Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prospects of immune checkpoint modulators in the treatment of glioblastoma

Key Points

  • The prognosis for glioblastoma patients is poor, with median overall survival of approximately 15–17 months

  • Immunotherapy has clinical benefits in other advanced tumours, such as melanoma and lung cancer, for which conventional therapies have had limited success

  • The blood–brain barrier prevents macromolecules from entering the CNS, but readily allows traffic of activated lymphocytes; thus, communication occurs between the CNS and the immune system

  • The success of immunotherapy in other cancers, and the current understanding of the interaction between the brain and the immune system provide a rationale for exploration of immune checkpoint inhibitors in glioblastoma

  • Tumour progression could involve multiple immunosuppressive mechanisms, making combination of immunotherapeutic agents that target different pathways a promising approach

  • Clinical trials evaluating immune checkpoint inhibitors in glioblastoma patients are ongoing

Abstract

Glioblastoma is the most common primary brain tumour in adults. Prognosis is poor: even with the current gold-standard first-line treatment—maximal safe resection and combination of radiotherapy with temozolomide chemotherapy—the median overall survival time is only approximately 15–17 months, because the tumour recurs in virtually all patients, and no commonly accepted standard treatment for recurrent disease exists. Several targeted agents have failed to improve patient outcomes in glioblastoma. Immunotherapy with immune checkpoint inhibitors such as ipilimumab, nivolumab, and pembrolizumab has provided relevant clinical improvements in other advanced tumours for which conventional therapies have had limited success, making immunotherapy an appealing strategy in glioblastoma. This Review summarizes current knowledge on immune checkpoint modulators and evaluates their potential role in glioblastoma on the basis of preclinical studies and emerging clinical data. Furthermore, we discuss challenges that need to be considered in the clinical development of drugs that target immune checkpoint pathways in glioblastoma, such as specific properties of the immune system in the CNS, issues with radiological response assessment, and potential interactions with established and emerging treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the immune response and major immune checkpoint molecules in the immune cycle of glioblastoma.
Figure 2: PDL1 expression and tumour-infiltrating lymphocytes in glioblastoma.

Similar content being viewed by others

References

  1. Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 16 (Suppl. 4), iv1–iv63 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Temodar (temozolomide) [prescribing information]. http://www.merck.com/product/usa/pi_circulars/t/temodar_capsules/temodar_pi.pdf (Merck & Co., Inc. 2014).

  4. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Omuro, A. M., Faivre, S. & Raymond, E. Lessons learned in the development of targeted therapy for malignant gliomas. Mol. Cancer Ther. 6, 1909–1919 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Woehrer, A., Bauchet, L. & Barnholtz-Sloan, J. S. Glioblastoma survival: has it improved? Evidence from population-based studies. Curr. Opin. Neurol. 27, 666–674 (2014).

    PubMed  Google Scholar 

  7. Weller, M. et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 15, e395–e403 (2014).

    Article  PubMed  Google Scholar 

  8. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O'Day, S. J. et al. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann. Oncol. 21, 1712–1717 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N. Engl. J. Med. 372, 311–319 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Motzer, R. J. et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J. Clin. Oncol. 33, 1430–1437 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Rizvi, N. A. et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 16, 257–265 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Opdivo (nivolumab) [prescribing information]. http://www.opdivo.bmscustomerconnect.com/gateway, (Bristol-Myers Squibb Company, 2014).

  16. Keytruda (pembrolizumab) [prescribing information]. http://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_pi.pdf, (Merck & Co., Inc. 2015).

  17. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 39, 1–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Driessens, G., Kline, J. & Gajewski, T. F. Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunol. Rev. 229, 126–144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jackson, C., Ruzevick, J., Phallen, J., Belcaid, Z. & Lim, M. Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin. Dev. Immunol. 2011, 1–21 (2011).

    Article  CAS  Google Scholar 

  20. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bakdash, G., Sittig, S. P., van Dijk, T., Figdor, C. G. & de Vries, I. J. The nature of activatory and tolerogenic dendritic cell-derived signal II. Front. Immunol. 4, 53 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Joller, N. et al. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J. Immunol. 186, 1338–1342 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Hastings, W. D. et al. TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines. Eur. J. Immunol. 39, 2492–2501 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tarhini, A. A. & Iqbal, F. CTLA-4 blockade: therapeutic potential in cancer treatments. Onco Targets Ther. 3, 15–25 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Margolin, K. et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 13, 459–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Queirolo, P. et al. Efficacy and safety of ipilimumab in patients with advanced melanoma and brain metastases. J. Neurooncol. 118, 109–116 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yervoy (ipilimumab) [prescribing information]. http://www.yervoy.com, (Bristol-Myers Squibb Company, 2013).

  28. Di Giacomo, A. M. et al. Ipilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): an open-label, single-arm phase 2 trial. Lancet Oncol. 13, 879–886 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Luke, J. J. & Ott, P. PD-1 pathway inhibitors: the next generation of immunotherapy for advanced melanoma. Oncotarget. 6, 3479–3492 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Weber, J. S. et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J. Clin. Oncol. 31, 4311–4318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robert, C. et al. Anti-programmed-death- receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 384, 1109–1117 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Antonia, S. J. et al. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with platinum-based doublet chemotherapy (PT-DC) in advanced non-small cell lung cancer (NSCLC). J. Clin. Oncol. 32 (15 Suppl.), 8113 (2014).

    Article  Google Scholar 

  34. Antonia, S. J. et al. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) and ipilimumab in first-line NSCLC: Interim phase I results. J. Clin. Oncol. 32 (15 Suppl.), 8023 (2014).

    Article  Google Scholar 

  35. Gettinger, S. N. et al. First-line nivolumab (anti-PD-1; BMS-936558, ONO-4538) monotherapy in advanced NSCLC: safety, efficacy, and correlation of outcomes with PD-L1 status. J. Clin. Oncol. 32 (15 Suppl.), 8024 (2014).

    Article  Google Scholar 

  36. Rizvi, N. A. et al. Safety and response with nivolumab (anti-PD-1; BMS-936558, ONO-4538) plus erlotinib in patients (pts) with epidermal growth factor receptor mutant (EGFR MT) advanced NSCLC. J. Clin. Oncol. 32 (15 Suppl.), 8022 (2014).

    Article  Google Scholar 

  37. Garon, E. B. et al. Safety and clinical activity of MK-3475 in previously treated patients (pts) with non-small cell lung cancer (NSCLC). J. Clin. Oncol. 32 (15 Suppl.), 8020 (2014).

    Article  Google Scholar 

  38. Hafler, D. A. & Kuchroo, V. TIMs: central regulators of immune responses. J. Exp. Med. 205, 2699–2701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anderson, A. C. Tim-3: an emerging target in the cancer immunotherapy landscape. Cancer Immunol. Res. 2, 393–398 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Sierro, S., Romero, P. & Speiser, D. E. The CD4-like molecule LAG-3, biology and therapeutic applications. Expert Opin. Ther. Targets. 15, 91–101 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Downey, S. G. et al. Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin. Cancer Res. 13, 6681–6688 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Juszczak, A., Gupta, A., Karavitaki, N., Middleton, M. R. & Grossman, A. B. Ipilimumab: a novel immunomodulating therapy causing autoimmune hypophysitis: a case report and review. Eur. J. Endocrinol. 167, 1–5 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Weber, J. S. Practical management of immune-related adverse events from immune checkpoint protein antibodies for the oncologist. Am. Soc. Clin. Oncol. Educ. Book 174–177 (2012).

  45. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dranoff, G. Immunotherapy at large: balancing tumor immunity and inflammatory pathology. Nat. Med. 19, 1100–1101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fecher, L. A., Agarwala, S. S., Hodi, F. S. & Weber, J. S. Ipilimumab and its toxicities: a multidisciplinary approach. Oncologist. 18, 733–743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heimberger, A. B. & Sampson, J. H. Immunotherapy coming of age: what will it take to make it standard of care for glioblastoma? Neuro Oncol. 13, 3–13 (2011).

    Article  PubMed  Google Scholar 

  49. Raizer, J. Issues in developing drugs for primary brain tumors: barriers and toxicities. Toxicol. Pathol. 39, 152–157 (2011).

    Article  PubMed  Google Scholar 

  50. Taube, J. M. et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 20, 5064–5074 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vauleon, E., Avril, T., Collet, B., Mosser, J. & Quillien, V. Overview of cellular immunotherapy for patients with glioblastoma. Clin. Dev. Immunol. 2010 (2010).

  54. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature http://dx.doi.org/10.1038/nature14432,.

  55. Reardon, D. A. et al. Immunotherapy advances for glioblastoma. Neuro Oncol. 16, 1441–1458 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Muller, C. et al. Hematogenous dissemination of glioblastoma multiforme. Sci. Transl. Med. 6, 247ra101 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Preusser, M. Neuro-oncology: a step towards clinical blood biomarkers of glioblastoma. Nat. Rev. Neurol. 10, 681–682 (2014).

    Article  PubMed  Google Scholar 

  58. Tran, T. T. et al. Inhibiting TGF-β signaling restores immune surveillance in the SMA-560 glioma model. Neuro Oncol. 9, 259–270 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wainwright, D. A. et al. Durable therapeutic efficacy utilizing combinatorial blockade against, IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin. Cancer Res. 20, 5290–5301 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Parsa, A. T. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med. 13, 84–88 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Fecci, P. E. et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 66, 3294–3302 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Ooi, Y. C. et al. The role of regulatory T-cells in glioma immunology. Clin. Neurol. Neurosurg. 119, 125–132 (2014).

    Article  PubMed  Google Scholar 

  63. Mirghorbani, M., Van Gool, S. & Rezaei, N. Myeloid-derived suppressor cells in glioma. Expert Rev. Neurother. 13, 1395–1406 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Vlahovic, G., Fecci, P. E., Reardon, D. & Sampson, J. H. Programmed death-ligand 1(PD-L1) as an immunotherapy target in patients with glioblastoma. Neuro Oncol. 17, 1043–1045 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Berghoff, A. S. et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 17, 1064–1075 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bloch, O. et al. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin. Cancer Res. 19, 3165–3175 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Velcheti, V. et al. Programmed death ligand-1 expression in non-small cell lung cancer. Lab. Invest. 94, 107–116 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Doucette, T. et al. Immune heterogeneity of glioblastoma subtypes: extrapolation from the cancer genome atlas. Cancer Immunol. Res. 1, 112–122 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Bhat, K. P. et al. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 24, 331–346 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Avril, T. et al. Distinct effects of human glioblastoma immunoregulatory molecules programmed cell death ligand-1 (PDL-1) and indoleamine 2, 3-dioxygenase (IDO) on tumour-specific T cell functions. J. Neuroimmunol. 225, 22–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Wintterle, S. et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res. 63, 7462–7467 (2003).

    CAS  PubMed  Google Scholar 

  72. Magnus, T. et al. Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS. J. Neurosci. 25, 2537–2546 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Berghoff, A. S. et al. PD1 (CD279) and PD-L1 (CD274, B7H1) expression in primary central nervous system lymphomas (PCNSL). Clin. Neuropathol. 33, 42–49 (2014).

    Article  PubMed  Google Scholar 

  74. Berghoff, A. S. et al. Tumour-infiltrating lymphocytes and expression of programmed death ligand 1 (PD-L1) in melanoma brain metastases. Histopathology. 66, 289–299 (2015).

    Article  PubMed  Google Scholar 

  75. Berghoff, A. S. et al. Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. Oncoimmunol (in press). (2015).

  76. Han, S. et al. Tumour-infiltrating CD4+ and CD8+ lymphocytes as predictors of clinical outcome in glioma. Br. J. Cancer 110, 2560–2568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yue, Q. et al. The prognostic value of Foxp3+ tumor-infiltrating lymphocytes in patients with glioblastoma. J. Neurooncol. 116, 251–259 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Rutledge, W. C. et al. Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Clin. Cancer Res. 19, 4951–4960 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Kjaergaard, J. et al. Therapeutic efficacy of OX-40 receptor antibody depends on tumor immunogenicity and anatomic site of tumor growth. Cancer Res. 60, 5514–5521 (2000).

    CAS  PubMed  Google Scholar 

  80. Fecci, P. E. et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin. Cancer Res. 13, 2158–2167 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Reardon, D. A. et al. Immune checkpoint blockade for glioblastoma: Preclinical activity of single agent and combinatorial therapy. J. Clin. Oncol. 32 (15 Suppl.), 2084 (2014).

    Article  Google Scholar 

  82. Zeng, J. et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int. J. Radiat. Oncol. Biol. Phys. 86, 343–349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Belcaid, Z. et al. Focal radiation therapy combined with 4–1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model. PLoS ONE 9, e101764 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Schumacher, T. et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 512, 324–327 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Schuster, J. et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol. 17, 854–861 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chaichana, K. L., Pinheiro, L. & Brem, H. Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Ther. Deliv. 6, 353–369 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Sims, J. S., Ung, T. H., Neira, J. A., Canoll, P. & Bruce, J. N. Biomarkers for glioma immunotherapy: the next generation. J. Neurooncol. 3, 359–372 (2015).

    Article  CAS  Google Scholar 

  89. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Ribas, A., Chmielowski, B. & Glaspy, J. A. Do we need a different set of response assessment criteria for tumor immunotherapy? Clin. Cancer Res. 15, 7116–7118 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Wolchok, J. How recent advances in immunotherapy are changing the standard of care for patients with metastatic melanoma. Ann. Oncol. 23, (Suppl. 8) viii15–viii21 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nishino, M. et al. Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements. Clin. Cancer Res. 19, 3936–3943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28, 1963–1972 (2010).

    Article  PubMed  Google Scholar 

  95. Papadatos-Pastos, D., Soultati, A. & Harries, M. Targeting brain metastases in patients with melanoma. Biomed. Res. Int. 2013, 186563 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Park, B., Yee, C. & Lee, K. M. The effect of radiation on the immune response to cancers. Int. J. Mol. Sci. 15, 927–943 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Frey, B. et al. Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation – implications for cancer therapies. Curr. Med. Chem. 19, 1751–1764 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Grossman, S. A. et al. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin. Cancer Res. 17, 5473–5480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grimaldi, A. M. et al. Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology. 3, e28780 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nicholas, S. et al. Current trends in glioblastoma multiforme treatment: radiation therapy and immune checkpoint inhibitors. Brain Tumor Res. Treat. 1, 2–8 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Stupp, R. et al. Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 28, 2712–2718 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Zitvogel, L. et al. The anticancer immune response: indispensable for therapeutic success? J. Clin. Invest. 118, 1991–2001 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sampson, J. H. et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol. 13, 324–333 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Sanchez-Perez, L. A. et al. Myeloablative temozolomide enhances CD8(+) T-cell responses to vaccine and is required for efficacy against brain tumors in mice. PLoS ONE 8, e59082 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Avastin (bevacizumab) [prescribing information]. http://www.gene.com/download/pdf/avastin_prescribing.pdf, (Genentech, Inc. 2014).

  107. Mansfield, A. S., Nevala, W. K., Lieser, E. A., Leontovich, A. A. & Markovic, S. N. The immunomodulatory effects of bevacizumab on systemic immunity in patients with metastatic melanoma. Oncoimmunology 2, e24436 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Terme, M. et al. Modulation of immunity by antiangiogenic molecules in cancer. Clin. Dev. Immunol. 2012, 8 (2012).

    Article  CAS  Google Scholar 

  109. Nishino, M., Giobbie-Hurder, A., Ramaiya, N. H. & Hodi, F. S. Response assessment in metastatic melanoma treated with ipilimumab and bevacizumab: CT tumor size and density as markers for response and outcome. J. Immunother. Cancer 2, 40 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Schaff, L. R. et al. Ipilimumab for recurrent glioblastoma (GBM). J. Clin. Oncol. 32 (15 Suppl.). 32, e13026 (2014).

    Article  Google Scholar 

  111. Chinot, O. L. et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 709–722 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Kaal, E. C. & Vecht, C. J. The management of brain edema in brain tumors. Curr. Opin. Oncol. 16, 593–600 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Hempen, C., Weiss, E. & Hess, C. F. Dexamethasone treatment in patients with brain metastases and primary brain tumors: do the benefits outweigh the side-effects? Support Care Cancer 10, 322–328 (2002).

  114. Min, L., Vaidya, A. & Becker, C. Thyroid autoimmunity and ophthalmopathy related to melanoma biological therapy. Eur. J. Endocrinol. 164, 303–307 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M. Daniels from inScience Communications in Philadelphia, PA, USA, provided editorial support for writing this article, comprising compilation of tables, management of the reference database, and editing of the manuscript text before submission. The editorial support was funded by Bristol-Myers Squibb. D.A.H. has received the National Multiple Sclerosis Society Collaborative Research Centre Award CA1061-A-18, NIH grants P01 AI045757, U19 AI046130, U19 AI070352, and P01 AI039671, and research support from the Nancy Taylor Foundation for Chronic Diseases and the Penates Foundation. J.H.S. has received the NIH grants R01-CA177476-02, R01-NS086943-01, P50-CA190991-01, and 2R25-NS065731-06, and research support from the Accelerate Brain Cancer Cure and Pediatric Brain Tumor Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, substantial contribution to discussing of content, writing, editing and reviewing of the article.

Corresponding author

Correspondence to John H. Sampson.

Ethics declarations

Competing interests

M.P. has received honoraria, research support (unrestricted grants), and travel support (to scientific meetings) from Bristol-Myers Squibb, Böhringer-Ingelheim, GlaxoSmithKline, Mundipharma and Roche. M.L. has received research support from Agenus, Arbor Pharmaceuticals, Bristol-Myers Squibb, Celldex Therapeutics, and ImmunoCellular Therapeutics, and has served as a consultant for Bristol-Myers Squibb. D.A.H. has consulted for Allergan Pharmaceuticals, Bristol-Myers Squibb, EMD Serono, Genzyme Sanofi-Aventis, MedImmune, Mylan Pharmaceuticals, Novartis Pharmaceuticals, Questcor and Teva Neuroscience, and has received grant support from Bristol-Myers Squibb. D.A.R. has received financial compensation for participation in advisory boards for Amgen, Cavion, Genentech/Roche, Midatech Pharma, Momenta Pharmaceuticals, Novartis and Stemline Therapeutics, served as a member of speakers' bureaus for Genentech/Roche and Merck, and received research support from Celldex Therapeutics and Incyte. J.H.S. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preusser, M., Lim, M., Hafler, D. et al. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol 11, 504–514 (2015). https://doi.org/10.1038/nrneurol.2015.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.139

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer