Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The investigation of acute optic neuritis: a review and proposed protocol

This article has been updated

Key Points

  • Optic neuritis is frequently but not always associated with multiple sclerosis (MS), and patients who present with optic neuritis will want to know about their risk of developing MS

  • Early recognition of optic neuritis not caused by MS is important to prevent severe visual loss, and to avoid inappropriate use of MS-targeted treatments

  • No international consensus exists on the nosology of optic neuritis: the aetiology remains idiopathic in many cases, and attempts at classification fall short, in part because we lack a uniform investigation protocol

  • This Review on established and emerging diagnostic tools proposes a consensus on the investigation of patients with suspected optic neuritis in both standard care and research

  • The aims are to aid recognition of patients at risk of severe visual loss, to contribute to future attempts at classification of optic neuritis, and to provide end points for clinical studies

Abstract

Optic neuritis is an inflammatory optic neuropathy that affects many patients with multiple sclerosis (MS) at some point during their disease course. Differentiation of acute episodes of MS-associated optic neuritis from other autoimmune and inflammatory optic neuropathies is vital for treatment choice and further patient management, but is not always straightforward. Over the past decade, a number of new imaging, laboratory and electrophysiological techniques have entered the clinical arena. To date, however, no consensus guidelines have been devised to specify how and when these techniques can be most rationally applied for the diagnostic work-up of patients with acute optic neuritis. In this article, we review the literature and attempt to formulate a consensus for the investigation of patients with acute optic neuritis, both in standard care and in research with relevance to clinical treatment trials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Ophthalmological and MRI investigations in a 35-year-old woman with blurred vision in the right eye.
Figure 2: Minimal retinal OCT protocol—part I: peripapillary ring scan.
Figure 3: Minimal retinal OCT protocol—part II: macular volume scan.
Figure 4: MMO in a 44-year-old man with Harding disease (multiple sclerosis plus Leber hereditary optic neuropathy).

Change history

  • 18 July 2014

    In the version of the article originally posted online, Romain Marignier's surname was misspelt. The error has been corrected in the online PDF and HTML versions of the article.

References

  1. 1

    Hickman, S., Dalton, C., Miller, D. & Plant, G. Management of acute optic neuritis. Lancet 360, 1953–1962 (2002).

    CAS  PubMed  Google Scholar 

  2. 2

    Fraser, C. L., Davagnanam, I., Radon, M. & Plant, G. T. The time course and phenotype of Uhthoff phenomenon following optic neuritis. Mult. Scler. 18, 1042–1044 (2012).

    PubMed  Google Scholar 

  3. 3

    Frohman, T. C. et al. Uhthoff's phenomena in MS—clinical features and pathophysiology. Nat. Rev. Neurol. 9, 535–540 (2013).

    CAS  PubMed  Google Scholar 

  4. 4

    Hess, K., Gresty, M. & Leech, J. Clinical and theoretical aspects of head movement dependent oscillopsia (HMDO). A review. J. Neurol. 219, 151–157 (1978).

    CAS  PubMed  Google Scholar 

  5. 5

    Serra, A., Derwenskus, J., Downey, D. L. & Leigh, R. J. Role of eye movement examination and subjective visual vertical in clinical evaluation of multiple sclerosis. J. Neurol. 250, 569–575 (2003).

    PubMed  Google Scholar 

  6. 6

    Sharpe, J. A., Goldberg, H. J., Lo, A. W. & Herishanu, Y. O. Visual–vestibular interaction in multiple sclerosis. Neurology 31, 427–433 (1981).

    CAS  PubMed  Google Scholar 

  7. 7

    Petzold, A. & Plant, G. T. Chronic relapsing inflammatory optic neuropathy: a systematic review of 122 cases reported. J. Neurol. 261, 17–26 (2014).

    PubMed  Google Scholar 

  8. 8

    Wingerchuk, D. M., Lennon, V. A., Pittock, S. J., Lucchinetti, C. F. & Weinshenker, B. G. Revised diagnostic criteria for neuromyelitis optica. Neurology 66, 1485–1489 (2006).

    CAS  PubMed  Google Scholar 

  9. 9

    Gabilondo, I. et al. Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann. Neurol. 75, 98–107 (2014).

    CAS  PubMed  Google Scholar 

  10. 10

    Jenkins, T. et al. Dissecting structure–function interactions in acute optic neuritis to investigate neuroplasticity. Hum. Brain Mapp. 31, 276–286 (2010).

    PubMed  Google Scholar 

  11. 11

    Masland, R. H. The neuronal organization of the retina. Neuron 76, 266–280 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Jonas, J. B., Schmidt, A. M., Müller-Bergh, J. A., Schlötzer-Schrehardt, U. M. & Naumann, G. O. Human optic nerve fiber count and optic disc size. Invest. Ophthalmol. Vis. Sci. 33, 2012–2018 (1992).

    CAS  PubMed  Google Scholar 

  13. 13

    Hubel, D. & Wiesel, T. David Hubel and Torsten Wiesel. Neuron 75, 182–184 (2012).

    CAS  PubMed  Google Scholar 

  14. 14

    Gilbert, C. D. & Li, W. Top-down influences on visual processing. Nat. Rev. Neurosci. 14, 350–363 (2013).

    CAS  PubMed  Google Scholar 

  15. 15

    Petzold, A. et al. Neuromyelitis optica-IgG (aquaporin-4) autoantibodies in immune mediated optic neuritis. J. Neurol. Neurosurg. Psychiatry 81, 109–111 (2010).

    CAS  PubMed  Google Scholar 

  16. 16

    Polman, C. et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann. Neurol. 58, 840–846 (2005).

    PubMed  Google Scholar 

  17. 17

    Lepore, F. E. The origin of pain in optic neuritis. Determinants of pain in 101 eyes with optic neuritis. Arch. Neurol. 48, 748–749 (1991).

    CAS  PubMed  Google Scholar 

  18. 18

    Petzold, A. & Pitz, E. The historical origin of the Pulfrich Effect: a serendipitous astronomic observation at the border of the Milky Way. Neuro-Ophthalmology 33, 39–46 (2009).

    Google Scholar 

  19. 19

    McGowan, G., Ahmed, T. Y., Heron, G. & Diaper, C. The Pulfrich phenomenon; clumsiness and collisions which can be ameliorated. Pract. Neurol. 11, 173–176 (2011).

    PubMed  Google Scholar 

  20. 20

    Kawasaki, A., Moore, P. & Kardon, R. H. Long-term fluctuation of relative afferent pupillary defect in subjects with normal visual function. Am. J. Ophthalmol. 122, 875–882 (1996).

    CAS  PubMed  Google Scholar 

  21. 21

    Leigh, R. J. & Serra, A. Taking the temperature of MS with INO. Neurology 70, 1063–1064 (2008).

    PubMed  Google Scholar 

  22. 22

    Balcer, L. J. et al. Contrast letter acuity as a visual component for the Multiple Sclerosis Functional Composite. Neurology 61, 1367–1373 (2003).

    CAS  PubMed  Google Scholar 

  23. 23

    Rodriguez-Carmona, M., O'Neill-Biba, M. & Barbur, J. L. Assessing the severity of color vision loss with implications for aviation and other occupational environments. Aviat. Space Environ. Med. 83, 19–29 (2012).

    PubMed  Google Scholar 

  24. 24

    Anzai, A., Ohzawa, I. & Freeman, R. D. Joint-encoding of motion and depth by visual cortical neurons: neural basis of the Pulfrich effect. Nat. Neurosci. 4, 513–518 (2001).

    CAS  PubMed  Google Scholar 

  25. 25

    Frohman, E. M. et al. Relationship of optic nerve and brain conventional and non-conventional MRI measures and retinal nerve fiber layer thickness, as assessed by OCT and GDx: a pilot study. J. Neurol. Sci. 282, 96–105 (2009).

    PubMed  Google Scholar 

  26. 26

    Menke, M. N., Dabov, S., Knecht, P. & Sturm, V. Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography. Am. J. Ophthalmol. 147, 467–472 (2009).

    PubMed  Google Scholar 

  27. 27

    Kisimbi, J. et al. Macular spectral domain optical coherence tomography findings in Tanzanian endemic optic neuropathy. Brain 136, 3418–3426 (2013).

    PubMed  Google Scholar 

  28. 28

    Abegg, M. et al. Microcystic macular edema: retrograde maculopathy caused by optic neuropathy. Ophthalmology 121, 142–149 (2014).

    PubMed  Google Scholar 

  29. 29

    Mahroo, O. A. et al. Re: Abegg. et al.: Microcystic macular edema: retrograde maculopathy caused by optic neuropathy (Ophthalmology 2014;121:142–9). Ophthalmology http://dx.doi.org/10.1016/j.ophtha.2014.01.035.

    PubMed  Google Scholar 

  30. 30

    Petzold, A. et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 9, 921–932 (2010).

    PubMed  Google Scholar 

  31. 31

    Balk, L. J. et al. A dam for retrograde axonal degeneration in multiple sclerosis? J. Neurol. Neurosurg. Psychiatry 85, 782–789 (2014).

    CAS  PubMed  Google Scholar 

  32. 32

    Pfueller, C. F. et al. Metabolic changes in the visual cortex are linked to retinal nerve fiber layer thinning in multiple sclerosis. PLoS ONE 6, e18019 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Petzold, A. Neurodegeneration and multiple sclerosis. In Neurodegenerative Diseases: Clinical Aspects, Molecular Genetics and Biomarkers (eds Galimberti, D. & Scarpini, E.) 227–245 (Springer, 2014).

    Google Scholar 

  34. 34

    Costello, F. et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann. Neurol. 59, 963–969 (2006).

    PubMed  Google Scholar 

  35. 35

    Toosy, A. T., Mason, D. F. & Miller, D. H. Optic neuritis. Lancet Neurol. 13, 83–99 (2014).

    CAS  PubMed  Google Scholar 

  36. 36

    Brandt, A. U. et al. Patterns of retinal damage facilitate differential diagnosis between Susac syndrome and MS. PLoS ONE 7, e38741 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Nagia, L. & Eggenberger, E. Differentiating retinal from optic nerve syndromes. Curr. Opin. Ophthalmol. 24, 528–533 (2013).

    PubMed  Google Scholar 

  38. 38

    Bichuetti, D. B. et al. The retinal nerve fiber layer of patients with neuromyelitis optica and chronic relapsing optic neuritis is more severely damaged than patients with multiple sclerosis. J. Neuroophthalmol. 33, 220–224 (2013).

    PubMed  Google Scholar 

  39. 39

    Bouyon, M. et al. Longitudinal follow-up of vision in a neuromyelitis optica cohort. Mult. Scler. 19, 1320–1322 (2013).

    CAS  PubMed  Google Scholar 

  40. 40

    Fernandes, D. B. et al. Evaluation of inner retinal layers in patients with multiple sclerosis or neuromyelitis optica using optical coherence tomography. Ophthalmology 120, 387–394 (2013).

    PubMed  Google Scholar 

  41. 41

    Kaufhold, F. et al. Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PLoS ONE 8, e71145 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Nakamura, M. et al. Early high-dose intravenous methylprednisolone is effective in preserving retinal nerve fiber layer thickness in patients with neuromyelitis optica. Graefes Arch. Clin. Exp. Ophthalmol. 248, 1777–1785 (2010).

    CAS  PubMed  Google Scholar 

  43. 43

    von Glehn, F. et al. Structural brain abnormalities are related to retinal nerve fiber layer thinning and disease duration in neuromyelitis optica spectrum disorders. Mult. Scler. http://dx.doi.org/10.1177/1352458513519838.

  44. 44

    Gelfand, J. M., Nolan, R., Schwartz, D. M., Graves, J. & Green, A. J. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 135, 1786–1793 (2012).

    PubMed  PubMed Central  Google Scholar 

  45. 45

    Schneider, E. et al. Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS ONE 8, e66151 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Balk, L. J., Killestein, J., Polman, C. H., Uitdehaag, B. M. & Petzold, A. Microcystic macular oedema confirmed, but not specific for multiple sclerosis. Brain 135, e226 (2012).

    PubMed  Google Scholar 

  47. 47

    Burggraaff, M. C., Trieu, J., de Vries-Knoppert, W. A., Balk, L. & Petzold, A. The clinical spectrum of microcystic macular oedema. Invest. Ophthalmol. Vis. Sci. 55, 952–961 (2014).

    PubMed  Google Scholar 

  48. 48

    Gelfand, J. M., Cree, B. A., Nolan, R., Arnow, S. & Green, A. J. Microcystic inner nuclear layer abnormalities and neuromyelitis optica. JAMA Neurol 70, 629–633 (2013).

    PubMed  Google Scholar 

  49. 49

    Sotirchos, E. S. et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology 80, 1406–1414 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Vishwanath, S. et al. Post-fever retinitis: a single center experience from south India. Int. Ophthalmol. http://dx.doi.org/10.1007/s10792-013-9891–7.

  51. 51

    Tewarie, P. et al. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS ONE 7, e34823 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Schippling, S. et al. Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult. Scler. http://dx.doi.org/10.1177/1352458514538110.

  53. 53

    Stabler, S. P. Clinical practice. Vitamin B12 deficiency. N. Engl. J. Med. 368, 149–160 (2013).

    CAS  PubMed  Google Scholar 

  54. 54

    Jarius, S., Paul, F., Ruprecht, K. & Wildemann, B. Low vitamin B12 levels and gastric parietal cell antibodies in patients with aquaporin-4 antibody-positive neuromyelitis optica spectrum disorders. J. Neurol. 259, 2743–2745 (2012).

    CAS  PubMed  Google Scholar 

  55. 55

    Agmon-Levin, N. et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann. Rheum. Dis. 73, 17–23 (2014).

    CAS  PubMed  Google Scholar 

  56. 56

    Jarius, S. et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J. Neuroinflammation 9, 14 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Myers, T. D. et al. Use of corticosteroid sparing systemic immunosuppression for treatment of corticosteroid dependent optic neuritis not associated with demyelinating disease. Br. J. Ophthalmol. 88, 673–680 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Biotti, D., Boucher, S., Ong, E., Tilikete, C. & Vighetto, A. Optic neuritis as a possible phenotype of anti-GQ1b/GT1a antibody syndrome. J. Neurol. 260, 2890–2891 (2013).

    PubMed  Google Scholar 

  59. 59

    Fujihara, K. & Leite, M. Seronegative NMO: a sensitive AQP4 antibody test clarifies clinical features and next challenges. Neurology 80, 2176–2177 (2013).

    PubMed  Google Scholar 

  60. 60

    Jarius, S. & Wildemann, B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol. 23, 661–683 (2013).

    CAS  PubMed  Google Scholar 

  61. 61

    Waters, P. J. et al. Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays. Neurology 78, 665–671 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Jarius, S. et al. Frequency and prognostic impact of antibodies to aquaporin-4 in patients with optic neuritis. J. Neurol. Sci. 298, 158–162 (2010).

    CAS  PubMed  Google Scholar 

  63. 63

    Matiello, M. et al. NMO-IgG predicts the outcome of recurrent optic neuritis. Neurology 70, 2197–2200 (2008).

    CAS  PubMed  Google Scholar 

  64. 64

    Kitley, J. et al. Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies: a comparative study. JAMA Neurol. 71, 276–283 (2014).

    PubMed  Google Scholar 

  65. 65

    Sato, D. K. et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology 82, 474–481 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Stangel, M. et al. The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat. Rev. Neurol. 9, 267–276 (2013).

    CAS  PubMed  Google Scholar 

  67. 67

    Petzold, A. Intrathecal oligoclonal IgG synthesis in multiple sclerosis. J. Neuroimmunol. 262, 1–10 (2013).

    CAS  PubMed  Google Scholar 

  68. 68

    Jarius, S. et al. Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J. Neurol. Sci. 306, 82–90 (2011).

    CAS  PubMed  Google Scholar 

  69. 69

    Nakamura, M. et al. Clinical and laboratory features of neuromyelitis optica with oligoclonal IgG bands. Mult. Scler. 13, 332–335 (2007).

    CAS  PubMed  Google Scholar 

  70. 70

    Misu, T. et al. Marked increase in cerebrospinal fluid glial fibrillar acidic protein in neuromyelitis optica: an astrocytic damage marker. J. Neurol. Neurosurg. Psychiatry 80, 575–577 (2009).

    CAS  PubMed  Google Scholar 

  71. 71

    Petzold, A., Marignier, R., Verbeek, M. M. & Confavreux, C. Glial but not axonal protein biomarkers as a new supportive diagnostic criteria for Devic neuromyelitis optica? Preliminary results on 188 patients with different neurological diseases. J. Neurol. Neurosurg. Psychiatry 82, 467–469 (2011).

    CAS  PubMed  Google Scholar 

  72. 72

    Takano, R. et al. Astrocytic damage is far more severe than demyelination in NMO: a clinical CSF biomarker study. Neurology 75, 208–216 (2010).

    CAS  PubMed  Google Scholar 

  73. 73

    Uzawa, A. et al. Cerebrospinal fluid interleukin-6 and glial fibrillary acidic protein levels are increased during initial neuromyelitis optica attacks. Clin. Chim. Acta 421, 181–183 (2013).

    CAS  PubMed  Google Scholar 

  74. 74

    Dörr, J., Döring, A. & Paul, F. Can we prevent or treat multiple sclerosis by individualised vitamin D supply? EPMA J. 4, 4 (2013).

    PubMed  PubMed Central  Google Scholar 

  75. 75

    von Geldern, G. & Mowry, E. M. The influence of nutritional factors on the prognosis of multiple sclerosis. Nat. Rev. Neurol. 8, 678–689 (2012).

    CAS  PubMed  Google Scholar 

  76. 76

    Petzold, A., Rejdak, K. & Plant, G. Axonal degeneration and inflammation in acute optic neuritis. J. Neurol. Neurosurg. Psychiatry 75, 1178–1180 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Petzold, A. & Plant, G. T. The diagnostic and prognostic value of neurofilament heavy chain levels in immune-mediated optic neuropathies. Mult. Scler. Int. 2012, 217802 (2012).

    PubMed  PubMed Central  Google Scholar 

  78. 78

    Talla, V. et al. Noninvasive assessments of optic nerve neurodegeneration in transgenic mice with isolated optic neuritis. Invest. Ophthalmol. Vis. Sci. 54, 4440–4450 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. 79

    Petzold, A., Bowser, R., Calabresi, P., Zetterberg, H. & Uitdehaag, B. M. Biomarker time out. Mult. Scler. http://dx.doi.org/10.1177/1352458514524999.

  80. 80

    Barkhof, F., Calabresi, P. A., Miller, D. H. & Reingold, S. C. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat. Rev. Neurol. 5, 256–266 (2009).

    PubMed  Google Scholar 

  81. 81

    Kolappan, M. et al. Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis. J. Neurol. 256, 305–319 (2009).

    PubMed  Google Scholar 

  82. 82

    Miller, D. H. et al. Magnetic resonance imaging of the optic nerve in optic neuritis. Neurology 38, 175–179 (1988).

    CAS  PubMed  Google Scholar 

  83. 83

    Hickman, S. J. et al. Visual recovery following acute optic neuritis—a clinical, electrophysiological and magnetic resonance imaging study. J. Neurol. 251, 996–1005 (2004).

    PubMed  Google Scholar 

  84. 84

    Kupersmith, M. J., Alban, T., Zeiffer, B. & Lefton, D. Contrast-enhanced MRI in acute optic neuritis: relationship to visual performance. Brain 125, 812–822 (2002).

    PubMed  Google Scholar 

  85. 85

    Khanna, S. et al. Magnetic resonance imaging of optic neuritis in patients with neuromyelitis optica versus multiple sclerosis. J. Neuroophthalmol. 32, 216–220 (2012).

    PubMed  Google Scholar 

  86. 86

    Storoni, M., Davagnanam, I., Radon, M., Siddiqui, A. & Plant, G. T. Distinguishing optic neuritis in neuromyelitis optica spectrum disease from multiple sclerosis: a novel magnetic resonance imaging scoring system. J. Neuroophthalmol. 33, 123–127 (2013).

    PubMed  Google Scholar 

  87. 87

    Wattjes, M. P. & Barkhof, F. High field MRI in the diagnosis of multiple sclerosis: high field–high yield? Neuroradiology 51, 279–292 (2009).

    PubMed  Google Scholar 

  88. 88

    Wattjes, M. P. et al. Does high field MRI allow an earlier diagnosis of multiple sclerosis? J. Neurol. 255, 1159–1163 (2008).

    PubMed  Google Scholar 

  89. 89

    Karim, S., Clark, R. A., Poukens, V. & Demer, J. L. Demonstration of systematic variation in human intraorbital optic nerve size by quantitative magnetic resonance imaging and histology. Invest. Ophthalmol. Vis. Sci. 45, 1047–1051 (2004).

    PubMed  Google Scholar 

  90. 90

    Trip, S. A. et al. Optic nerve atrophy and retinal nerve fibre layer thinning following optic neuritis: evidence that axonal loss is a substrate of MRI-detected atrophy. Neuroimage 31, 286–293 (2006).

    PubMed  Google Scholar 

  91. 91

    Trip, S. A. et al. Optic nerve magnetization transfer imaging and measures of axonal loss and demyelination in optic neuritis. Mult. Scler. 13, 875–879 (2007).

    CAS  PubMed  Google Scholar 

  92. 92

    Trip, S. A. et al. Optic nerve diffusion tensor imaging in optic neuritis. Neuroimage 30, 498–505 (2006).

    PubMed  Google Scholar 

  93. 93

    Glisson, C. C. & Galetta, S. L. Nonconventional optic nerve imaging in multiple sclerosis. Neuroimaging Clin. N. Am. 19, 71–79 (2009).

    PubMed  Google Scholar 

  94. 94

    Yiannakas, M. C. et al. MRI acquisition and analysis protocol for in vivo intraorbital optic nerve segmentation at 3 T. Invest. Ophthalmol. Vis. Sci. 54, 4235–4240 (2013).

    PubMed  Google Scholar 

  95. 95

    Holder, G. E., Gale, R. P., Acheson, J. F. & Robson, A. G. Electrodiagnostic assessment in optic nerve disease. Curr. Opin. Neurol. 22, 3–10 (2009).

    PubMed  Google Scholar 

  96. 96

    Holder, G. E. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog. Retin. Eye Res. 20, 531–561 (2001).

    CAS  PubMed  Google Scholar 

  97. 97

    Visual electrodiagnostics: a guide to procedures. ISCEV Standards, Recommendations and Guidelines [online]. (2013).

  98. 98

    Odom, J. V. et al. ISCEV standard for clinical visual evoked potentials (2009 update). Doc. Ophthalmol. 120, 111–119 (2010).

    PubMed  Google Scholar 

  99. 99

    Nightingale, S., Mitchell, K. W. & Howe, J. W. Visual evoked cortical potentials and pattern electroretinograms in Parkinson's disease and control subjects. J. Neurol. Neurosurg. Psychiatry 49, 1280–1287 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Boylu, E. et al. Visual evoked potential abnormalities in migraine patients. Electromyogr. Clin. Neurophysiol. 50, 303–308 (2010).

    CAS  PubMed  Google Scholar 

  101. 101

    Fraser, C. L. & Holder, G. E. Electroretinogram findings in unilateral optic neuritis. Doc. Ophthalmol. 123, 173–178 (2011).

    PubMed  Google Scholar 

  102. 102

    Fraser, C. et al. Multifocal visual evoked potential latency analysis: predicting progression to multiple sclerosis. Arch. Neurol. 63, 847–850 (2006).

    PubMed  Google Scholar 

  103. 103

    Holder, G. E. The incidence of abnormal pattern electroretinography in optic nerve demyelination. Electroencephalogr. Clin. Neurophysiol. 78, 18–26 (1991).

    CAS  PubMed  Google Scholar 

  104. 104

    Rodriguez-Mena, D. et al. Electropysiologic evaluation of the visual pathway in patients with multiple sclerosis. J. Clin. Neurophysiol. 30, 376–381 (2013).

    PubMed  Google Scholar 

  105. 105

    Frohman, T. C. et al. Optic nerve head component responses of the multifocal electroretinogram in MS. Neurology 81, 545–551 (2013).

    PubMed  PubMed Central  Google Scholar 

  106. 106

    Gerling, J., Meyer, J. & Kommerell, G. Visual field defects in optic neuritis and anterior ischemic optic neuropathy: distinctive features. Graefes Arch. Clin. Exp. Ophthalmol. 236, 188–192 (1998).

    CAS  PubMed  Google Scholar 

  107. 107

    Keltner, J. L. et al. Visual field profile of optic neuritis: a final follow-up report from the optic neuritis treatment trial from baseline through 15 years. Arch. Ophthalmol. 128, 330–337 (2010).

    PubMed  PubMed Central  Google Scholar 

  108. 108

    Petzold, A., Islam, N., Hu, H.-H. & Plant, G. T. Embolic and nonembolic transient monocular visual field loss: a clinicopathologic review. Surv. Ophthalmol. 58, 42–62 (2013).

    PubMed  Google Scholar 

  109. 109

    Purvin, V., Kawasaki, A. & Jacobson, D. M. Optic perineuritis: clinical and radiographic features. Arch. Ophthalmol. 119, 1299–1306 (2001).

    CAS  PubMed  Google Scholar 

  110. 110

    Petzold, A. & Plant, G. Failure to detect bitemporal field defects due to chiasmal compression on a screening perimetry protocol. Neuro-Ophthalmology 24, 357–361 (2001).

    Google Scholar 

  111. 111

    Schiefer, U. et al. Comparison of the new perimetric GATE strategy with conventional full-threshold and SITA standard strategies. Invest. Ophthalmol. Vis. Sci. 50, 488–494 (2009).

    PubMed  Google Scholar 

  112. 112

    Harding, G. F., Wild, J. M., Robertson, K. A., Rietbrock, S. & Martinez, C. Separating the retinal electrophysiologic effects of vigabatrin: treatment versus field loss. Neurology 55, 347–352 (2000).

    CAS  PubMed  Google Scholar 

  113. 113

    Scott, J. A. & Egan, R. A. Prevalence of organic neuro-ophthalmologic disease in patients with functional visual loss. Am. J. Ophthalmol. 135, 670–675 (2003).

    PubMed  Google Scholar 

  114. 114

    Trick, G. L., Trick, L. R., Morris, P. & Wolf, M. Visual field loss in senile dementia of the Alzheimer's type. Neurology 45, 68–74 (1995).

    CAS  PubMed  Google Scholar 

  115. 115

    Kutzko, K. E., Brito, C. F. & Wall, M. Effect of instructions on conventional automated perimetry. Invest. Ophthalmol. Vis. Sci. 41, 2006–2013 (2000).

    CAS  PubMed  Google Scholar 

  116. 116

    [No authors listed] Automated perimetry. American Academy of Ophthalmology. Ophthalmology 103, 1144–1151 (1996).

  117. 117

    Kerrigan-Baumrind, L. A., Quigley, H. A., Pease, M. E., Kerrigan, D. F. & Mitchell, R. S. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest. Ophthalmol. Vis. Sci. 41, 741–748 (2000).

    CAS  PubMed  Google Scholar 

  118. 118

    Mikelberg, F. S., Yidegiligne, H. M. & Schulzer, M. Optic nerve axon count and axon diameter in patients with ocular hypertension and normal visual fields. Ophthalmology 102, 342–348 (1995).

    CAS  PubMed  Google Scholar 

  119. 119

    Quigley, H., Dunkelberger, G. & Green, W. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am. J. Ophthalmol. 107, 453–464 (1989).

    CAS  PubMed  Google Scholar 

  120. 120

    Bhardwaj, N., Perez, J. & Peden, M. Optic neuropathy from cobalt toxicity in a patient who ingested cattle magnets. Neuro-Ophthalmology 35, 24–26 (2011).

    PubMed  PubMed Central  Google Scholar 

  121. 121

    Wakefield, D., Di Girolamo, N., Thurau, S., Wildner, G. & McCluskey, P. Scleritis: immunopathogenesis and molecular basis for therapy. Prog. Retin. Eye Res. 35, 44–62 (2013).

    CAS  PubMed  Google Scholar 

  122. 122

    Coppens, S., Petzold, A., de Graaf, P. & Vries-Knoppert, W. Recurrent optic perineuritis after intranasal cocaine abuse. Neuro-Ophthalmology 38, 91–95 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The MS Center VUMC is partially funded by a programme grant from the Dutch MS Research Foundation. K.F. is a recipient of Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Technology and the Ministry of Health, Labour and Welfare of Japan. F.P. is supported by the German Research Council (DFG Exc 257) and the German Ministry for Education and Research Competence Network Multiple Sclerosis. S.S. is supported by the Clinical Research Priority Program of the University of Zürich and the Betty and David Koetser Foundation for Brain Research. G.T.P. is supported by the University College London Comprehensive Biomedical Research Centre and the Moorfields Biomedical Research Centre.

Author information

Affiliations

Authors

Contributions

A.P. had the idea for this protocol, reviewed the literature, provided figures, wrote the first draft and finalized the manuscript. F.C., K.F., F.P., S.S. and C.S. revised the manuscript. M.P.W. performed an independent literature review and wrote the MRI section. C.L.F. performed an independent literature review and wrote the VEP/ERG section. B.W. and G.T.P. contributed to the conception and design of the protocol. All authors revised the final version of the manuscript.

Corresponding author

Correspondence to Axel Petzold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Investigation protocol for patients presenting with suspected optic neuritis (PDF 781 kb)

Supplementary Table 1

Conversion of visual acuities (PDF 44 kb)

Microcystic macular oedema (MOV 762 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petzold, A., Wattjes, M., Costello, F. et al. The investigation of acute optic neuritis: a review and proposed protocol. Nat Rev Neurol 10, 447–458 (2014). https://doi.org/10.1038/nrneurol.2014.108

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing