Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

White matter hyperintensities, cognitive impairment and dementia: an update

Key Points

  • White matter hyperintensities (WMHs) are commonly seen on brain MRI in older people, and result from chronic ischaemia associated with cerebral small vessel disease

  • The histopathology of WMHs is heterogeneous, with tissue damage ranging from slight disentanglement of the matrix to varying degrees of myelin and axonal loss

  • This heterogeneity might partly explain the weak clinicoradiological associations found in patients with WMHs

  • WMHs cause cognitive decline—in particular of information processing speed—and may lead to executive dysfunction and, ultimately, dementia

  • Although progression of WMHs has been associated with dementia and dependency, little evidence is available that reduction of WMH progression can prevent functional decline

Abstract

White matter hyperintensities (WMHs) in the brain are the consequence of cerebral small vessel disease, and can easily be detected on MRI. Over the past three decades, research has shown that the presence and extent of white matter hyperintense signals on MRI are important for clinical outcome, in terms of cognitive and functional impairment. Large, longitudinal population-based and hospital-based studies have confirmed a dose-dependent relationship between WMHs and clinical outcome, and have demonstrated a causal link between large confluent WMHs and dementia and disability. Adequate differential diagnostic assessment and management is of the utmost importance in any patient, but most notably those with incipient cognitive impairment. Novel imaging techniques such as diffusion tensor imaging might reveal subtle damage before it is visible on standard MRI. Even in Alzheimer disease, which is thought to be primarily caused by amyloid, vascular pathology, such as small vessel disease, may be of greater importance than amyloid itself in terms of influencing the disease course, especially in older individuals. Modification of risk factors for small vessel disease could be an important therapeutic goal, although evidence for effective interventions is still lacking. Here, we provide a timely Review on WMHs, including their relationship with cognitive decline and dementia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visual rating of WMHs according to Scheltens.20
Figure 2: Axial fluid-attenuated inversion recovery images illustrating the Fazekas scores.
Figure 3: Direct matching of WMHs on postmortem MRI scans and histochemically stained sections.
Figure 4: Direct matching of WMHs on postmortem MRI scans and histochemically stained sections.

Similar content being viewed by others

References

  1. Longstreth, W. T. Jr et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. Stroke 27, 1274–1282 (1996).

    Article  PubMed  Google Scholar 

  2. van Dijk, E. J., Prins, N. D., Vermeer, S. E., Koudstaal, P. J. & Breteler, M. M. Frequency of white matter lesions and silent lacunar infarcts. J Neural Transm. Suppl. 62, 25–39 (2002).

    Article  Google Scholar 

  3. de Leeuw, F. E., de Groot, J. C. & van Gijn, J. Cerebral white matter lesions in the elderly: vascular risk factors and cognitive consequences [Dutch]. Ned. Tijdschr. Geneeskd. 145, 2067–2071 (2001).

    CAS  PubMed  Google Scholar 

  4. Pantoni, L. & Garcia, J. H. Pathogenesis of leukoaraiosis: a review. Stroke 28, 652–659 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Brickman, A. M. et al. Reconsidering harbingers of dementia: progression of parietal lobe white matter hyperintensities predicts Alzheimer's disease incidence. Neurobiol. Aging 36, 27–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Debette, S. & Markus, H. S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341, c3666 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Prins, N. D. et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain 128, 2034–2041 (2005).

    Article  PubMed  Google Scholar 

  8. Vermeer, S. E. et al. Silent brain infarcts and the risk of dementia and cognitive decline. N. Engl. J. Med. 348, 1215–1222 (2003).

    Article  PubMed  Google Scholar 

  9. Gorelick, P. B. et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42, 2672–2713 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pantoni, L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 9, 689–701 (2010).

    Article  PubMed  Google Scholar 

  11. Chui, H. C. Subcortical ischemic vascular dementia. Neurol. Clin. 25, 717–740 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lorius, N. et al. Vascular disease and risk factors are associated with cognitive decline in the Alzheimer disease spectrum. Alzheimer Dis. Assoc. Disord. http://dx.doi.org/10.1097/WAD.0000000000000043.

  13. O'Brien, J. T. & Markus, H. S. Vascular risk factors and Alzheimer's disease. BMC Med. 12, 218 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kalaria, R. N. & Ihara, M. Dementia: vascular and neurodegenerative pathways—will they meet? Nat. Rev. Neurol. 9, 487–488 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Akinyemi, R. O., Mukaetova-Ladinska, E. B., Attems, J., Ihara, M. & Kalaria, R. N. Vascular risk factors and neurodegeneration in ageing related dementias: Alzheimer's disease and vascular dementia. Curr. Alzheimer Res. 10, 642–653 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Biesbroek, J. M. et al. Association between subcortical vascular lesion location and cognition: a voxel-based and tract-based lesion-symptom mapping study. The SMART-MR study. PLoS ONE 8, e60541 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoshita, M. et al. Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD. Neurology 67, 2192–2198 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Swartz, R. H., Sahlas, D. J. & Black, S. E. Strategic involvement of cholinergic pathways and executive dysfunction: does location of white matter signal hyperintensities matter? J. Stroke Cerebrovasc. Dis. 12, 29–36 (2003).

    Article  PubMed  Google Scholar 

  19. Fazekas, F., Chawluk, J. B., Alavi, A., Hurtig, H. I. & Zimmerman, R. A. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am. J. Roentgenol. 149, 351–356 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Scheltens, P. et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J. Neurol. Sci. 114, 7–12 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Gouw, A. A. et al. Simple versus complex assessment of white matter hyperintensities in relation to physical performance and cognition: the LADIS study. J. Neurol. 253, 1189–1196 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Maillard, P. et al. An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an evaluation of its between-centre reproducibility based on two large community databases. Neuroradiology 50, 31–42 (2008).

    Article  PubMed  Google Scholar 

  23. Maldjian, J. A. et al. Automated white matter total lesion volume segmentation in diabetes. AJNR Am. J. Neuroradiol. 34, 2265–2270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Y. et al. MRI markers for mild cognitive impairment: comparisons between white matter integrity and gray matter volume measurements. PLoS ONE 8, e66367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lockhart, S. N. et al. Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging. Front. Hum. Neurosci. 6, 56 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Verhaaren, B. F. et al. High blood pressure and cerebral white matter lesion progression in the general population. Hypertension 61, 1354–1359 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt, R. et al. White matter lesion progression in LADIS: frequency, clinical effects, and sample size calculations. Stroke 43, 2643–2647 (2012).

    Article  PubMed  Google Scholar 

  28. van Dijk, E. J. et al. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study. Stroke 39, 2712–2719 (2008).

    Article  PubMed  Google Scholar 

  29. Pantoni, L. & Simoni, M. Pathophysiology of cerebral small vessels in vascular cognitive impairment. Int. Psychogeriatr. 15 (Suppl. 1), 59–65 (2003).

    Article  PubMed  Google Scholar 

  30. Román, G. C., Erkinjuntti, T., Wallin, A., Pantoni, L. & Chui, H. C. Subcortical ischaemic vascular dementia. Lancet Neurol. 1, 426–436 (2002).

    Article  PubMed  Google Scholar 

  31. De Groot, J. C. et al. Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann. Neurol. 52, 335–341 (2002).

    Article  PubMed  Google Scholar 

  32. Garde, E., Lykke Mortensen, E., Rostrup, E. & Paulson, O. B. Decline in intelligence is associated with progression in white matter hyperintensity volume. J. Neurol. Neurosurg. Psychiatry 76, 1289–1291 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Swan, G. E. et al. Biobehavioral characteristics of nondemented older adults with subclinical brain atrophy. Neurology 54, 2108–2114 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Snowdon, D. A. et al. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 277, 813–817 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Neuropathology Group. Medical Research Council Cognitive Function and Aging Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357, 169–175 (2001).

  36. Hachinski, V. C., Potter, P. & Merskey, H. Leuko-araiosis. Arch. Neurol. 44, 21–23 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Wahlund, L. O. et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 32, 1318–1322 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Fazekas, G. et al. Brain MRI findings and cognitive impairment in patients undergoing chronic hemodialysis treatment. J. Neurol. Sci. 134, 83–38 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Kapeller, P. et al. Visual rating of age-related white matter changes on magnetic resonance imaging: scale comparison, interrater agreement, and correlations with quantitative measurements. Stroke 34, 441–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Prins, N. D. et al. Measuring progression of cerebral white matter lesions on MRI: visual rating and volumetrics. Neurology 62, 1533–1539 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Wu, M. et al. A fully automated method for quantifying and localizing white matter hyperintensities on MR images. Psychiatry Res. 148, 133–142 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gouw, A. A. et al. Reliability and sensitivity of visual scales versus volumetry for evaluating white matter hyperintensity progression. Cerebrovasc. Dis. 25, 247–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Schwarz, C., Fletcher, E., DeCarli, C. & Carmichael, O. Fully-automated white matter hyperintensity detection with anatomical prior knowledge and without FLAIR. Inf. Process. Med. Imaging 21, 239–251 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Maillard, P. et al. FLAIR and diffusion MRI signals are independent predictors of white matter hyperintensities. AJNR Am. J. Neuroradiol. 34, 54–61 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Papma, J. M. et al. Cerebral small vessel disease affects white matter microstructure in mild cognitive impairment. Hum. Brain Mapp. 35, 2836–2851 (2014).

    Article  PubMed  Google Scholar 

  46. Yates, P. A. et al. Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Front. Neurol. 4, 205 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lee, S. H. et al. Dynamic temporal change of cerebral microbleeds: long-term follow-up MRI study. PLoS ONE 6, e25930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yates, P. A. et al. Incidence of cerebral microbleeds in preclinical Alzheimer disease. Neurology 82, 1266–1273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smith, E. E., Schneider, J. A., Wardlaw, J. M. & Greenberg, S. M. Cerebral microinfarcts: the invisible lesions. Lancet Neurol. 11, 272–282 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Koennecke, H. C. Cerebral microbleeds on MRI: prevalence, associations, and potential clinical implications. Neurology 66, 165–171 (2006).

    Article  PubMed  Google Scholar 

  51. Simoni, M. et al. Age- and sex-specific rates of leukoaraiosis in TIA and stroke patients: population-based study. Neurology 79, 1215–1222 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ylikoski, A. et al. White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke 26, 1171–1177 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Schmidt, R. et al. Magnetic resonance imaging of the brain in diabetes: the Cardiovascular Determinants of Dementia (CASCADE) Study. Diabetes 53, 687–692 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. de Leeuw, F. E. et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J. Neurol. Neurosurg. Psychiatry 70, 9–14 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barber, R. et al. White matter lesions on magnetic resonance imaging in dementia with Lewy bodies, Alzheimer's disease, vascular dementia, and normal aging. J. Neurol. Neurosurg. Psychiatry 67, 66–72 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee, S. J. et al. The leukoaraiosis is more prevalent in the large artery atherosclerosis stroke subtype among Korean patients with ischemic stroke. BMC Neurol. 8, 31 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pantoni, L. et al. Impact of age-related cerebral white matter changes on the transition to disability—the LADIS study: rationale, design and methodology. Neuroepidemiology 24, 51–62 (2005).

    Article  PubMed  Google Scholar 

  58. Schmidt, R. et al. White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study. Ann. Neurol. 58, 610–616 (2005).

    Article  PubMed  Google Scholar 

  59. Pantoni, L. & Garcia, J. H. The significance of cerebral white matter abnormalities 100 years after Binswanger's report. A review. Stroke 26, 1293–1301 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Gouw, A. A. et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J. Neurol. Neurosurg. Psychiatry 82, 126–135 (2011).

    Article  PubMed  Google Scholar 

  61. de Leeuw, F. E. et al. Aortic atherosclerosis at middle age predicts cerebral white matter lesions in the elderly. Stroke 31, 425–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. de Leeuw, F. E. et al. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 125, 765–772 (2002).

    Article  PubMed  Google Scholar 

  63. Goldstein, I. B., Bartzokis, G., Guthrie, D. & Shapiro, D. Ambulatory blood pressure and the brain: a 5-year follow-up. Neurology 64, 1846–1852 (2005).

    Article  PubMed  Google Scholar 

  64. Gottesman, R. F. et al. Blood pressure and white-matter disease progression in a biethnic cohort: Atherosclerosis Risk in Communities (ARIC) study. Stroke 41, 3–8 (2010).

    Article  PubMed  Google Scholar 

  65. Brundel, M., Kappelle, L. J. & Biessels, G. J. Brain imaging in type 2 diabetes. Eur. Neuropsychopharmacol. 24, 1967–1981 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Tiehuis, A. M. et al. Metabolic syndrome, prediabetes, and brain abnormalities on MRI in patients with manifest arterial disease: the SMART-MR study. Diabetes Care 37, 2515–2521 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Exalto, L. G., van der Flier, W. M., Scheltens, P., Vrenken, H. & Biessels, G. J. Dysglycemia, brain volume and vascular lesions on MRI in a memory clinic population. J. Diabetes Complications 28, 85–90 (2014).

    Article  PubMed  Google Scholar 

  68. Knopman, D. S. et al. Vascular risk factors and longitudinal changes on brain MRI: the ARIC study. Neurology 76, 1879–1885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van Dijk, E. J. et al. Plasma amyloid β, apolipoprotein E, lacunar infarcts, and white matter lesions. Ann. Neurol. 55, 570–575 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Vinters, H. V., Secor, D. L., Pardridge, W. M. & Gray, F. Immunohistochemical study of cerebral amyloid angiopathy. III. Widespread Alzheimer A4 peptide in cerebral microvessel walls colocalizes with gamma trace in patients with leukoencephalopathy. Ann. Neurol. 28, 34–42 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Moody, D. M., Brown, W. R., Challa, V. R. & Anderson, R. L. Periventricular venous collagenosis: association with leukoaraiosis. Radiology 194, 469–476 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Englund, E. Neuropathology of white matter changes in Alzheimer's disease and vascular dementia. Dement. Geriatr. Cogn. Disord. 9 (Suppl. 1), 6–12 (1998).

    Article  PubMed  Google Scholar 

  73. Richardson, K. et al. The neuropathology of vascular disease in the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Curr. Alzheimer Res. 9, 687–696 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Nicoll, J. A. et al. Association between APOE genotype, neuropathology and dementia in the older population of England and Wales. Neuropathol. Appl. Neurobiol. 37, 285–294 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Noh, Y. et al. White matter hyperintensities are associated with amyloid burden in APOE4 non-carriers. J. Alzheimers Dis. 40, 877–886 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chao, L. L. et al. Associations between white matter hyperintensities and β amyloid on integrity of projection, association, and limbic fiber tracts measured with diffusion tensor MRI. PLoS ONE 8, e65175 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim, H. J. et al. The effects of small vessel disease and amyloid burden on neuropsychiatric symptoms: a study among patients with subcortical vascular cognitive impairments. Neurobiol. Aging 34, 1913–1920 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Barnes, J. et al. Vascular and Alzheimer's disease markers independently predict brain atrophy rate in Alzheimer's Disease Neuroimaging Initiative controls. Neurobiol. Aging 34, 1996–2002 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guzman, V. A. et al. White matter hyperintensities and amyloid are independently associated with entorhinal cortex volume among individuals with mild cognitive impairment. Alzheimers Dement. 9 (5 Suppl.), S124–S131 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chabriat, H. et al. Patterns of MRI lesions in CADASIL. Neurology 51, 452–457 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Tikka, S. et al. CADASIL and CARASIL. Brain Pathol. 24, 525–544 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Bianchi, S. et al. Two novel HTRA1 mutations in a European CARASIL patient. Neurology 82, 898–900 (2014).

    Article  PubMed  Google Scholar 

  83. Bersano, A. et al. The genetics of small-vessel disease. Curr. Med. Chem. 19, 4124–4141 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Fornage, M. et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann. Neurol. 69, 928–939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Adib-Samii, P. et al. 17q25 locus is associated with white matter hyperintensity volume in ischemic stroke, but not with lacunar stroke status. Stroke 44, 1609–1615 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tabara, Y. et al. Association of Chr17q25 with cerebral white matter hyperintensities and cognitive impairment: the J-SHIPP study. Eur. J. Neurol. 20, 860–862 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Viswanathan, A. & Greenberg, S. M. Cerebral amyloid angiopathy in the elderly. Ann. Neurol. 70, 871–880 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vinters, H. V. et al. Secondary microvascular degeneration in amyloid angiopathy of patients with hereditary cerebral hemorrhage with amyloidosis, Dutch type (HCHWA-D). Acta Neuropathol. 95, 235–244 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. McDonald, W. I. et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 50, 121–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. van der Knaap, M. S., Breiter, S. N., Naidu, S., Hart, A. A. & Valk, J. Defining and categorizing leukoencephalopathies of unknown origin: MR imaging approach. Radiology 213, 121–133 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Yoshida, T. et al. MELAS and reversible vasoconstriction of the major cerebral arteries. Intern. Med. 52, 1389–1392 (2013).

    Article  PubMed  Google Scholar 

  92. de Groot, J. C. et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann. Neurol. 47, 145–151 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Kramer, J. H., Reed, B. R., Mungas, D., Weiner, M. W. & Chui, H. C. Executive dysfunction in subcortical ischaemic vascular disease. J. Neurol. Neurosurg. Psychiatry 72, 217–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mungas, D. et al. MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease. Neurology 57, 2229–2235 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Carmichael, O. et al. Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative. Arch. Neurol. 67, 1370–1378 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Longstreth, W. T., Diehr, P. H., Yee, L. M., Newman, A. B. & Beauchamp, N. J. Brain imaging findings in elderly adults and years of life, healthy life, and able life over the ensuing 16 years: the Cardiovascular Health Study. J. Am. Geriatr. Soc. 62, 1838–1843 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. LADIS Study Group. 2001–2011: a decade of the LADIS (Leukoaraiosis And DISability) Study: what have we learned about white matter changes and small-vessel disease? Cerebrovasc. Dis. 32, 577–588 (2011).

  98. Prins, N. D. et al. Cerebral white matter lesions and the risk of dementia. Arch. Neurol. 61, 1531–1534 (2004).

    Article  PubMed  Google Scholar 

  99. Román, G. C. & Kalaria, R. N. Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia. Neurobiol. Aging 27, 1769–1785 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Kimura, S. et al. Pathogenesis of vascular dementia in stroke-prone spontaneously hypertensive rats. Toxicology 153, 167–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Strachan, M. W., Reynolds, R. M., Marioni, R. E. & Price, J. F. Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat. Rev. Endocrinol. 7, 108–114 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Sachdev, P. S. et al. Homocysteine as a risk factor for cognitive impairment in stroke patients. Dement. Geriatr. Cogn. Disord. 15, 155–162 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Breteler, M. M. Vascular risk factors for Alzheimer's disease: an epidemiologic perspective. Neurobiol. Aging 21, 153–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Kalaria, R. N. Small vessel disease and Alzheimer's dementia: pathological considerations. Cerebrovasc. Dis. 13 (Suppl. 2), 48–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Hainsworth, A. H., Brittain, J. F. & Khatun, H. Pre-clinical models of human cerebral small vessel disease: utility for clinical application. J. Neurol. Sci. 322, 237–240 (2012).

    Article  PubMed  Google Scholar 

  106. Bink, D. I., Ritz, K., Aronica, E., van der Weerd, L. & Daemen, M. J. Mouse models to study the effect of cardiovascular risk factors on brain structure and cognition. J. Cereb. Blood Flow Metab. 33, 1666–1684 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. van der Flier, W. M. et al. Medial temporal lobe atrophy and white matter hyperintensities are associated with mild cognitive deficits in non-disabled elderly people: the LADIS study. J. Neurol. Neurosurg. Psychiatry 76, 1497–1500 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jang, J. W. et al. Effect of white matter hyperintensity on medial temporal lobe atrophy in Alzheimer's disease. Eur. Neurol. 69, 229–235 (2013).

    Article  PubMed  Google Scholar 

  109. Erkinjuntti, T. et al. Do white matter changes on MRI and CT differentiate vascular dementia from Alzheimer's disease? J. Neurol. Neurosurg. Psychiatry 50, 37–42 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Price, C. C., Jefferson, A. L., Merino, J. G., Heilman, K. M. & Libon, D. J. Subcortical vascular dementia: integrating neuropsychological and neuroradiologic data. Neurology 65, 376–382 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. DeCarli, C. et al. The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults. Neurology 45, 2077–2084 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Brickman, A. M. et al. White matter hyperintensities and cognition: testing the reserve hypothesis. Neurobiol. Aging 32, 1588–1598 (2011).

    Article  PubMed  Google Scholar 

  113. Murray, A. D. et al. The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer's diseases. Brain 134, 3687–3696 (2011).

    Article  PubMed  Google Scholar 

  114. Skoog, I., Kalaria, R. N. & Breteler, M. M. Vascular factors and Alzheimer disease. Alzheimer Dis. Assoc. Disord. 13 (Suppl. 3), S106–S114 (1999).

    Article  PubMed  Google Scholar 

  115. Forette, F. et al. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 352, 1347–1351 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Williamson, J. D. et al. Cognitive function and brain structure in persons with type 2 diabetes mellitus after intensive lowering of blood pressure and lipid levels: a randomized clinical trial. JAMA Intern. Med. 174, 324–333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. ten Dam, V. H. et al. Effect of pravastatin on cerebral infarcts and white matter lesions. Neurology 64, 1807–1809 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Richard, E., Gouw, A. A., Scheltens, P. & van Gool, W. A. Vascular care in patients with Alzheimer disease with cerebrovascular lesions slows progression of white matter lesions on MRI: the evaluation of vascular care in Alzheimer's disease (EVA) study. Stroke 41, 554–556 (2010).

    Article  PubMed  Google Scholar 

  119. Richard, E., Kuiper, R., Dijkgraaf, M. G., Van Gool, W. A. & Evaluation of Vascular care in Alzheimer's disease. Vascular care in patients with Alzheimer's disease with cerebrovascular lesions—a randomized clinical trial. J. Am. Geriatr. Soc. 57, 797–805 (2009).

    Article  PubMed  Google Scholar 

  120. Richard, E. et al. Prevention of dementia by intensive vascular care (PreDIVA): a cluster-randomized trial in progress. Alzheimer Dis. Assoc. Disord. 23, 198–204 (2009).

    Article  PubMed  Google Scholar 

  121. Cyarto, E. V. et al. Protocol for a randomized controlled trial evaluating the effect of physical activity on delaying the progression of white matter changes on MRI in older adults with memory complaints and mild cognitive impairment: the AIBL Active trial. BMC Psychiatry 12, 167 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Román, G. C. et al. Donepezil in vascular dementia: combined analysis of two large-scale clinical trials. Dement. Geriatr. Cogn. Disord. 20, 338–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Wilkinson, D. et al. The long-term efficacy and tolerability of donepezil in patients with vascular dementia. Int. J. Geriatr. Psychiatry 25, 305–313 (2010).

    Article  PubMed  Google Scholar 

  124. Erkinjuntti, T. et al. Efficacy of galantamine in probable vascular dementia and Alzheimer's disease combined with cerebrovascular disease: a randomised trial. Lancet 359, 1283–1290 (2002).

    Article  PubMed  Google Scholar 

  125. Orgogozo, J. M., Rigaud, A. S., Stöffler, A., Möbius, H. J. & Forette, F. Efficacy and safety of memantine in patients with mild to moderate vascular dementia: a randomized, placebo-controlled trial (MMM 300). Stroke 33, 1834–1839 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Inzitari, D. et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ 339, b2477 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  127. de Leeuw, F. E., Barkhof, F. & Scheltens, P. Progression of cerebral white matter lesions in Alzheimer's disease: a new window for therapy? J. Neurol. Neurosurg. Psychiatry 76, 1286–1288 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed the content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Philip Scheltens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prins, N., Scheltens, P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol 11, 157–165 (2015). https://doi.org/10.1038/nrneurol.2015.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.10

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing