Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Can we measure long-term treatment effects in multiple sclerosis?

Abstract

The gold standard for measuring treatment effects is the randomized controlled trial. In patients with multiple sclerosis (MS), trial durations are typically 2–3 years, and the long-term effects of drugs for MS can only be assessed through trial extensions or observational studies that take advantage of data from registries or large single-centre databases. The main limitation of observational studies is an unavoidable selection bias that is introduced through nonrandom assignment of the intervention. Propensity score methods can mitigate this bias by balancing the groups with respect to baseline covariates, but this approach cannot correct for unmeasurable confounding factors. Extensions of clinical trials are free from selection biases because of the initial randomization, but they can only provide an assessment of early versus delayed treatment effects. Here, we discuss these methodological issues and analyse how they have been managed in studies of the long-term effects of IFN-β in patients with MS.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Adjusting for baseline covariates.

References

  1. [No authors listed] Interferon beta-1b is effective in relapsing–remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology 43, 655–661 (1993).

  2. Jacobs, L. D. et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann. Neurol. 39, 285–294 (1996).

    CAS  Article  PubMed  Google Scholar 

  3. [No authors listed] Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon β-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet 352, 1498–1504 (1998).

  4. Pritchard, K. I. Should observational studies be a thing of the past? J. Natl Cancer Inst. 100, 451–452 (2008).

    Article  PubMed  Google Scholar 

  5. Hernan, M. A., Hernandez-Diaz, S., Werler, M. M. & Mitchell, A. A. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am. J. Epidemiol. 155, 176–184 (2002).

    Article  PubMed  Google Scholar 

  6. Inusah, S. et al. Assessing changes in relapse rates in multiple sclerosis. Mult. Scler. 16, 1414–1421 (2010).

    Article  PubMed  Google Scholar 

  7. Sormani, M. P. et al. Will Rogers phenomenon in multiple sclerosis. Ann. Neurol. 64, 428–433 (2008).

    Article  PubMed  Google Scholar 

  8. Shirani, A. et al. Association between use of interferon beta and progression of disability in patients with relapsing–remitting multiple sclerosis. JAMA 308, 247–256 (2012).

    CAS  PubMed  Google Scholar 

  9. Tedeholm, H. et al. Time to secondary progression in patients with multiple sclerosis treated with first generation immunomodulating drugs. Mult. Scler. 19, 765–774 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Drulovich, J. et al. Interferon-beta and disability progression in relapsing-remitting multiple sclerosis. Clin. Neurol. Neurosurg. 115 (Suppl. 1), S65–S69 (2013).

    Article  Google Scholar 

  11. Trojano, M. et al. New natural history of interferon-β-treated relapsing multiple sclerosis. Ann. Neurol. 61, 300–306 (2007).

    CAS  Article  PubMed  Google Scholar 

  12. Austen, P. C. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav. Res. 46, 399–424 (2011).

    Article  Google Scholar 

  13. Trojano, M. et al. Real-life impact of early interferonβ therapy in relapsing multiple sclerosis. Ann. Neurol. 66, 513–520 (2009).

    CAS  Article  PubMed  Google Scholar 

  14. Renoux, C. & Suissa, S. Immortal time bias in the study of effectiveness of interferon-β in multiple sclerosis. Ann. Neurol. 64, 109–110 (2008).

    Article  PubMed  Google Scholar 

  15. Lin, D. Y., Psaty, B. M. & Krommal, R. A. Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Biometrics 54, 948–963 (1998).

    CAS  Article  PubMed  Google Scholar 

  16. Schneeweiss, S. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiol. Drug Saf. 15, 291–303 (2006).

    Article  PubMed  Google Scholar 

  17. Brumback, B. A., Hernán, M. A., Haneuse, S. J. & Robins, J. M. Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures. Stat. Med. 23, 749–767 (2004).

    Article  PubMed  Google Scholar 

  18. Bergamaschi, R. et al. Immunomodulatory therapies delay disease progression in multiple sclerosis. Mult. Scler. http://dx.doi.org/10.1177/1352458512445941.

  19. Bergamaschi, R. et al. Early prediction of the long term evolution of multiple sclerosis: the Bayesian risk estimate for multiple sclerosis (BREMS) score. J. Neurol. Neurosurg. Psychiatry 78, 757–759 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Robins, J. M. & Finkelstein, D. M. Correcting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank tests. Biometrics. 56, 779–788 (2000).

    CAS  Article  PubMed  Google Scholar 

  21. Seaman, S. R. and White, I. R. Review of inverse probability weighting for dealing with missing data. Stat. Methods Med. Res. 22, 278–295 (2013).

    Article  PubMed  Google Scholar 

  22. Brown, M. G. et al. How effective are disease-modifying drugs in delaying progression in relapsing-onset MS? Neurology 69, 1498–1507 (2007).

    CAS  Article  PubMed  Google Scholar 

  23. Veugelers, P. J. et al. Disease progression among multiple sclerosis patients before and during a disease-modifying drug program: a longitudinal population-based evaluation. Mult. Scler. 15, 1286–1294 (2009).

    CAS  Article  PubMed  Google Scholar 

  24. Ebers, G. C. et al. Analysis of clinical outcomes according to original treatment groups 16 years after the pivotal IFNB-1b trial. J. Neurol. Neurosurg. Psychiatry 81, 907–912 (2010).

    CAS  Article  PubMed  Google Scholar 

  25. Bermel, R. A. et al. Intramuscular interferon beta-1a therapy in patients with relapsing–remitting multiple sclerosis: a 15-year follow-up study. Mult. Scler. 16, 588–596 (2010).

    CAS  Article  PubMed  Google Scholar 

  26. Rudick, R. A. et al. Estimating long-term effects of disease modifying drug therapy in multiple sclerosis. Mult. Scler. 11, 626–634 (2005).

    CAS  Article  PubMed  Google Scholar 

  27. Kappos, L. et al. Long-term subcutaneous interferon beta-1a therapy in patients with relapsing–remitting MS. Neurology 67, 944–953 (2006).

    CAS  Article  PubMed  Google Scholar 

  28. Goodin, D. S. et al. Survival in MS: a randomized cohort study 21 years after the start of the pivotal IFNβ-1b trial. Neurology 78, 1315–1322 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Poser, C. M. et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann. Neurol. 13, 227–231 (1983).

    CAS  Article  PubMed  Google Scholar 

  30. McDonald, W. I. et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 50, 121–127 (2001).

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed the content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Maria Pia Sormani.

Ethics declarations

Competing interests

M.P.S. has acted as a consultant for Actelion, Biogen Idec, Genzyme, Merck Serono, Novartis, Roche, Synthon and Teva. P.B. has consulted for Novartis, and provided teaching courses for Merck Serono and Roche.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sormani, M., Bruzzi, P. Can we measure long-term treatment effects in multiple sclerosis?. Nat Rev Neurol 11, 176–182 (2015). https://doi.org/10.1038/nrneurol.2014.237

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.237

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing