Key Points
-
Neuropsychiatric symptoms can be an important complication of systemic lupus erythematosus (SLE); among patients with neuropsychiatric SLE (NPSLE), neuropsychiatric manifestations contribute considerably to morbidity and mortality
-
Clinical manifestations of NPSLE are wide-ranging, and can involve the CNS and PNS; thus, no single diagnostic test for NPSLE exists, and diagnosis remains mainly an exercise of exclusion
-
Both the profile and severity of neuropsychiatric impairment in patients with NPSLE fluctuate over time, independently of disease activity
-
Disruption of blood–brain barrier integrity, which enables diffusion of small molecules and cytokines into the cerebrospinal fluid, is considered a pivotal component of NPSLE development
-
Consensus case-definition criteria for NPSLE-associated central and peripheral neurological syndromes represent an important development that has improved the diagnosis and management of NPSLE; however, some manifestations are still misdiagnosed
-
The rationale for understanding the pathophysiology of NPSLE is the potential to develop biomarkers and selective therapies targeting the identified pathogenetic processes, thereby ultimately improving the management of the disease
Abstract
Systemic lupus erythematosus (SLE) is a complex clinical syndrome, elements of which remain poorly understood. Although recognized over 140 years ago when Kaposi recorded the systemic nature and manifestations of the disease, CNS involvement represents one of the least understood aspects of SLE. This knowledge gap remains despite the fact that up to 75% of adults and children with SLE will, at some point over the course of the disease and to different extents, experience the various disabling effects of neuropsychiatric SLE (NPSLE). Indeed, after decades of research, our understanding of the underlying pathophysiology of NPSLE, in particular, remains limited. Numerous factors contribute to the immune dysfunction that occurs in SLE, including genetic, environmental and hormonal influences, and the contributory or predisposing components that lead to neurological tropism of disease in some patients have not been clearly demonstrated. Features of NPSLE pathogenesis that might be directly linked to clinical manifestations have been identified; however, the complexity and variety of NPSLE symptoms and the clinical overlap with other psychiatric disorders continue to make accurate diagnosis difficult and time-consuming. Thus, efforts to define biomarkers of NPSLE are needed to improve prediction of disease outcomes and guide treatment. In this article, we review the manifestation and pathogenesis of NPSLE, focusing on the features that might aid identification of potential biomarkers.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Abnormal cortical thickness and structural covariance networks in systemic lupus erythematosus patients without major neuropsychiatric manifestations
Arthritis Research & Therapy Open Access 28 November 2022
-
Neurophysiological evaluation of juvenile systemic lupus erythematosus
Egyptian Rheumatology and Rehabilitation Open Access 11 July 2022
-
Serum S100A8/A9 concentrations are associated with neuropsychiatric involvement in systemic lupus erythematosus: a cross-sectional study
BMC Rheumatology Open Access 09 July 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Esdaile, J. M. Lupus. The disease with a thousand faces [French]. Union Med. Can. 120, 357–358 (1991).
Koga, M. et al. Cumulative association of eight susceptibility genes with systemic lupus erythematosus in a Japanese female population. J. Hum. Genet. 56, 503–507 (2011).
Lundström, E. et al. HLA-DRB1*04/*13 alleles are associated with vascular disease and antiphospholipid antibodies in systemic lupus erythematosus. Ann. Rheum. Dis. 72, 1018–1025 (2013).
Rubtsov, A. V., Rubtsova, K., Kappler, J. W. & Marrack, P. Genetic and hormonal factors in female-biased autoimmunity. Autoimmun. Rev. 9, 494–498 (2010).
Zandman-Goddard, G., Solomon, M., Rosman, Z., Peeva, E. & Shoenfeld, Y. Environment and lupus-related diseases. Lupus 21, 241–250 (2012).
Ginzler, E. M. & Dvorkina, O. Newer therapeutic approaches for systemic lupus erythematosus. Rheum. Dis. Clin. North Am. 31, 315–328 (2005).
Gurevitz, S. L., Snyder, J. A., Wessel, E. K., Frey, J. & Williamson, B. A. Systemic lupus erythematosus: a review of the disease and treatment options. Consult. Pharm. 28, 110–121 (2013).
Somers, E. C. et al. Population-based incidence and prevalence of systemic lupus erythematosus: the Michigan Lupus Epidemiology & Surveillance (MILES) Program. Arthritis Rheumatol. 66, 369–378 (2014).
Amur, S., Parekh, A. & Mummaneni, P. Sex differences and genomics in autoimmune diseases. J. Autoimmun. 38, J254–J265 (2012).
Bove, R. Autoimmune diseases and reproductive aging. Clin. Immunol. 149, 251–264 (2013).
Duarte, C., Couto, M., Ines, I. & Liang, M. H. in Systemic Lupus Erythematosus (eds Lahita, R. G. et al.) 673–696 (Elsevier, 2011).
Mak, A., Cheung, M. W., Chiew, H. J., Liu, Y. & Ho, R. C. Global trend of survival and damage of systemic lupus erythematosus: meta-analysis and meta-regression of observational studies from the 1950s to 2000s. Semin. Arthritis Rheum. 41, 830–839 (2012).
Zirkzee, E. et al. Mortality in neuropsychiatric systemic lupus erythematosus (NPSLE). Lupus 23, 31–38 (2014).
Ainiala, H., Loukkola, J., Peltola, J., Korpela, M. & Hietaharju, A. The prevalence of neuropsychiatric syndromes in systemic lupus erythematosus. Neurology 57, 496–500 (2001).
Bertsias, G. K. & Boumpas, D. T. Pathogenesis, diagnosis and management of neuropsychiatric SLE manifestations. Nat. Rev. Rheumatol. 6, 358–367 (2010).
Borowoy, A. M. et al. Neuropsychiatric lupus: the prevalence and autoantibody associations depend on the definition: results from the 1000 Faces of Lupus cohort. Semin. Arthritis Rheum. 42, 179–185 (2012).
Unterman, A. et al. Neuropsychiatric syndromes in systemic lupus erythematosus: a meta-analysis. Semin. Arthritis Rheum. 41, 1–11 (2011).
Kampylafka, E. I. et al. Incidence and prevalence of major central nervous system involvement in systemic lupus erythematosus: a 3-year prospective study of 370 patients. PLoS ONE 8, e55843 (2013).
Lim, L. S., Lefebvre, A., Benseler, S., Peralta, M. & Silverman, E. D. Psychiatric illness of systemic lupus erythematosus in childhood: spectrum of clinically important manifestations. J. Rheumatol. 40, 506–512 (2013).
De Vries, B. et al. TREX1 gene variant in neuropsychiatric systemic lupus erythematosus. Ann. Rheum. Dis. 69, 1886–1887 (2010).
Namjou, B. et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 12, 270–279 (2011).
Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).
Fanouriakis, A., Boumpas, D. T. & Bertsias, G. K. Pathogenesis and treatment of CNS lupus. Curr. Opin. Rheumatol. 25, 577–583 (2013).
Hanly, J. G. Diagnosis and management of neuropsychiatric SLE. Nat. Rev. Rheumatol. 10, 338–347 (2014).
Steup-Beekman, G. M. et al. Neuropsychiatric manifestations in patients with systemic lupus erythematosus: epidemiology and radiology pointing to an immune-mediated cause. Ann. Rheum. Dis. 72 (Suppl. 2), 76–79 (2013).
Mallavarapu, R. K. & Grimsley, E. W. The history of lupus erythematosus. South. Med. J. 100, 896–898 (2007).
Sciascia, S. et al. Central nervous system involvement in systemic lupus erythematosus: overview on classification criteria. Autoimmun. Rev. 12, 426–429 (2013).
[No authors listed] The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 42, 599–608 (1999).
Hanly, J. G. et al. Prospective analysis of neuropsychiatric events in an international disease inception cohort of patients with systemic lupus erythematosus. Ann. Rheum. Dis. 69, 529–535 (2010).
Bertsias, G. K. et al. EULAR recommendations for the management of systemic lupus erythematosus with neuropsychiatric manifestations: report of a task force of the EULAR standing committee for clinical affairs. Ann. Rheum. Dis. 69, 2074–2082 (2010).
Devreese, K. M. Standardization of antiphospholipid antibody assays. Where do we stand? Lupus 21, 718–721 (2012).
Julian, L. J. et al. Cardiovascular and disease-related predictors of depression in systemic lupus erythematosus. Arthritis Care Res. 63, 542–549 (2011).
Murray, S. G. et al. Cardiovascular disease and cognitive dysfunction in systemic lupus erythematosus. Arthritis Care Res. 64, 1328–1333 (2012).
Hanly, J. G. et al. Seizure disorders in systemic lupus erythematosus results from an international, prospective, inception cohort study. Ann. Rheum. Dis. 71, 1502–1509 (2012).
Hanly, J. G. & Harrison, M. J. Management of neuropsychiatric lupus. Best Pract. Res. Clin. Rheumatol. 19, 799–821 (2005).
Joseph, F. G. & Scolding, N. J. Neurolupus. Pract. Neurol. 10, 4–15 (2010).
Birnbaum, J., Petri, M., Thompson, R., Izbudak, I. & Kerr, D. Distinct subtypes of myelitis in systemic lupus erythematosus. Arthritis Rheum. 60, 3378–3387 (2009).
Scolding, N. J. & Joseph, F. G. The neuropathology and pathogenesis of systemic lupus erythematosus. Neuropathol. Appl. Neurobiol. 28, 173–189 (2002).
Khubchandani, R. P., Viswanathan, V. & Desai, J. Unusual neurologic manifestations (I): parkinsonism in juvenile SLE. Lupus 16, 572–575 (2007).
Avcin, T., Benseler, S. M., Tyrrell, P. N., Cucnik, S. & Silverman, E. D. A followup study of antiphospholipid antibodies and associated neuropsychiatric manifestations in 137 children with systemic lupus erythematosus. Arthritis Rheum. 59, 206–213 (2008).
Lefèvre, G. et al. Neuropsychiatric systemic lupus erythematosus (1st part). Cases definitions and diagnosis and treatment of central nervous system and psychiatric manifestations of systemic lupus erythematosus [French]. Rev. Med. Interne 33, 491–502 (2012).
Marullo, S. et al. Lupoid sclerosis with antiphospholipid and antimyelin antibodies. J. Rheumatol. 20, 747–749 (1993).
Hanly, J. G. Neuropsychiatric lupus. Rheum. Dis. Clin. N. Am. 31, 273–298 (2005).
Kozora, E., Ellison, M. C. & West, S. Reliability and validity of the proposed American College of Rheumatology neuropsychological battery for systemic lupus erythematosus. Arthritis Care Res. 51, 810–818 (2004).
Mak, A., Ho, R. C. & Lau, C. S. Clinical implications of neuropsychiatric systemic lupus erythematosus. Adv. Psychiatr. Treat. 15, 451–458 (2009).
Sanna, G., D'Cruz, D. & Cuadrado, M. J. Cerebral manifestations in the antiphospholipid (Hughes) syndrome. Rheum. Dis. Clin. North Am. 32, 465–490 (2006).
Kozora, E., Ellison, M. C. & West, S. Depression, fatigue, and pain in systemic lupus erythematosus (SLE): relationship to the American College of Rheumatology SLE neuropsychological battery. Arthritis Rheum. 55, 628–635 (2006).
Sehlo, M. G. & Bahlas, S. M. Perceived illness stigma is associated with depression in female patients with systemic lupus erythematosus. J. Psychosom. Res. 74, 248–251 (2013).
Bonfa, E. et al. Association between lupus psychosis and anti-ribosomal P protein antibodies. N. Engl. J. Med. 317, 265–271 (1987).
Schneebaum, A. B. et al. Association of psychiatric manifestations with antibodies to ribosomal P proteins in systemic lupus erythematosus. Am. J. Med. 90, 54–62 (1991).
Gao, H.-X., Sanders, E., Tieng, A. T. & Putterman, C. Sex and autoantibody titers determine the development of neuropsychiatric manifestations in lupus-prone mice. J. Neuroimmunol. 229, 112–122 (2010).
Katzav, A. et al. Induction of autoimmune depression in mice by anti-ribosomal P antibodies via the limbic system. Arthritis Rheum. 56, 938–948 (2007).
Appenzeller, S., Cendes, F. & Costallat, L. T. Acute psychosis in systemic lupus erythematosus. Rheumatol. Int. 28, 237–243 (2008).
Denburg, S. D., Carbotte, R. M. & Denburg, J. A. Psychological aspects of systemic lupus erythematosus: cognitive function, mood, and self-report. J. Rheumatol. 24, 998–1003 (1997).
Briani, C. et al. Neurolupus is associated with anti-ribosomal P protein antibodies: an inception cohort study. J. Autoimmun. 32, 79–84 (2009).
Hanly, J. G. et al. Autoantibodies and neuropsychiatric events at the time of systemic lupus erythematosus diagnosis: results from an international inception cohort study. Arthritis Rheum. 58, 843–853 (2008).
Karassa, F. B. et al. Accuracy of anti-ribosomal P protein antibody testing for the diagnosis of neuropsychiatric systemic lupus erythematosus: an international meta-analysis. Arthritis Rheum. 54, 312–324 (2006).
Postal, M., Costallat, L. T. & Appenzeller, D. S. Neuropsychiatric manifestations in systemic lupus erythematosus. CNS Drugs 25, 721–736 (2011).
Davey, R., Bamford, J. & Emery, P. The ACR classification criteria for headache disorders in SLE fail to classify certain prevalent headache types. Cephalalgia 28, 296–299 (2008).
Hanly, J. G. et al. Headache in systemic lupus erythematosus: results from a prospective, international inception cohort study. Arthritis Rheum. 65, 2887–2897 (2013).
Mitsikostas, D. D., Katsiari, C. & Sfikakis, P. P. 'Lupus headache' may not exist: comment on the article of Hanly et al. Arthritis Rheum. http://dx.doi.org/10.1002/art.38333.
Bertsias, G. K., Pamfil, C., Fanouriakis, A. & Boumpas, D. T. Diagnostic criteria for systemic lupus erythematosus: has the time come? Nat. Rev. Rheumatol. 9, 687–694 (2013).
Borchers, A. T. et al. Neuropsychiatric features of systemic lupus erythematosus. Autoimmun. Rev. 4, 329–344 (2005).
Netto, T. M. et al. Neuropsychiatric lupus: classification criteria in neuroimaging studies. Can. J. Neurol. Sci. 40, 284–291 (2013).
Sánchez-Guerrero, J., Aranow, C., Mackay, M., Volpe, B. & Diamond, B. Neuropsychiatric systemic lupus erythematosus reconsidered. Nat. Rev. Rheumatol. 4, 112–113 (2008).
Rekvig, O. P. et al. Autoantibodies in lupus: culprits or passive bystanders? Autoimmun. Rev. 11, 596–603 (2012).
Rhiannon, J. J. Systemic lupus erythematosus involving the nervous system: presentation, pathogenesis, and management. Clin. Rev. Allergy Immunol. 34, 356–360 (2008).
Efthimiou, P. & Blanco, M. Pathogenesis of neuropsychiatric systemic lupus erythematosus and potential biomarkers. Mod. Rheumatol. 19, 457–468 (2009).
Govoni, M. et al. Factors and comorbidities associated with first neuropsychiatric event in systemic lupus erythematosus: does a risk profile exist? A large multicentre retrospective cross-sectional study on 959 Italian patients. Rheumatology 51, 157–168 (2012).
Okamoto, H., Kobayashi, A. & Yamanaka, H. Cytokines and chemokines in neuropsychiatric syndromes of systemic lupus erythematosus. J. Biomed. Biotechnol. 2010, 268436 (2010).
Zandman-Goddard, G., Chapman, J. & Shoenfeld, Y. Autoantibodies involved in neuropsychiatric SLE and antiphospholipid syndrome. Semin. Arthritis Rheum. 36, 297–315 (2007).
Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).
Carvey, P. M., Hendey, B. & Monahan, A. J. The blood–brain barrier in neurodegenerative disease: a rhetorical perspective. J. Neurochem. 111, 291–314 (2009).
Abbott, N. J., Mendonça, L. L. & Dolman, D. E. M. The blood–brain barrier in systemic lupus erythematosus. Lupus 12, 908–915 (2003).
Diamond, B., Huerta, P. T., Mina-Osorio, P., Kowal, C. & Volpe, B. T. Losing your nerves? Maybe it's the antibodies. Nat. Rev. Immunol. 9, 449–456 (2009).
Stock, A. D., Wen, J. & Putterman, C. Neuropsychiatric lupus, the blood brain barrier, and the TWEAK/Fn14 pathway. Front. Immunol. 4, 484 (2013).
McLean, B. N., Miller, D. & Thompson, E. J. Oligoclonal banding of IgG in CSF, blood-brain barrier function, and MRI findings in patients with sarcoidosis, systemic lupus erythematosus, and Behçet's disease involving the nervous system. J. Neurol. Neurosurg. Psychiatry 58, 548–554 (1995).
Nishimura, K., Harigai, M., Omori, M., Sato, E. & Hara, M. Blood-brain barrier damage as a risk factor for corticosteroid-induced psychiatric disorders in systemic lupus erythematosus. Psychoneuroendocrinology 33, 395–403 (2008).
Sato, T. et al. Anti-U1 RNP antibodies in cerebrospinal fluid are associated with central neuropsychiatric manifestations in systemic lupus erythematosus and mixed connective tissue disease. Arthritis Rheum. 62, 3730–3740 (2010).
Alexander, J. J. & Quigg, R. J. Systemic lupus erythematosus and the brain: what mice are telling us. Neurochem. Int. 50, 5–11 (2007).
Sidor, M. M. et al. Elevated immunoglobulin levels in the cerebrospinal fluid from lupus-prone mice. J. Neuroimmunol. 165, 104–113 (2005).
Zameer, A. & Hoffman, S. A. Immunoglobulin binding to brain in autoimmune mice. J. Neuroimmunol. 120, 10–18 (2001).
Sakic´, B. et al. Proliferating brain cells are a target of neurotoxic CSF in systemic autoimmune disease. J. Neuroimmunol. 169, 68–85 (2005).
Jacob, A. et al. C5a alters blood–brain barrier integrity in experimental lupus. FASEB J. 24, 1682–1688 (2010).
Zaccagni, H., Fried, J., Cornell, J., Padilla, P. & Brey, R. L. Soluble adhesion molecule levels, neuropsychiatric lupus and lupus-related damage. Front. Biosci. 9, 1654–1659 (2004).
Bluestein, H. G., Williams, G. W. & Steinberg, A. D. Cerebrospinal fluid antibodies to neuronal cells: association with neuropsychiatric manifestations of systemic lupus erythematosus. Am. J. Med. 70, 240–246 (1981).
Sfikakis, P. P. et al. Increased levels of intercellular adhesion molecule-1 in the serum of patients with systemic lupus erythematosus. Clin. Exp. Rheumatol. 12, 5–9 (1994).
Spronk, P. E., Bootsma, H., Huitema, M. G., Limburg, P. C. & Kallenberg, C. G. Levels of soluble VCAM-1, soluble ICAM-1, and soluble E-selectin during disease exacerbations in patients with systemic lupus erythematosus (SLE); a long term prospective study. Clin. Exp. Immunol. 97, 439–444 (1994).
Greenwood, D. L., Gitlits, V. M., Alderuccio, F., Sentry, J. W. & Toh, B.-H. Autoantibodies in neuropsychiatric lupus. Autoimmunity 35, 79–86 (2002).
Hanly, J. G., Robichaud, J. & Fisk, J. D. Anti-NR2 glutamate receptor antibodies and cognitive function in systemic lupus erythematosus. J. Rheumatol. 33, 1553–1558 (2006).
Harrison, M. J., Ravdin, L. D. & Lockshin, M. D. Relationship between serum NR2a antibodies and cognitive dysfunction in systemic lupus erythematosus. Arthritis Rheum. 54, 2515–2522 (2006).
Arinuma, Y., Yanagida, T. & Hirohata, S. Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 58, 1130–1135 (2008).
Fragoso-Loyo, H. et al. Serum and cerebrospinal fluid autoantibodies in patients with neuropsychiatric lupus erythematosus. Implications for diagnosis and pathogenesis. PLoS ONE 3, e3347 (2008).
Katsumata, Y. et al. Diagnostic reliability of cerebral spinal fluid tests for acute confusional state (delirium) in patients with systemic lupus erythematosus: interleukin 6 (IL-6), IL-8, interferon-alpha, IgG index, and Q-albumin. J. Rheumatol. 34, 2010–2017 (2007).
Yoshio, T., Hirata, D., Onda, K., Nara, H. & Minota, S. Antiribosomal P protein antibodies in cerebrospinal fluid are associated with neuropsychiatric systemic lupus erythematosus. J. Rheumatol. 32, 34–39 (2005).
Yoshio, T., Onda, K., Nara, H. & Minota, S. Association of IgG anti-NR2 glutamate receptor antibodies in cerebrospinal fluid with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 54, 675–678 (2006).
Stanojcic, M., Loheswaran, G., Xu, L., Hoffman, S. A. & Sakic, B. Intrathecal antibodies and brain damage in autoimmune MRL mice. Brain. Behav. Immun. 24, 289–297 (2010).
Hanly, J. G., Walsh, N. M. & Sangalang, V. Brain pathology in systemic lupus erythematosus. J. Rheumatol. 19, 732–741 (1992).
Mehta, N. et al. Platelet C4d is associated with acute ischemic stroke and stroke severity. Stroke 39, 3236–3241 (2008).
Toledano, P., Sarbu, N., Espinosa, G., Bargalló, N. & Cervera, R. Neuropsychiatric systemic lupus erythematosus: magnetic resonance imaging findings and correlation with clinical and immunological features. Autoimmun. Rev. 12, 1166–1170 (2013).
Brooks, W. M. et al. The histopathologic associates of neurometabolite abnormalities in fatal neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 62, 2055–2063 (2010).
Ellison, D., Gatter, K., Heryet, A. & Esiri, M. Intramural platelet deposition in cerebral vasculopathy of systemic lupus erythematosus. J. Clin. Pathol. 46, 37–40 (1993).
Sibbitt, W. L. Jr et al. Magnetic resonance imaging and brain histopathology in neuropsychiatric systemic lupus erythematosus. Semin. Arthritis Rheum. 40, 32–52 (2010).
Diamond, B. et al. Immunity and acquired alterations in cognition and emotion: lessons from SLE. Adv. Immunol. 89, 289–320 (2006).
Diamond, B., Honig, G., Mader, S., Brimberg, L. & Volpe, B. T. Brain-reactive antibodies and disease. Annu. Rev. Immunol. 31, 345–385 (2013).
Gono, T., Kawaguchi, Y. & Yamanaka, H. Discoveries in the pathophysiology of neuropsychiatric lupus erythematosus: consequences for therapy. BMC Med. 11, 91 (2013).
Harris, E. N. & Pierangeli, S. Antiphospholipid antibodies and cerebral lupus. Ann. N. Y. Acad. Sci. 823, 270–278 (1997).
Afeltra, A. et al. Neuropsychiatric lupus syndromes: relationship with antiphospholipid antibodies. Neurology 61, 108–110 (2003).
De Groot, P. G. & Urbanus, R. T. The significance of autoantibodies against β2-glycoprotein I. Blood 120, 266–274 (2012).
Abda, E. A. et al. Markers of acute neuropsychiatric systemic lupus erythematosus: a multidisciplinary evaluation. Rheumatol. Int. 33, 1243–1253 (2013).
Denburg, S. D. & Denburg, J. A. Cognitive dysfunction and antiphospholipid antibodies in systemic lupus erythematosus. Lupus 12, 883–890 (2003).
Sastre-Garriga, J. & Montalban, X. APS and the brain. Lupus 12, 877–882 (2003).
Eber, T., Chapman, J. & Shoenfeld, Y. Anti-ribosomal P-protein and its role in psychiatric manifestations of systemic lupus erythematosus: myth or reality? Lupus 14, 571–575 (2005).
Hoffmann, M. H., Trembleau, S., Muller, S. & Steiner, G. Nucleic acid-associated autoantigens: pathogenic involvement and therapeutic potential. J. Autoimmun. 34, J178–J206 (2010).
Matus, S. et al. Antiribosomal-P autoantibodies from psychiatric lupus target a novel neuronal surface protein causing calcium influx and apoptosis. J. Exp. Med. 204, 3221–3234 (2007).
DeGiorgio, L. A. et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 7, 1189–1193 (2001).
Husebye, E. S. et al. Autoantibodies to a NR2A peptide of the glutamate/NMDA receptor in sera of patients with systemic lupus erythematosus. Ann. Rheum. Dis. 64, 1210–1213 (2005).
Kowal, C. et al. Cognition and immunity; antibody impairs memory. Immunity 21, 179–188 (2004).
Lauvsnes, M. B. & Omdal, R. Systemic lupus erythematosus, the brain, and anti-NR2 antibodies. J. Neurol. 259, 622–629 (2012).
Collingridge, G. L., Kehl, S. J. & McLennan, H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. 334, 33–46 (1983).
Barkus, C. et al. Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion. Eur. J. Pharmacol. 626, 49–56 (2010).
Watson, P., Storbeck, J., Mattis, P. & Mackay, M. Cognitive and emotional abnormalities in systemic lupus erythematosus: evidence for amygdala dysfunction. Neuropsychol. Rev. 22, 252–270 (2012).
Huerta, P. T., Kowal, C., DeGiorgio, L. A., Volpe, B. T. & Diamond, B. Immunity and behavior: antibodies alter emotion. Proc. Natl Acad. Sci. USA 103, 678–683 (2006).
Kowal, C. et al. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc. Natl Acad. Sci. USA 103, 19854–19859 (2006).
Kozora, E. et al. Antibodies against N-methyl-D-aspartate receptors in patients with systemic lupus erythematosus without major neuropsychiatric syndromes. J. Neurol. Sci. 295, 87–91 (2010).
Lapteva, L. et al. Anti-N-methyl-D-aspartate receptor antibodies, cognitive dysfunction, and depression in systemic lupus erythematosus. Arthritis Rheum. 54, 2505–2514 (2006).
Yoshio, T., Okamoto, H., Hirohata, S. & Minota, S. IgG anti-NR2 glutamate receptor autoantibodies from patients with systemic lupus erythematosus activate endothelial cells. Arthritis Rheum. 65, 457–463 (2013).
Hirohata, S., Arinuma, Y., Yanagida, T. & Yoshio, T. Blood–brain barrier damages and intrathecal synthesis of anti-N-methyl-D-aspartate receptor NR2 antibodies in diffuse psychiatric/neuropsychological syndromes in systemic lupus erythematosus. Arthritis Res. Ther. 16, R77 (2014).
Kuhlmann, C. R. et al. MK801 blocks hypoxic blood-brain-barrier disruption and leukocyte adhesion. Neurosci. Lett. 449, 168–172 (2009).
Williams, R. C., Sugiura, K. & Tan, E. M. Antibodies to microtubule-associated protein 2 in patients with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 50, 1239–1247 (2004).
Decker, P. et al. Zinc is an essential cofactor for recognition of the DNA binding domain of poly(ADP-ribose) polymerase by antibodies in autoimmune rheumatic and bowel diseases. Arthritis Rheum. 41, 918–926 (1998).
Decker, P., Isenberg, D. & Muller, S. Inhibition of caspase-3-mediated poly(ADP-ribose) polymerase (PARP) apoptotic cleavage by human PARP autoantibodies and effect on cells undergoing apoptosis. J. Biol. Chem. 275, 9043–9046 (2000).
Asher, G. et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142, 943–953 (2010).
Goldberg, S., Visochek, L., Giladi, E., Gozes, I. & Cohen-Armon, M. PolyADP-ribosylation is required for long-term memory formation in mammals. J. Neurochem. 111, 72–79 (2009).
Schreiber, V. et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J. Biol. Chem. 277, 23028–23036 (2002).
Appenzeller, S., Carnevalle, A. D., Li, L. M., Costallat, L. T. & Cendes, F. Hippocampal atrophy in systemic lupus erythematosus. Ann. Rheum. Dis. 65, 1585–1589 (2006).
Ballok, D. A., Woulfe, J., Sur, M., Cyr, M. & Sakic, B. Hippocampal damage in mouse and human forms of systemic autoimmune disease. Hippocampus 14, 649–661 (2004).
Swaak, A. J., Aarden, L. A., Statius van Eps, L. W. & Feltkamp, T. E. Anti-dsDNA and complement profiles as prognostic guides in systemic lupus erythematosus. Arthritis Rheum. 22, 226–235 (1979).
Hsieh, S.-C. & Yu, C.-L. Autoantibody profiling in systemic lupus erythematosus. Curr. Biomark. Find. 3, 55–65 (2013).
Popescu, A. & Kao, A. H. Neuropsychiatric systemic lupus erythematosus. Curr. Neuropharmacol. 9, 449–457 (2011).
Ainiala, H. et al. Increased serum matrix metalloproteinase 9 levels in systemic lupus erythematosus patients with neuropsychiatric manifestations and brain magnetic resonance imaging abnormalities. Arthritis Rheum. 50, 858–865 (2004).
Trysberg, E., Blennow, K., Zachrisson, O. & Tarkowski, A. Intrathecal levels of matrix metalloproteinases in systemic lupus erythematosus with central nervous system engagement. Arthritis Res. Ther. 6, R551–R556 (2004).
Kwiecin´ski, J. et al. Relationship between elevated cerebrospinal fluid levels of plasminogen activator inhibitor 1 and neuronal destruction in patients with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 60, 2094–2101 (2009).
Szelényi, J. Cytokines and the central nervous system. Brain Res. Bull. 54, 329–338 (2001).
Chun, H.-Y. et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J. Clin. Immunol. 27, 461–466 (2007).
Trysberg, E., Carlsten, H. & Tarkowski, A. Intrathecal cytokines in systemic lupus erythematosus with central nervous system involvement. Lupus 9, 498–503 (2000).
Fragoso-Loyo, H. et al. Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum. 56, 1242–1250 (2007).
Hirohata, S. et al. Accuracy of cerebrospinal fluid IL-6 testing for diagnosis of lupus psychosis. A multicenter retrospective study. Clin. Rheumatol. 28, 1319–1323 (2009).
Trysberg, E., Nylen, K., Rosengren, L. E. & Tarkowski, A. Neuronal and astrocytic damage in systemic lupus erythematosus patients with central nervous system involvement. Arthritis Rheum. 48, 2881–2887 (2003).
Wen, J. et al. Neuropsychiatric disease in murine lupus is dependent on the TWEAK/Fn14 pathway. J. Autoimmun. 43, 44–54 (2013).
Wajant, H. The TWEAK-Fn14 system as a potential drug target. Br. J. Pharmacol. 170, 748–764 (2013).
George-Chandy, A., Trysberg, E. & Eriksson, K. Raised intrathecal levels of APRIL and BAFF in patients with systemic lupus erythematosus: relationship to neuropsychiatric symptoms. Arthritis Res. Ther. 10, R97 (2008).
Vincent, F. B., Northcott, M., Hoi, A., Mackay, F. & Morand, E. F. Association of serum B cell activating factor from the tumour necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL) with central nervous system and renal disease in systemic lupus erythematosus. Lupus 22, 873–884 (2013).
Kasama, T., Odai, T., Wakabayashi, K., Yajima, N. & Miwa, Y. Chemokines in systemic lupus erythematosus involving the central nervous system. Front. Biosci. 13, 2527–2536 (2008).
Lee, S. C., Dickson, D. W., Liu, W. & Brosnan, C. F. Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon-gamma. J. Neuroimmunol. 46, 19–24 (1993).
Svenungsson, E. et al. Increased levels of proinflammatory cytokines and nitric oxide metabolites in neuropsychiatric lupus erythematosus. Ann. Rheum. Dis. 60, 372–379 (2001).
Narváez, J. et al. Rituximab therapy in refractory neuropsychiatric lupus: current clinical evidence. Semin. Arthritis Rheum. 41, 364–372 (2011).
Lim, L. S., Lefebvre, A., Benseler, S. & Silverman, E. D. Longterm outcomes and damage accrual in patients with childhood systemic lupus erythematosus with psychosis and severe cognitive dysfunction. J. Rheumatol. 40, 513–519 (2013).
Paholpak, P., Rangseekajee, P. & Foocharoen, C. Characteristics, treatments and outcome of psychosis in Thai SLE patients. J. Psychosom. Res. 73, 448–451 (2012).
Koutsokeras, T. & Healy, T. Systemic lupus erythematosus and lupus nephritis. Nat. Rev. Drug Discov. 13, 173–174 (2014).
Zimmer, R., Scherbarth, H. R., Rillo, O. L., Gomez-Reino, J. J. & Muller, S. Lupuzor/P140 peptide in patients with systemic lupus erythematosus: a randomised, double-blind, placebo-controlled phase IIb clinical trial. Ann. Rheum. Dis. 72, 1830–1835 (2013).
Haupt, M. et al. Improvement of coping abilities in patients with systemic lupus erythematosus: a prospective study. Ann. Rheum. Dis. 64, 1618–1623 (2005).
Ainiala, H. et al. Validity of the new American College of Rheumatology criteria for neuropsychiatric lupus syndromes: a population-based evaluation. Arthritis Rheum. 45, 419–423 (2001).
Hanly, J. G. et al. Neuropsychiatric events at the time of diagnosis of systemic lupus erythematosus: an international inception cohort study. Arthritis Rheum. 56, 265–273 (2007).
Mackay, M., Ulug, A. M. & Volpe, B. T. in Systemic Lupus Erythematosus (eds Lahita, R. G. et al.) 491–511 (Elsevier, 2011).
Abreu, M. R. et al. Neuropsychiatric systemic lupus erythematosus: correlation of brain MR imaging, CT, and SPECT. Clin. Imaging 29, 215–221 (2005).
Curiel, R., Akin, E. A., Beaulieu, G., DePalma, L. & Hashefi, M. PET/CT imaging in systemic lupus erythematosus. Ann. N. Y. Acad. Sci. 1228, 71–80 (2011).
Ainiala, H. et al. Cerebral MRI abnormalities and their association with neuropsychiatric manifestations in SLE: a population-based study. Scand. J. Rheumatol. 34, 376–382 (2005).
Appenzeller, S., Rondina, J. M., Li, L. M., Costallat, L. T. & Cendes, F. Cerebral and corpus callosum atrophy in systemic lupus erythematosus. Arthritis Rheum. 52, 2783–2789 (2005).
Appenzeller, S., Pike, G. B. & Clarke, A. E. Magnetic resonance imaging in the evaluation of central nervous system manifestations in systemic lupus erythematosus. Clin. Rev. Allergy Immunol. 34, 361–366 (2008).
Luyendijk, J. et al. Neuropsychiatric systemic lupus erythematosus: lessons learned from magnetic resonance imaging. Arthritis Rheum. 63, 722–732 (2011).
Sachdev, P., Chen, X. & Wen, W. White matter hyperintensities in mid-adult life. Curr. Opin. Psychiatry 21, 268–274 (2008).
Bosma, G. P. et al. Multisequence magnetic resonance imaging study of neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 50, 3195–3202 (2004).
Emmer, B. J. et al. Detection of change in CNS involvement in neuropsychiatric SLE: a magnetization transfer study. J. Magn. Reson. Imaging 24, 812–816 (2006).
Emmer, B. J. et al. Correlation of magnetization transfer ratio histogram parameters with neuropsychiatric systemic lupus erythematosus criteria and proton magnetic resonance spectroscopy: association of magnetization transfer ratio peak height with neuronal and cognitive dysfunction. Arthritis Rheum. 58, 1451–1457 (2008).
Rovaris, M. et al. Brain involvement in systemic immune mediated diseases: magnetic resonance and magnetisation transfer imaging study. J. Neurol. Neurosurg. Psychiatry 68, 170–177 (2000).
Steens, S. C. et al. Association between microscopic brain damage as indicated by magnetization transfer imaging and anticardiolipin antibodies in neuropsychiatric lupus. Arthritis Res. Ther. 8, R38 (2006).
Emmer, B. J. et al. Tract-based spatial statistics on diffusion tensor imaging in systemic lupus erythematosus reveals localized involvement of white matter tracts. Arthritis Rheum. 62, 3716–3721 (2010).
Jung, R. E. et al. Diffusion tensor imaging in neuropsychiatric systemic lupus erythematosus. BMC Neurol. 10, 65 (2010).
Zimny, A. et al. In vivo evaluation of brain damage in the course of systemic lupus erythematosus using magnetic resonance spectroscopy, perfusion-weighted and diffusion-tensor imaging. Lupus 23, 10–19 (2014).
DiFrancesco, M. W. et al. Functional magnetic resonance imaging assessment of cognitive function in childhood-onset systemic lupus erythematosus: a pilot study. Arthritis Rheum. 56, 4151–4163 (2007).
Fitzgibbon, B. M. et al. Functional MRI in NPSLE patients reveals increased parietal and frontal brain activation during a working memory task compared with controls. Rheumatology 47, 50–53 (2008).
Mak, A., Ren, T., Fu, E. H., Cheak, A. A. & Ho, R. C. A prospective functional MRI study for executive function in patients with systemic lupus erythematosus without neuropsychiatric symptoms. Semin. Arthritis Rheum. 41, 849–858 (2012).
Kao, C. H. et al. Discrepancy between regional cerebral blood flow and glucose metabolism of the brain in systemic lupus erythematosus patients with normal brain magnetic resonance imaging findings. Arthritis Rheum. 42, 61–68 (1999).
Kao, C. H. et al. The role of FDG-PET, HMPAO-SPET and MRI in the detection of brain involvement in patients with systemic lupus erythematosus. Eur. J. Nucl. Med. 26, 129–134 (1999).
Komatsu, N. et al. Decreased regional cerebral metabolic rate for glucose in systemic lupus erythematosus patients with psychiatric symptoms. Eur. Neurol. 42, 41–48 (1999).
Lee, S.-W., Park, M.-C., Lee, S.-K. & Park, Y.-B. The efficacy of brain 18F-fluorodeoxyglucose positron emission tomography in neuropsychiatric lupus patients with normal brain magnetic resonance imaging findings. Lupus 21, 1531–1537 (2012).
Weiner, S. M. et al. Diagnosis and monitoring of central nervous system involvement in systemic lupus erythematosus: value of F-18 fluorodeoxyglucose PET. Ann. Rheum. Dis. 59, 377–385 (2000).
Appenzeller, S. et al. Voxel-based morphometry of brain SPECT can detect the presence of active central nervous system involvement in systemic lupus erythematosus. Rheumatology 46, 467–472 (2007).
Castellino, G. et al. Single photon emission computed tomography and magnetic resonance imaging evaluation in SLE patients with and without neuropsychiatric involvement. Rheumatology 47, 319–323 (2008).
Otte, A. et al. Brain glucose utilization in systemic lupus erythematosus with neuropsychiatric symptoms: a controlled positron emission tomography study. Eur. J. Nucl. Med. 24, 787–791 (1997).
Appenzeller, S., Costallat, L. T., Li, L. M. & Cendes, F. Magnetic resonance spectroscopy in the evaluation of central nervous system manifestations of systemic lupus erythematosus. Arthritis Rheum. 55, 807–811 (2006).
Axford, J. S., Howe, F. A., Heron, C. & Griffiths, J. R. Sensitivity of quantitative 1H magnetic resonance spectroscopy of the brain in detecting early neuronal damage in systemic lupus erythematosus. Ann. Rheum. Dis. 60, 106–111 (2001).
Brey, R. L. Neuropsychiatric lupus: clinical and imaging aspects. Bull. NYU Hosp. Jt Dis. 65, 194–199 (2007).
Kozora, E. et al. Cognition, MRS neurometabolites, and MRI volumetrics in non-neuropsychiatric systemic lupus erythematosus: preliminary data. Cogn. Behav. Neurol. 18, 159–162 (2005).
Lim, M. K. et al. Systemic lupus erythematosus: brain MR imaging and single-voxel hydrogen 1 MR spectroscopy. Radiology 217, 43–49 (2000).
Lai, N. S. & Lan, J. L. Evaluation of cerebrospinal anticardiolipin antibodies in lupus patients with neuropsychiatric manifestations. Lupus 9, 353–357 (2000).
Aranow, C., Diamond, B. & Mackay, M. Glutamate receptor biology and its clinical significance in neuropsychiatric systemic lupus erythematosus. Rheum. Dis. Clin. North Am. 36, 187–201 (2010).
Kowal, C. et al. Cognition and immunity: antibody impairs memory. Immunity 21, 179–188 (2004).
Yokoyama, T. et al. Association between anti-U1 ribonucleoprotein antibodies and inflammatory mediators in cerebrospinal fluid of patients with neuropsychiatric systemic lupus erythematosus. Lupus 23, 635–642 (2014).
Sanna, G. et al. Central nervous system involvement in systemic lupus erythematosus: cerebral imaging and serological profile in patients with and without overt neuropsychiatric manifestations. Lupus 9, 573–583 (2000).
Santer, D. M., Yoshio, T., Minota, S., Möller, T. & Elkon, K. B. Potent induction of IFN-α and chemokines by autoantibodies in the cerebrospinal fluid of patients with neuropsychiatric lupus. J. Immunol. 182, 1192–1201 (2009).
Lefèvre, G. et al. Neuropsychiatric systemic lupus erythematosus (2nd part). Diagnostic and treatment tools in psychiatric or central nervous system manifestations in systemic lupus erythematosus [French]. Rev. Med. Interne 33, 503–513 (2012).
Acknowledgements
We gratefully acknowledge Marinos C. Dalakas (University of Athens Medical School, Athens, Greece) as well as Jean-Louis Pasquali (Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France) and Vincent Fontaa (Centre Hospitalier Universitaire de Strasbourg, Pôle Psychiatrie, Strasbourg, France) for their critical reading of this manuscript. We thank Ralph C. Williams Jr (University of New Mexico School of Medicine, Albuquerque, NM, USA) and Jean Sibilia (Centre Hospitalier Universitaire de Strasbourg, Hôpital de Hautepierre, Service de rhumatologie, Strasbourg, France) for providing serum samples from patients with SLE and healthy donors, respectively, Rufus Burlingame (Inova Diagnostics Inc., San Diego, CA, USA) for providing chromatin-coated ELISA plates, and Maria Kotovskaya for performing ELISA tests that produced the data summarized in Figure 4. We thank Athanasios G. Tzioufas (University of Athens Medical School, Athens, Greece) for providing the MRI scans shown in Figure 1. Research in the laboratory of S.M. is supported financially by the French Centre National de la Recherche Scientifique (CNRS), Région Alsace, and the Laboratory of Excellence Medalis (ANR-10-LABX-0034), Initiative of Excellence (IdEx), Strasbourg University, France.
Author information
Authors and Affiliations
Contributions
Both authors contributed to all stages of the preparation of the manuscript.
Corresponding author
Ethics declarations
Competing interests
S.M. is a consultant for ImmuPharma. H.J. D. declares no competing interests.
Rights and permissions
About this article
Cite this article
Jeltsch-David, H., Muller, S. Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat Rev Neurol 10, 579–596 (2014). https://doi.org/10.1038/nrneurol.2014.148
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrneurol.2014.148
This article is cited by
-
Blood–brain barrier: emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders
Molecular Brain (2022)
-
Neurophysiological evaluation of juvenile systemic lupus erythematosus
Egyptian Rheumatology and Rehabilitation (2022)
-
Serum S100A8/A9 concentrations are associated with neuropsychiatric involvement in systemic lupus erythematosus: a cross-sectional study
BMC Rheumatology (2022)
-
Abnormal cortical thickness and structural covariance networks in systemic lupus erythematosus patients without major neuropsychiatric manifestations
Arthritis Research & Therapy (2022)
-
Evaluation of depression and general health assessment among systemic lupus erythematosus patients in relation to disease activity and damage
Egyptian Rheumatology and Rehabilitation (2022)