Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Amyotrophic lateral sclerosis—a model of corticofugal axonal spread

Abstract

The pathological process underlying amyotrophic lateral sclerosis (ALS) is associated with the formation of cytoplasmic inclusions consisting mainly of phosphorylated 43-kDa transactive response DNA-binding protein (pTDP-43), which plays an essential part in the pathogenesis of ALS. Preliminary evidence indicates that neuronal involvement progresses at different rates, but in a similar sequence, in different patients with ALS. This observation supports the emerging concept of prion-like propagation of abnormal proteins in noninfectious neurodegenerative diseases. Although the distance between involved regions is often considerable, the affected neurons are connected by axonal projections, indicating that physical contacts between nerve cells along axons are important for dissemination of ALS pathology. This article posits that the trajectory of the spreading pattern is consistent with the induction and dissemination of pTDP-43 pathology chiefly from cortical neuronal projections, via axonal transport, through synaptic contacts to the spinal cord and other regions of the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequential progression of pTDP-43 pathology in amyotrophic lateral sclerosis.
Figure 2: Corticofugal connections between regions of involvement in amyotrophic lateral sclerosis.
Figure 3: Putative mechanism of pTDP-43 propagation from cortical to subcortical neuronal projections.

Similar content being viewed by others

References

  1. Halliday, G., Hely, M., Reid, W. & Morris, J. The progress of pathology in longitudinally followed patients with Parkinson's disease. Acta Neuropathol. 115, 409–415 (2008).

    Article  PubMed  Google Scholar 

  2. Savica, R., Rocca, W. A. & Ahlskog, J. E. When does Parkinson disease start? Arch. Neurol. 67, 798–801 (2010).

    Article  PubMed  Google Scholar 

  3. Kiernan, M. C. et al. Amyotrophic lateral sclerosis. Lancet 377, 942–955 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Nakano, T., Nakaso, K., Nakashima, K. & Ohama, E. Expression of ubiquitin-binding protein p62 in ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis with dementia: analysis of five autopsy cases with broad clinicopathological spectrum. Acta Neuropathol. 107, 359–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Mackenzie, I. et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann. Neurol. 61, 427–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, E. B., Lee, V. M. & Trojanowski, J. Q. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 13, 38–50 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aguzzi, A. & Rajendran, L. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64, 783–790 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, S. J., Desplats, P., Sigurdson, C., Tsigelny, I. & Masliah, E. Cell-to-cell transmission of non-prion protein aggregates. Nat. Rev. Neurol. 6, 702–706 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kanouchi, T., Ohkubo, T. & Yokota, T. Can regional spreading of amyotrophic lateral sclerosis motor symptoms be explained by prion-like propagation? J. Neurol. Neurosurg. Psychiatry 83, 739–745 (2012).

    Article  PubMed  Google Scholar 

  11. Kfoury, H., Holmes, B. B., Holtzman, D. M. & Diamond, M. I. Trans-cellular propagation of tau aggregation by fibrillar species. J. Biol. Chem. 287, 19440–19451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, S., Kim, W., Li, Z. & Hall, G. F. Accumulation of vesicle-associated human tau in distal dendrites drives degeneration and tau secretion in an in situ cellular tauopathy model. Int. J. Alzheimers Dis. 2012, 172837 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Constanzo, M. & Zurzolo, C. The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochem. J. 452, 1–17 (2013).

    Article  Google Scholar 

  14. Dunning, C. J., George, S. & Brundin, P. What's to like about the prion-like hypothesis for the spreading of aggregated α-synuclein in Parkinson disease? Prion 7, 92–97 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nonaka, T. et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 4, 124–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Ravits, J. M. & La Spada, A. R. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73, 805–811 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ravits, J., Laurie, P., Fan, Y. & Moore, D. H. Implications of ALS focality: rostral-caudal distribution of lower motor neuron loss postmortem. Neurology 68, 1576–1582 (2007).

    Article  PubMed  Google Scholar 

  19. Sekiguchi, T. et al. Spreading of amyotrophic lateral sclerosis lesions–multifocal hits and local propagation? J. Neurol. Neurosurg. Psychiatry http://dx.doi.org/10.1136/jnnp-2013-305617.

  20. Ravits, J., Paul, P. & Jorg, C. Focality of upper and lower motor neuron degeneration at the clinical onset of ALS. Neurology 68, 1571–1575 (2007).

    Article  PubMed  Google Scholar 

  21. Brettschneider, J. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. 74, 20–38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saper, C. B., Wainer, B. H. & German, D. C. Axonal and transneuronal transport in the transmission of neurological disease: potential role of system degenerations, including Alzheimer's disease. Neuroscience 23, 389–398 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Brooks, B. R. The role of axonal transport in neurodegenerative disease spread: a meta-analysis of experimental and clinical poliomyelitis compares with amyotrophic lateral sclerosis. Can. J. Neurol. Sci. 18 (Suppl. 3), 435–438 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Braak, H., Rüb, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110, 517–536 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Fallini, C., Bassell, G. J. & Rossoll, W. The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Hum. Mol. Genet. 21, 3703–3718 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luk, K. C. et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 209, 975–986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pan-Montojo, F. et al. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci. Rep. 2, 898 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Iba, M. et al. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy. J. Neurosci. 33, 1024–1037 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ulusoy, A. et al. Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO Mol. Med. 5, 1051–1059 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  30. Wu, J. W. et al. Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J. Biol. Chem. 288, 1856–1870 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, F. M., Wilson, C. J. & Dani, J. A. Cholinergic interneuron characteristics and nicotinic properties in the striatum. J. Neurobiol. 53, 590–605 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, M. C. Nerve fibre degeneration in the brain in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 23, 269–282 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ludolph, A. C. et al. Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol. Scand. 85, 81–89 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Piao, Y. S. et al. Neuropathology with clinical correlations of sporadic amyotrophic lateral sclerosis: 102 autopsy cases examined between 1962 and 2000. Brain Pathol. 13, 10–22 (2003).

    Article  PubMed  Google Scholar 

  35. Geser, F., Lee, V. M. & Trojanowski, J. Q. Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: a spectrum of TDP-43 proteinopathies. Neuropathology 30, 103–112 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schreiber, H. et al. Cognitive function in bulbar- and spinal-onset amyotrophic lateral sclerosis. A longitudinal study in 52 patients. J. Neurol. 252, 772–781 (2005).

    Article  PubMed  Google Scholar 

  37. van der Graaff, M. M. et al. Upper and extra-motoneuron involvement in early motoneuron disease: a diffusor tensor imaging study. Brain 134, 1211–1228 (2011).

    Article  PubMed  Google Scholar 

  38. Heise, C. & Kayalioglu, G. in The Spinal Cord: A Christopher and Dana Reeve Foundation Text and Atlas 1st edn Vol. 1 Ch. 6 (eds Watson, C. et al.) 64–93 (Academic Press, 2009).

    Book  Google Scholar 

  39. Horn, A. K. & Leigh, R. J. The anatomy and physiology of the ocular motor system. Handb. Clin. Neurol. 102, 21–69 (2011).

    Article  PubMed  Google Scholar 

  40. Aston-Jones, G. & Cohen, J. D. Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J. Comp. Neurol. 493, 99–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Holstege, G. The mesopontine rostromedial tegmental nucleus and the emotional motor system: role in basic survival behavior. J. Comp. Neurol. 513, 559–565 (2009).

    Article  PubMed  Google Scholar 

  42. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  43. Braak, H. & Del Tredici, K. Where, when, and in what form does sporadic Alzheimer's disease begin? Curr. Opin. Neurol. 25, 708–714 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Sengul, G. & Watson, C. in The Human Nervous System 3rd edn Vol. 1 Ch. 7 (eds Mai, J. K. & Paxinos, G.) 233–258 (Academic Press, 2012).

    Book  Google Scholar 

  45. Braak, H., Rüb, U. & Del Tredici, K. Involvement of precerebellar nuclei in multiple system atrophy. Neuropathol. Appl. Neurobiol. 29, 60–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Saint-Cyr, J. A. The projection from the motor cortex to the inferior olive in the cat. An experimental study using axonal transport techniques. Neuroscience 10, 667–684 (1983).

    Article  CAS  PubMed  Google Scholar 

  47. Burman, K., Darien-Smith, C. & Darien-Smith, I. Macaque red nucleus: origins of spinal and olivary projections and terminations of cortical inputs. J. Comp. Neurol. 423, 179–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Habas, C. & Cabanis, E. A. Cortical projections to the human red nucleus: a diffusion tensor tractography study with a 1.5-T MRI machine. Neuroradiology 48, 755–762 (2006).

    Article  PubMed  Google Scholar 

  49. Zhang, H. et al. TDP-43 immunoreactive neuronal and glial inclusions in the neostriatum in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol. 115, 115–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Jones, E. G., Coulter, J. D., Burton, H. & Porter, R. Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys. J. Comp. Neurol. 173, 53–80 (1977).

    Article  CAS  PubMed  Google Scholar 

  51. Haber, S. N., Adler, A. & Bergmann, H. in The Human Nervous System, 3rd edn Vol. 1 Ch. 20 (eds Mai, J. K. & Paxinos, G.) 678–738 (Academic Press, 2012).

    Book  Google Scholar 

  52. Jones, E. G. Thalamic organization and function after Cajal. Prog. Brain Res. 136, 333–357 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Behrens, T. E. et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 6, 750–757 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Briggs, F. & Usrey, W. M. Emerging views of corticothalamic function. Curr. Opin. Neurobiol. 18, 403–407 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Braak, H. Architectonics of the Human Telencephalic Cortex (Studies of Brain Functions) Vol. 4 (Springer, 1980).

    Book  Google Scholar 

  56. Wightman, G. et al. Hippocampal and neocortical ubiquitin-immunoreactive inclusions in amyotrophic lateral sclerosis with dementia. Neurosci. Lett. 139, 269–274 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Braak, H., Braak, E., Yilmazer, D. & Bohl, J. Functional anatomy of human hippocampal formation and related structures. J. Child. Neurol. 11, 265–275 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Ayala, Y. M. et al. Structural determinants of the cellular localization and shuttling of TDP-43. J. Cell Sci. 121, 3778–3785 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Giordana, M. T. et al. TDP-43 redistribution is an early event in sporadic amyotrophic lateral sclerosis. Brain Pathol. 20, 351–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guo, Y. et al. HO-1 induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice. Brain Res. 1460, 388–495 (2012).

    Article  Google Scholar 

  62. Arnold, E. S. et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc. Natl Acad. Sci. USA 110, E736–E745 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Esmaeili, M. A., Panahi, M., Yadav, S., Hennings, L. & Kiaei, M. Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis. Int. J. Exp. Pathol. 94, 56–64 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chiang, P.-M. et al. Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc. Natl Acad. Sci. USA 107, 16320–16324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kraemer, B. C. et al. Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol. 119, 409–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Igaz, L. M. et al. Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J. Clin. Invest. 121, 726–738 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wils, H. et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc. Natl Acad. Sci. USA 107, 3858–3863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mackenzie, I. R. et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 122, 111–113 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' research was made possible by grants from the Wyncote Foundation, the Koller Family Foundation, NIH grants AG033101, AG017586, AG010124, AG032953, AG039510, and NS044266 (V. M. Lee, J. Q. Trojanowski), as well as the Deutsche Forschungsgemeinschaft grant number TR 1000/1-1 (H. Braak, K. Del Tredici). The authors thank D. Ewert (University of Ulm) for assistance with preparation of the original artwork.

Author information

Authors and Affiliations

Authors

Contributions

H. Braak researched the data for the article. All authors made substantial contribution to discussion of the article content, to writing of the article, and to review and/or editing of the manuscript prior to submission.

Corresponding author

Correspondence to Heiko Braak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Main types of nerve cells susceptible to development of pTDP-43 pathology in ALS (DOC 34 kb)

Supplementary Table 2

Neuronal types that develop no or very mild pTDP-43 pathology in ALS (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braak, H., Brettschneider, J., Ludolph, A. et al. Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. Nat Rev Neurol 9, 708–714 (2013). https://doi.org/10.1038/nrneurol.2013.221

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing