster]. 4th International Symposium on Paediatric Movement Disorders P36 (2015).

  103. Man in 't Veld, A. J. et al. dl-Threo-3,4-dihydroxyphenylserine restores sympathetic control and cures orthostatic hypotension in dopamine beta-hydroxylase deficiency. J. Hypertens. Suppl. 6, S547–S549 (1988).

    Article  PubMed  Google Scholar 

  104. Fon, E. A. et al. Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19, 1271–1283 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Carlsson, A. The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev. 11, 490–493 (1959).

    CAS  PubMed  Google Scholar 

  106. Molero-Luis, M. et al. Homovanillic acid in cerebrospinal fluid of 1388 children with neurological disorders. Dev. Med. Child Neurol. 55, 559–566 (2013).

    Article  PubMed  Google Scholar 

  107. Hansen, F. H. et al. Missense dopamine transporter mutations associated with adult parkinsonism and ADHD. J. Clin. Invest. 124, 3107–3120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bhatia, K. P. 'That DAT'gene that causes dystonia-parkinsonism: broadening the phenotype. Brain 137, 976–977 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. García-Cazorla, A. et al. Secondary abnormalities of neurotransmitters in infants with neurological disorders. Dev. Med. Child Neurol. 49, 740–744 (2007).

    Article  PubMed  Google Scholar 

  110. Marín-Valencia, I. et al. Biochemical diagnosis of dopaminergic disturbances in paediatric patients: analysis of cerebrospinal fluid homovanillic acid and other biogenic amines. Clin. Biochem. 41, 1306–1315 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Duarte, S. et al. Cerebrospinal fluid pterins and neurotransmitters in early severe epileptic encephalopathies. Brain Dev. 30, 106–111 (2008).

    Article  PubMed  Google Scholar 

  112. Mericmek-Mahmutoglu, S. et al. Prevalence of inherited neurotransmitter disorders in patients with movement disorders and epilepsy: a retrospective cohort study. Orphanet J. Rare Dis. 10, 12 (2015).

    Article  Google Scholar 

  113. De Grandis, E. et al. Cerebrospinal fluid alterations of the serotonin product, 5-hydroxyindolacetic acid, in neurological disorders. J. Inherit. Metab. Dis. 33, 803–809 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Naumann, M., Götz, M., Reiners, K., Lange, K. W. & Riederer, P. Neurotransmitters in CSF of idiopathic adult-onset dystonia: reduced 5-HIAA levels as evidence of impaired serotonergic metabolism. J. Neural Transm. 103, 1083–1091 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Assmann, B., Köhler, M., Hoffmann, G. F., Heales, S. & Surtees, R. Selective decrease in central nervous system serotonin turnover in children with dopa-nonresponsive dystonia. Pediatr. Res. 52, 91–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Marecos, C., Ng, J., Kurian, M. A. What is new for monoamine neurotransmitter disorders? J. Inherit. Metab. Dis. 37, 619–626 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Ng, J. et al. TH gene-negative infantile onset severe dopamine deficiency syndrome: a novel neurotransmitter disorder? [abstract]. Dev. Med. Child. Neurol. 55 (Suppl. S1), 16 (2013).

    Google Scholar 

  118. Moran, M. M., Allen, N. M, Treacy, E. P. & King, M. D. “Stiff neonate” with mitochondrial DNA depletion and secondary neurotransmitter defects. Pediatr. Neurol. 45, 403–405 (2011).

    Article  PubMed  Google Scholar 

  119. Werner, E. R. et al. Tetrahydrobiopterin biosynthesic activities in human macrophages, fibroblasts, THP-1 and T-24 cells. J. Biol. Chem. 265, 3189–3192 (1990).

    CAS  PubMed  Google Scholar 

  120. Millner, M. M. et al. Neopterin concentrations in cerebrospinal fluid and serum as an aid in differentiating central nervous system and peripheral infections in children. Clin. Chem. 44, 161–167 (1998).

    CAS  PubMed  Google Scholar 

  121. Hagberg, L. et al. Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection. AIDS Res. Ther. 7, 15 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rice, G. I. et al. Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 12, 1159–1169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. du Moulian, M., Nürnberg, P., Crow, Y. J. & Rutsch, F. Cerebral vasculopathy is a common feature in Aicardi-Goutières syndrome associated with SAMHD1 mutations. Proc. Natl Acad. Sci. USA 108, E232 (2011).

    Article  Google Scholar 

  124. Livingston, J. H. et al. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. J. Med. Genet. 51, 76–82 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Crow, Y. J. Aicardi-Goutières syndrome. GeneReviews [online] (updated 2014).

    Google Scholar 

  126. Blau, N. et al. Cerebrospinal fluid pterins and folates in Aicardi-Goutières syndrome: a new phenotype. Neurology 61, 642–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Kurian, M. A. What is the role of dopamine in childhood neurological disorders? Dev. Med. Child Neurol. 55, 493–494 (2013).

    Article  PubMed  Google Scholar 

  128. Graziano, C. et al. Syndromic intellectual disability: a new phenotype caused by an aromatic amino acid decarboxylase gene (DDC) variant. Gene 559, 144–148 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Montioli, R. et al. A comprehensive picture of the mutations associated with aromatic amino acid decarboxylase deficiency, from molecular mechanisms to therapy implications. Hum. Mol. Genet. 23, 5429–5440 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Nguyen, H. N. et al., LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell. 8, 267–280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Reinhardt, P. et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell. 7, 354–367 (2013).

    Article  CAS  Google Scholar 

  132. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR–Cas system. Nat. Biotechnol. 31, 227–229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li, D. et al. Heritable gene targeting in the mouse and rat using a CRISPR–Cas system. Nat. Biotechnol. 31, 681–683 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Brasil, S. et al. Pseudoexon exclusion by antisense therapy in 6-pyruvoyl-tetrahydropterin synthase deficiency. Hum. Mutat. 32, 1019–1027 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Eberling, J. L. et al. Results from phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70, 1980–1983 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Palfi, S. et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson's disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383, 1138–1146 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Hwu, W. L. et al. Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci. Transl. Med. 4, 134ra61 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Lee, N. C. et al. Benefits of neuronal preferential systemic gene therapy for neurotransmitter deficiency. Mol. Ther. http://dx.doi.org/10.1038/mt.2015.122 (2015).

Download references

Acknowledgements

M.A.K. is funded by a Wellcome Intermediate Clinical Fellowship (WT098524MA) and receives funding from the Rosetrees Trust and the Gracious Heart Charity Foundation. J.N. is funded by a Medical Research Council Clinical Research Training Fellowship (MR/K02342X/1). M.A.K. and J.N. are both funded by Great Ormond Street Hospital Children's Charities. A.P. receives funding from Actelion to study undiagnosed neurodegenerative disorders, the NBIA Disorders Association and Child Brain Research. None of the authors received funding for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.N. wrote the first draft and provided substantial input into revision of the manuscript. A.P. prepared tables and figures and contributed to revision of the manuscript. S.J.H. contributed to the critique of the manuscript and figures. M.A.K. provided substantial input into the manuscript concept, design, content and revision of each draft.

Corresponding author

Correspondence to Manju A. Kurian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, J., Papandreou, A., Heales, S. et al. Monoamine neurotransmitter disorders—clinical advances and future perspectives. Nat Rev Neurol 11, 567–584 (2015). https://doi.org/10.1038/nrneurol.2015.172

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing