Abstract
Diagnosis of multiple sclerosis (MS) requires the exclusion of other possible diagnoses. For this reason, the cerebrospinal fluid (CSF) should be routinely analysed in patients with a first clinical event suggestive of MS. CSF analysis is no longer mandatory for diagnosis of relapsing–remitting MS, as long as MRI diagnostic criteria are fulfilled. However, caution is required in diagnosing MS in patients with negative MRI findings or in the absence of CSF analysis, as CSF investigation is useful to eliminate other causes of disease. The detection of oligoclonal IgG bands in CSF has potential prognostic value and is helpful for clinical decision-making. In addition, CSF analysis is important for research into the pathogenesis of MS. Pathophysiological and neurodegenerative findings of inflammation in MS have been derived from CSF investigations. Novel CSF biomarkers, though not yet validated, have been identified for diagnosis of MS and for ascertaining disease activity, prognosis and response to treatment, and are likely to increase in number with modern detection techniques. In this Review, we summarize CSF findings that shed light on the differential diagnosis of MS, and highlight the potential of novel biomarkers for this disease that could advance understanding of its pathophysiology.
Key Points
-
Cerebrospinal fluid (CSF) analysis is used to exclude other diseases in the differential diagnosis of multiple sclerosis (MS)
-
Detection of oligoclonal IgG bands and elevated CXCL13 levels in the CSF can be used to make a prognosis and predict subsequent relapse in patients with clinically isolated syndrome
-
Investigation of CSF has helped to elucidate inflammatory and neurodegenerative mechanisms in MS
-
New candidate markers for MS have been described in CSF, but require validation in large cohorts of patients
-
Standardized assays to identify and quantify potential MS markers in CSF are needed to enable comparisons between studies and cohorts of patients
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A dynamic interpretation of κFLC index for the diagnosis of multiple sclerosis: a change of perspective
Journal of Neurology Open Access 28 August 2023
-
Cerebrospinal fluid oligoclonal immunoglobulin gamma bands and long-term disability progression in multiple sclerosis: a retrospective cohort study
Scientific Reports Open Access 22 July 2021
-
Lipid-specific IgMs induce antiviral responses in the CNS: implications for progressive multifocal leukoencephalopathy in multiple sclerosis
Acta Neuropathologica Communications Open Access 13 August 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Quincke, H. I. Die lumbalpunktion des hydrocephalus [German]. Berl. Klin. Wochschr. 32, 861–862 (1891).
Wynter, W. E. Four cases of tubercular meningitis in which paracentesis was performed for the relief of fluid pressure. Lancet 137, 981–982 (1891).
Lange, C. Über die Ausflockung von Goldsol durch Liquor cerebrospinalis [German]. Berl. Klin. Wochschr. 19, 879 (1912).
Kafka, V. Die ungefärbte und gefärbte normomastixreaktion der rückenmarkflüssigkeit [German]. Dtsch. Med. Wochenschr. 47, 1422 (1921).
Hinton, W. A. in Multiple Sclerosis: Association for Research in Nervous and Mental Diseases Vol. 2 (eds Ayer, J. B. & Foster, H. E.) 113–121 (Paul B. Hoeber, New York, 1922).
Tiselius, A. Electrophoresis of serum globulin. I. Biochem. J. 31, 1467–1477 (1937).
Kabat, E. A., Moore, D. H. & Landow, H. An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. J. Clin. Invest. 21, 571–577 (1942).
Laterre, E. C., Callewaert, A., Heremans, J. F. & Sfaello, Z. Electrophoretic morphology of gamma globulins in cerebrospinal fluid of multiple sclerosis and other diseases of the nervous system. Neurology 20, 982–990 (1970).
Keir, G., Luxton, R. W. & Thompson, E. J. Isoelectric focusing of cerebrospinal fluid immunoglobulin G: an annotated update. Ann. Clin. Biochem. 27, 436–443 (1990).
Link, H. & Tibbling, G. Principles of albumin and IgG analyses in neurological disorders. III. Evaluation of IgG synthesis within the central nervous system in multiple sclerosis. Scand. J. Clin. Lab. Invest. 37, 397–401 (1977).
Tourtellotte, W. W. et al. Multiple sclerosis: measurement and validation of central nervous system IgG synthesis rate. Neurology 30, 240–244 (1980).
Felgenhauer, K. & Reiber, H. The diagnostic significance of antibody specificity indices in multiple sclerosis and herpes virus induced diseases of the nervous system. Clin. Investig. 70, 28–37 (1992).
Yahr, M. D. & Kabat, E. A. Cerebrospinal fluid and serum gamma globulin levels in multiple sclerosis: changes induced by large doses of prednisone. Trans. Am. Neurol. Assoc. 115–118 (82nd Meeting, 1957).
Lowenthal, A., Vansande, M. & Karcher, D. The differential diagnosis of neurological diseases by fractionating electrophoretically the CSF gamma-globulins. J. New Drugs 6, 51–56 (1960).
Schumacher, G. A. et al. Problems of experimental trials of therapy in multiple sclerosis: report by the panel on the evaluation of experimental trials of therapy in multiple sclerosis. Ann. N. Y. Acad. Sci. 122, 552–568 (1965).
Poser, C. M. et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann. Neurol. 13, 227–231 (1983).
McDonald, W. I. et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 50, 121–127 (2001).
Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011).
Tumani, H. et al. Revised McDonald criteria: the persisting importance of cerebrospinal fluid analysis. Ann. Neurol. 70, 520 (2011).
Teunissen, C. E. et al. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 73, 1914–1922 (2009).
Reiber, H. External quality assessment in clinical neurochemistry: survey of analysis for cerebrospinal fluid (CSF) proteins based on CSF/serum quotients. Clin. Chem. 41, 256–263 (1995).
Freedman, M. S. et al. Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus statement. Arch. Neurol. 62, 865–870 (2005).
Tumani, H. et al. Cerebrospinal fluid biomarkers in multiple sclerosis. Neurobiol. Dis. 35, 117–127 (2009).
Tumani, H., Nölker, G. & Reiber, H. Relevance of cerebrospinal fluid variables for early diagnosis of neuroborreliosis. Neurology 45, 1663–1670 (1995).
Brettschneider, J., Claus, A., Kassubek, J. & Tumani, H. Isolated blood-cerebrospinal fluid barrier dysfunction: prevalence and associated diseases. J. Neurol. 252, 1067–1073 (2005).
Jarius, S. et al. Polyspecific, antiviral immune response distinguishes multiple sclerosis and neuromyelitis optica. J. Neurol. Neurosurg. Psychiatry 79, 1134–1136 (2008).
Jarius, S. et al. Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J. Neurol. Sci. 306, 82–90 (2011).
Dale, R. C. et al. Acute disseminated encephalomyelitis, multiphasic disseminated encephalomyelitis and multiple sclerosis in children. Brain 123, 2407–2422 (2000).
Sladkova, V., Mares, J., Hlustik, P., Langova, J. & Kanovsky, P. Intrathecal synthesis in particular types of multiple sclerosis. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. http://dx.doi.org/10.5507/bp.2012.054.
Thompson, A. J. et al. Diagnostic criteria for primary progressive multiple sclerosis: a position paper. Ann. Neurol. 47, 831–835 (2000).
Nilsson, P., Sandberg-Wollheim, M., Norrving, B. & Larsson, E. M. The role of MRI of the brain and spinal cord, and CSF examination for the diagnosis of primary progressive multiple sclerosis. Eur. J. Neurol. 14, 1292–1295 (2007).
Rot, U. & Mesec, A. Clinical, MRI, CSF and electrophysiological findings in different stages of multiple sclerosis. Clin. Neurol. Neurosurg. 108, 271–274 (2006).
Sola, P. et al. Primary progressive versus relapsing-onset multiple sclerosis: presence and prognostic value of cerebrospinal fluid oligoclonal IgM. Mult. Scler. 17, 303–311 (2011).
Imrell, K., Landtblom, A. M., Hillert, J. & Masterman, T. Multiple sclerosis with and without CSF bands: clinically indistinguishable but immunogenetically distinct. Neurology 67, 1062–1064 (2006).
Petzold, A. et al. In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study. Brain 134, 464–483 (2011).
Petzold, A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J. Neurol. Sci. 233, 183–198 (2005).
Petzold, A. et al. Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study. J. Neurol. Neurosurg. Psychiatry 76, 206–211 (2005).
Gunnarsson, M. et al. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann. Neurol. 69, 83–89 (2011).
Teunissen, C. E. et al. Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology 72, 1322–1329 (2009).
Brettschneider, J., Petzold, A., Junker, A. & Tumani, H. Axonal damage markers in the cerebrospinal fluid of patients with clinically isolated syndrome improve predicting conversion to definite multiple sclerosis. Mult. Scler. 12, 143–148 (2006).
Petzold, A. & Shaw, G. Comparison of two ELISA methods for measuring levels of the phosphorylated neurofilament heavy chain. J. Immunol. Methods 319, 34–40 (2007).
Norgren, N., Rosengren, L. & Stigbrand, T. Elevated neurofilament levels in neurological diseases. Brain Res. 987, 25–31 (2003).
Petzold, A. et al. Neurofilament ELISA validation. J. Immunol. Methods 352, 23–31 (2010).
Gray, E. et al. Accumulation of cortical hyperphosphorylated neurofilaments as a marker of neurodegeneration in multiple sclerosis. Mult. Scler. 19, 153–161 (2013).
Schirmer, L., Antel, J. P., Bruck, W. & Stadelmann, C. Axonal loss and neurofilament phosphorylation changes accompany lesion development and clinical progression in multiple sclerosis. Brain Pathol. 21, 428–440 (2011).
Anderson, J. M. et al. Abnormally phosphorylated tau is associated with neuronal and axonal loss in experimental autoimmune encephalomyelitis and multiple sclerosis. Brain 131, 1736–1748 (2008).
Brettschneider, J. et al. Tau protein level in cerebrospinal fluid is increased in patients with early multiple sclerosis. Mult. Scler. 11, 261–265 (2005).
Frederiksen, J., Kristensen, K., Bahl, J. M. & Christiansen, M. Tau protein: a possible prognostic factor in optic neuritis and multiple sclerosis. Mult. Scler. 18, 592–599 (2012).
Guimaraes, I., Cardoso, M. I. & Sa, M. J. Tau protein seems not to be a useful routine clinical marker of axonal damage in multiple sclerosis. Mult. Scler. 12, 354–356 (2006).
Kappos, L. et al. Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology 67, 1242–1249 (2006).
Tintore, M. et al. Do oligoclonal bands add information to MRI in first attacks of multiple sclerosis? Neurology 70, 1079–1083 (2008).
Lourenco, P. et al. Oligoclonal bands and cerebrospinal fluid markers in multiple sclerosis: associations with disease course and progression. Mult. Scler. http://dx.doi.org/10.1177/1352458512459684.
Annunziata, P. et al. Absence of cerebrospinal fluid oligoclonal bands is associated with delayed disability progression in relapsing-remitting MS patients treated with interferon-β. J. Neurol. Sci. 244, 97–102 (2006).
Joseph, F. G. et al. CSF oligoclonal band status informs prognosis in multiple sclerosis: a case control study of 100 patients. J. Neurol. Neurosurg. Psychiatry 80, 292–296 (2009).
Zeman, A. Z. et al. A study of oligoclonal band negative multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 60, 27–30 (1996).
Amato, M. P., Ponziani, G., Bartolozzi, M. L. & Siracusa, G. A prospective study on the natural history of multiple sclerosis: clues to the conduct and interpretation of clinical trials. J. Neurol. Sci. 168, 96–106 (1999).
Koch, M., Heersema, D., Mostert, J., Teelken, A. & De Keyser, J. Cerebrospinal fluid oligoclonal bands and progression of disability in multiple sclerosis. Eur. J. Neurol. 14, 797–800 (2007).
Siritho, S. & Freedman, M. S. The prognostic significance of cerebrospinal fluid in multiple sclerosis. J. Neurol. Sci. 279, 21–25 (2009).
Reiber, H., Ungefehr, S. & Jacobi, C. The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult. Scler. 4, 111–117 (1998).
Tumani, H., Tourtellotte, W. W., Peter, J. B. & Felgenhauer, K. Acute optic neuritis: combined immunological markers and magnetic resonance imaging predict subsequent development of multiple sclerosis. The Optic Neuritis Study Group. J. Neurol. Sci. 155, 44–49 (1998).
Brettschneider, J. et al. IgG antibodies against measles, rubella, and varicella zoster virus predict conversion to multiple sclerosis in clinically isolated syndrome. PLoS ONE 4, e7638 (2009).
Brecht, I. et al. Intrathecal, polyspecific antiviral immune response in oligoclonal band negative multiple sclerosis. PLoS ONE 7, e40431 (2012).
Villar, L. M. et al. Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis. Ann. Neurol. 53, 222–226 (2003).
Villar, L. et al. Influence of oligoclonal IgM specificity in multiple sclerosis disease course. Mult. Scler. 14, 183–187 (2008).
Obermeier, B. et al. Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nat. Med. 14, 688–693 (2008).
Krumbholz, M., Derfuss, T., Hohlfeld, R. & Meinl, E. B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat. Rev. Neurol. 8, 613–623 (2012).
Meinl, E., Krumbholz, M. & Hohlfeld, R. B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation. Ann. Neurol. 59, 880–892 (2006).
Frischer, J. M. et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132, 1175–1189 (2009).
von Budingen, H. C., Harrer, M. D., Kuenzle, S., Meier, M. & Goebels, N. Clonally expanded plasma cells in the cerebrospinal fluid of MS patients produce myelin-specific antibodies. Eur. J. Immunol. 38, 2014–2023 (2008).
Owens, G. P. et al. Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid. Ann. Neurol. 65, 639–649 (2009).
Lambracht-Washington, D. et al. Antigen specificity of clonally expanded and receptor edited cerebrospinal fluid B cells from patients with relapsing remitting MS. J. Neuroimmunol. 186, 164–176 (2007).
Lassmann, H., Niedobitek, G., Aloisi, F. & Middeldorp, J. M. Epstein–Barr virus in the multiple sclerosis brain: a controversial issue—report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 134, 2772–2786 (2011).
Kanter, J. L. et al. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat. Med. 12, 138–143 (2006).
Brennan, K. M. et al. Lipid arrays identify myelin-derived lipids and lipid complexes as prominent targets for oligoclonal band antibodies in multiple sclerosis. J. Neuroimmunol. 238, 87–95 (2011).
Villar, L. M. et al. Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS. J. Clin. Invest. 115, 187–194 (2005).
Kowarik, M. C. et al. CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J. Neuroinflammation 9, 93 (2012).
Lassmann, H. Multiple sclerosis pathology: evolution of pathogenetic concepts. Brain Pathol. 15, 217–222 (2005).
Kivisakk, P. et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl Acad. Sci. USA 100, 8389–8394 (2003).
Kivisakk, P. et al. Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann. Neurol. 55, 627–638 (2004).
Jacobsen, M. et al. Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 125, 538–550 (2002).
Skulina, C. et al. Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc. Natl Acad. Sci. USA 101, 2428–2433 (2004).
Haas, J. et al. B cells undergo unique compartmentalized redistribution in multiple sclerosis. J. Autoimmun. 37, 289–299 (2011).
Corcione, A. et al. Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc. Natl Acad. Sci. USA 101, 11064–11069 (2004).
Obermeier, B. et al. Related B cell clones that populate the CSF and CNS of patients with multiple sclerosis produce CSF immunoglobulin. J. Neuroimmunol. 233, 245–248 (2011).
Dhaunchak, A. S. et al. Implication of perturbed axoglial apparatus in early pediatric multiple sclerosis. Ann. Neurol. 71, 601–613 (2012).
Derfuss, T. et al. Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc. Natl Acad. Sci. USA 106, 8302–8307 (2009).
Mathey, E. K. et al. Neurofascin as a novel target for autoantibody-mediated axonal inju. J. Exp. Med. 204, 2363–2372 (2007).
Rudick, R. A. et al. Cerebrospinal fluid abnormalities in a phase III trial of Avonex (IFNβ-1a) for relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group. J. Neuroimmunol. 93, 8–14 (1999).
Stuve, O. et al. Altered CD4+/CD8+ T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis. Arch. Neurol. 63, 1383–1387 (2006).
Stuve, O. et al. Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann. Neurol. 59, 743–747 (2006).
Kowarik, M. C. et al. Differential effects of fingolimod (FTY720) on immune cells in the CSF and blood of patients with MS. Neurology 76, 1214–1221 (2011).
Cross, A. H., Stark, J. L., Lauber, J., Ramsbottom, M. J. & Lyons, J. A. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J. Neuroimmunol. 180, 63–70 (2006).
Confavreux, C. et al. Oligoclonal “fingerprint” of CSF IgG in multiple sclerosis patients is not modified following intrathecal administration of natural beta-interferon. J. Neurol. Neurosurg. Psychiatry 49, 1308–1312 (1986).
Stuve, O. et al. Immunologic, clinical, and radiologic status 14 months after cessation of natalizumab therapy. Neurology 72, 396–401 (2009).
Villar, L. M. et al. Immunological markers of optimal response to natalizumab in multiple sclerosis. Arch. Neurol. 69, 191–197 (2012).
Harrer, A. et al. Cerebrospinal fluid parameters of B cell-related activity in patients with active disease during natalizumab therapy. Mult. Scler. http://dx.doi.org/10.1177/13524585124683.
Mandal, R. et al. Multi-platform characterization of the human cerebrospinal fluid metabolome: a comprehensive and quantitative update. Genome Med. 4, 38 (2012).
Tumani, H., Lehmensiek, V., Lehnert, S., Otto, M. & Brettschneider, J. 2D DIGE of the cerebrospinal fluid proteome in neurological diseases. Expert Rev. Proteomics. 7, 29–38 (2010).
Blanchet, L. et al. Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis. BMC Bioinformatics 12, 254 (2011).
Singh, V., Hintzen, R. Q., Luider, T. M. & Stoop, M. P. Proteomics technologies for biomarker discovery in multiple sclerosis. J. Neuroimmunol. 248, 40–47 (2012).
Han, M. H. et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451, 1076–1081 (2008).
Haghikia, A. et al. Regulated microRNAs in the CSF of patients with multiple sclerosis: a case–control study. Neurology 79, 2166–2170 (2012).
Meinl, E. & Meister, G. MicroRNAs in the CSF: macro-advance in MS? Neurology 79, 2162–2163 (2012).
Larman, H. B. et al. Autoantigen discovery with a synthetic human peptidome. Nat. Biotechnol. 29, 535–541 (2011).
Quintana, F. J. et al. Antigen microarrays identify CNS-produced autoantibodies in RRMS. Neurology 78, 532–539 (2012).
Comabella, M. et al. Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain 133, 1082–1093 (2010).
Srivastava, R. et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N. Engl. J. Med. 367, 115–123 (2012).
Sellebjerg, F. et al. Increased cerebrospinal fluid concentrations of the chemokine CXCL13 in active MS. Neurology 73, 2003–2010 (2009).
Krumbholz, M. et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 129, 200–211 (2006).
Khademi, M. et al. Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive prognostic marker for the disease course. Mult. Scler. 17, 335–343 (2011).
Brettschneider, J. et al. The chemokine CXCL13 is a prognostic marker in clinically isolated syndrome (CIS). PLoS ONE 5, e11986 (2010).
Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E. & Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 14, 164–174 (2004).
Fuchs, A. & Rosenthal, R. Physikalisch-chemische, zytologische und anderweitige untersuchungen der cerebrospinalflüssigkeit. Wien Med. Presse 45, 2081–2087 (1904).
Pappenheim, R. Die Lumbalpunktion; Anatomie, Physiologie, Technik, Untersuchungsmethoden, Diagnostische und Therapeutische Verwertung (Rikola Verlag, Wien/Leipzig/München, 1922).
Sayk, J. Cytologie der Cerebrospinalflüssigkeit. (Jena Gustav Fischer, 1960).
Acknowledgements
M.Stangel is supported by the Bundesministerium für Bildung und Forschung (Clinical Competence Network Multiple Sclerosis) and the Deutsche Forschungsgemeinschaft. E. Meinl is supported by the Deutsche Forschungsgemeinschaft (SFB TR 128), the Bundesministerium für Bildung und Forschung, the Gemeinnützige-Hertie Stiftung and the Verein zur Therapieforschung für MS Kranke. O. Stüve is supported by grants from the Department of Veterans Affairs, the National Multiple Sclerosis Society and the Doris Duke Charitable Foundation. H. Tumani is supported by the Hertie-Stiftung, Deutsche Forschungsgemeinschaft, Bundesministerium für Bildung und Forschung and the University of Ulm, Germany.
Author information
Authors and Affiliations
Contributions
M. Stangel, S. Fredrikson, E. Meinl, A. Petzold, O. Stüve and H. Tumani researched data for the article, and contributed to discussion of the content and writing of the article. All authors contributed substantially to review and/or editing of the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
M. Stangel has received honoraria for scientific lectures or consultancy from the following companies: Bayer Healthcare, Biogen Idec, CSL Behring, Grifols, Merck Serono, Novartis, Sanofi Aventis and Teva. S. Fredrikson has received honoraria for lectures, educational activities or consultancy from the following companies: Allergan, Bayer, Biogen Idec, Genzyme Virotec, Merck Serono, Novartis, Sanofi Aventis and Teva. E. Meinl has received honoraria from Teva and Novartis and grant support from Novartis. O. Stüve has been a consultant for the following companies: Teva, Biogen Idec, Genzyme Virotec, Novartis and Sanofi Aventis. H. Tumani serves on a scientific advisory board, is a consultant for, and/or has received funding from the following companies: Bayer Healthcare, Biogen Idec, Genzyme Virotec, Merck Serono, Novartis, Roche and Teva. A. Petzold holds patent number WO2012/005588.
Rights and permissions
About this article
Cite this article
Stangel, M., Fredrikson, S., Meinl, E. et al. The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat Rev Neurol 9, 267–276 (2013). https://doi.org/10.1038/nrneurol.2013.41
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrneurol.2013.41
This article is cited by
-
A dynamic interpretation of κFLC index for the diagnosis of multiple sclerosis: a change of perspective
Journal of Neurology (2023)
-
Bioinformatics approach reveals the critical role of the NOD-like receptor signaling pathway in COVID-19-associated multiple sclerosis syndrome
Journal of Neural Transmission (2022)
-
Genetics and functional genomics of multiple sclerosis
Seminars in Immunopathology (2022)
-
Experimental laboratory biomarkers in multiple sclerosis
Wiener Medizinische Wochenschrift (2022)
-
Cerebrospinal fluid oligoclonal immunoglobulin gamma bands and long-term disability progression in multiple sclerosis: a retrospective cohort study
Scientific Reports (2021)