Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in the genetics of Parkinson disease

Abstract

Parkinson disease (PD) is a multifactorial neurodegenerative disease that was long considered the result of environmental factors. In the past 15 years, however, a genetic aetiology for PD has begun to emerge. Here, we review results from linkage and next-generation sequencing studies of familial parkinsonism, as well as candidate gene and genome-wide association findings in sporadic PD. In these studies, many of the genetic findings overlap, despite different designs and study populations, highlighting novel therapeutic targets. The molecular results delineate a sequence of pathological events whereby deficits in synaptic exocytosis and endocytosis, endosomal trafficking, lysosome-mediated autophagy and mitochondrial maintenance increase susceptibility to PD. These discoveries provide the rationale, molecular insight and research tools to develop neuroprotective and disease-modifying therapies.

Key Points

  • Parkinson disease (PD) is a multifactorial disorder that, in most cases, results from genetic and environmental factors

  • Approaches to study the genetics of PD include linkage analysis, genome sequencing and association studies

  • Many genes, mutations and polymorphisms have implicated in PD pathogenesis

  • Genetic discoveries highlight biological processes and pathways that are consistently perturbed in idiopathic PD, although individual results are seldom useful for a patient diagnosis

  • Identification of such genetic variability may inform the design of clinical trials and future therapeutic strategies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key molecular processes implicated in parkinsonism by genetic findings and extrapolated in models of disease.

Similar content being viewed by others

References

  1. de Lau, L. M. & Breteler, M. M. Epidemiology of Parkinson's disease. Lancet Neurol. 5, 525–535 (2006).

    Article  PubMed  Google Scholar 

  2. Schrag, A. & Schott, J. M. Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol. 5, 355–363 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Lang, A. E. & Lozano, A. M. Parkinson's disease. Second of two parts. N. Engl. J. Med. 339, 1130–1143 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Lang, A. E. & Lozano, A. M. Parkinson's disease. First of two parts. N. Engl. J. Med. 339, 1044–1053 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Fahn, S. Description of Parkinson's disease as a clinical syndrome. Ann. N. Y. Acad. Sci. 991, 1–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Langston, J. W. The Parkinson's complex: parkinsonism is just the tip of the iceberg. Ann. Neurol. 59, 591–596 (2006).

    Article  PubMed  Google Scholar 

  7. Hely, M. A., Reid, W. G., Adena, M. A., Halliday, G. M. & Morris, J. G. The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Mov. Disord. 23, 837–844 (2008).

    Article  PubMed  Google Scholar 

  8. Litvan, I. et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines. Mov. Disord. 27, 349–356 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fahn, S. The spectrum of levodopa-induced dyskinesias. Ann. Neurol. 47, S2–S9 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Halliday, G. M., Holton, J. L., Revesz, T. & Dickson, D. W. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol. 122, 187–204 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Farrer, M. J. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat. Rev. Genet. 7, 306–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Casals, J., Elizan, T. S. & Yahr, M. D. Postencephalitic parkinsonism—a review. J. Neural Transm. 105, 645–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Tanner, C. M. et al. Parkinson disease in twins: an etiologic study. JAMA 281, 341–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Wirdefeldt, K., Gatz, M., Reynolds, C. A., Prescott, C. A. & Pedersen, N. L. Heritability of Parkinson disease in Swedish twins: a longitudinal study. Neurobiol. Aging 32, 1923.e1–1923.e8 (2011).

    Article  Google Scholar 

  18. Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nat. Genet. 18, 106–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Zarranz, J. J. et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Proukakis, C. et al. A novel α-synuclein missense mutation in Parkinson disease. Neurology 80, 1062–1064 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Appel-Cresswell, S. et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson disease. Mov. Disord. http://dx.doi.org/10.1002/mds.25421.

  23. Lesage, S. et al. G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann. Neurol. 73, 459–471 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Singleton, A. B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Chartier-Harlin, M. C. et al. α-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Ibáñez, P. et al. Causal relation between α-synuclein gene duplication and familial Parkinson's disease. Lancet 364, 1169–1171 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Fuchs, J. et al. Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology 68, 916–922 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Nishioka, K. et al. Expanding the clinical phenotype of SNCA duplication carriers. Mov. Disord. 24, 1811–1819 (2009).

    Article  PubMed  Google Scholar 

  29. Ross, O. A. et al. Genomic investigation of α-synuclein multiplication and parkinsonism. Ann. Neurol. 63, 743–750 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Farrer, M. et al. Lewy bodies and parkinsonism in families with parkin mutations. Ann. Neurol. 50, 293–300 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Pals, P. et al. α-Synuclein promoter confers susceptibility to Parkinson's disease. Ann. Neurol. 56, 591–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Winkler, S. et al. α-Synuclein and Parkinson disease susceptibility. Neurology 69, 1745–1750 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Rajput, A. et al. α-synuclein polymorphisms are associated with Parkinson's disease in a Saskatchewan population. Mov. Disord. 24, 2411–2414 (2009).

    Article  PubMed  Google Scholar 

  34. Pankratz, N. et al. Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum. Genet. 124, 593–605 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Maraganore, D. M. et al. Collaborative analysis of α-synuclein gene promoter variability and Parkinson disease. JAMA 296, 661–670 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Chiba-Falek, O., Touchman, J. W. & Nussbaum, R. L. Functional analysis of intra-allelic variation at NACP-Rep1 in the α-synuclein gene. Hum. Genet. 113, 426–431 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Chiba-Falek, O., Kowalak, J. A., Smulson, M. E. & Nussbaum, R. L. Regulation of α-synuclein expression by poly (ADP ribose) polymerase-1 (PARP-1) binding to the NACP-Rep1 polymorphic site upstream of the SNCA gene. Am. J. Hum. Genet. 76, 478–492 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cronin, K. D. et al. Expansion of the Parkinson disease-associated SNCA-Rep1 allele upregulates human α-synuclein in transgenic mouse brain. Hum. Mol. Genet. 18, 3274–3285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nishioka, K. et al. Association of α-, β-, and γ-synuclein with diffuse Lewy body disease. Arch. Neurol. 67, 970–975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Scholz, S. W. et al. SNCA variants are associated with increased risk for multiple system atrophy. Ann. Neurol. 65, 610–614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cookson, M. R. Cellular effects of LRRK2 mutations. Biochem. Soc. Trans. 40, 1070–1073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Paisán-Ruíz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600 (2004).

    Article  PubMed  Google Scholar 

  44. Kachergus, J. et al. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am. J. Hum. Genet. 76, 672–680 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aasly, J. O. et al. Novel pathogenic LRRK2 p.Asn1437His substitution in familial Parkinson's disease. Mov. Disord. 25, 2156–2163 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ozelius, L. J. et al. LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N. Engl. J. Med. 354, 2424–2425 (2006).

    Article  Google Scholar 

  47. Lesage, S. et al. G2019S LRRK2 mutation in French and North African families with Parkinson's disease. Ann. Neurol. 58, 2784–2787 (2005).

    Article  CAS  Google Scholar 

  48. Ross, O. A. et al. Lrrk2 and Lewy body disease. Ann. Neurol. 59, 388–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Ujiie, S. et al. LRRK2 I2020T mutation is associated with tau pathology. Parkinsonism Relat. Disord. 18, 2819–2823 (2012).

    Article  Google Scholar 

  50. Satake, W. et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat. Genet. 41, 1303–1307 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Do, C. B. et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson's disease. PLoS Genet. 7, e1002141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mata, I. F. et al. Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics 6, 171–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Rubio, J. P. et al. Deep sequencing of the LRRK2 gene in 14,002 individuals reveals evidence of purifying selection and independent origin of the p.Arg1628Pro mutation in Europe. Hum. Mutat. 33, 1087–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tan, E. K. et al. Multiple LRRK2 variants modulate risk of Parkinson disease: a Chinese multicenter study. Hum. Mutat. 31, 561–568 (2010).

    CAS  PubMed  Google Scholar 

  55. Ross, O. A. et al. Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case–control study. Lancet Neurol. 10, 898–908 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Farrer, M. J. et al. Lrrk2 G2385R is an ancestral risk factor for Parkinson's disease in Asia. Parkinsonism Relat. Disord. 13, 2389–2392 (2007).

    Article  Google Scholar 

  57. Vandrovcova, J. et al. Disentangling the role of the tau gene locus in sporadic tauopathies. Curr. Alzheimer Res. 7, 726–734 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Pankratz, N. et al. Meta-analysis of Parkinson's disease: identification of a novel locus, RIT2. Ann. Neurol. 71, 370–384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Skipper, L. et al. Linkage disequilibrium and association of MAPT H1 in Parkinson disease. Am. J. Hum. Genet. 75, 669–677 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zody, M. C. et al. Evolutionary toggling of the MAPT 17q21.31 inversion region. Nat. Genet. 40, 1076–1083 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Baker, M. et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum. Mol. Genet. 8, 711–715 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Pittman, A. M. et al. Linkage disequilibrium fine mapping and haplotype association analysis of the tau gene in progressive supranuclear palsy and corticobasal degeneration. J. Med. Genet. 42, 837–846 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sundar, P. D. et al. Two sites in the MAPT region confer genetic risk for Guam ALS/PDC and dementia. Hum. Mol. Genet. 16, 295–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Hoglinger, G. U. et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat. Genet. 43, 699–705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Williams-Gray, C. H. et al. The distinct cognitive syndromes of Parkinson's disease: 5 year follow-up of the CamPaIGN cohort. Brain 132, 2958–2969 (2009).

    Article  PubMed  Google Scholar 

  66. Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat. Genet. 43, 436–441 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43, 429–435 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bekpen, C., Tastekin, I., Siswara, P., Akdis, C. A. & Eichler, E. E. Primate segmental duplication creates novel promoters for the LRRC37 gene family within the 17q21.31 inversion polymorphism region. Genome Res. 22, 1050–1058 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chartier-Harlin, M. C. et al. Translation initiator EIF4G1 mutations in familial Parkinson disease. Am. J. Hum. Genet. 89, 398–406 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schulte, E. C. et al. Variants in eukaryotic translation initiation factor 4G1 in sporadic Parkinson's disease. Neurogenetics 13, 281–285 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Nuytemans, K. et al. Whole exome sequencing of rare variants in EIF4G1 and VPS35 in Parkinson disease. Neurology 80, 982–989 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Narendra, D., Walker, J. E. & Youle, R. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harbor Perspect. Biol. 4, a011338 (2012).

    Article  CAS  Google Scholar 

  73. Kahle, P. J., Waak, J. & Gasser, T. DJ-1 and prevention of oxidative stress in Parkinson's disease and other age-related disorders. Free Radic. Biol. Med. 47, 1354–1361 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Fallon, L. et al. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat. Cell Biol. 8, 834–842 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Abbas, N. et al. A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. Hum. Mol. Genet. 8, 567–574 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. van de Warrenburg, B. P. et al. Clinical and pathologic abnormalities in a family with parkinsonism and parkin gene mutations. Neurology 56, 555–557 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Samaranch, L. et al. PINK1-linked parkinsonism is associated with Lewy body pathology. Brain 133, 1128–1142 (2010).

    Article  PubMed  Google Scholar 

  78. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Ishihara-Paul, L. et al. PINK1 mutations and parkinsonism. Neurology 71, 896–902 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Annesi, G. et al. DJ-1 mutations and parkinsonism–dementia–amyotrophic lateral sclerosis complex. Ann. Neurol. 58, 803–807 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Attar, N. & Cullen, P. J. The retromer complex. Adv. Enzyme Regul. 50, 216–236 (2010).

    Article  PubMed  Google Scholar 

  84. McGough, I. J. & Cullen, P. J. Recent advances in retromer biology. Traffic 12, 963–971 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Vilarino-Guell, C. et al. VPS35 mutations in Parkinson disease. Am. J. Hum. Genet. 89, 162–167 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zimprich, A. et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am. J. Hum. Genet. 89, 168–175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lesage, S. et al. Identification of VPS35 mutations replicated in French families with Parkinson disease. Neurology 78, 1449–1450 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Sharma, M. et al. A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. J. Med. Genet. 49, 721–726 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Ando, M. et al. VPS35 mutation in Japanese patients with typical Parkinson's disease. Mov. Disord. 27, 1413–1417 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Kumar, K. R. et al. Frequency of the D620N mutation in VPS35 in Parkinson disease. Arch. Neurol. 69, 1360–1364 (2012).

    Article  PubMed  Google Scholar 

  91. Edvardson, S. et al. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS ONE 7, e36458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Köroğlu, C., Baysal, L., Cetinkaya, M., Karasoy, H. & Tolun, A. DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat. Disord. 19, 320–324 (2012).

    Article  PubMed  Google Scholar 

  93. Vauthier, V. et al. Homozygous deletion of an 80 kb region comprising part of DNAJC6 and LEPR genes on chromosome 1P31.3 is associated with early onset obesity, mental retardation and epilepsy. Mol. Genet. Metab. 106, 345–350 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Diaz, A. et al. Gaucher disease: the N370S mutation in Ashkenazi Jewish and Spanish patients has a common origin and arose several thousand years ago. Am. J. Hum. Genet. 64, 1233–1238 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tsuji, S. et al. A mutation in the human glucocerebrosidase gene in neuronopathic Gaucher's disease. N. Engl. J. Med. 316, 570–575 (1987).

    Article  CAS  PubMed  Google Scholar 

  96. Horowitz, M. et al. Prevalence of glucocerebrosidase mutations in the Israeli Ashkenazi Jewish population. Hum. Mutat. 12, 240–244 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Sidransky, E. & Lopez, G. The link between the GBA gene and parkinsonism. Lancet Neurol. 11, 986–998 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Aharon-Peretz, J., Rosenbaum, H. & Gershoni-Baruch, R. Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. N. Engl. J. Med. 351, 1972–1977 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Sidransky, E. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N. Engl. J. Med. 361, 1651–1661 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Farrer, M. J. et al. Glucosidase-beta variations and Lewy body disorders. Parkinsonism Relat. Disord. 15, 414–416 (2009).

    Article  PubMed  Google Scholar 

  101. Tsuang, D. et al. GBA mutations increase risk for Lewy body disease with and without Alzheimer disease pathology. Neurology 79, 1944–1950 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sardi, S. P., Singh, P., Cheng, S. H., Shihabuddin, L. S. & Schlossmacher, M. G. Mutant GBA1 expression and synucleinopathy risk: first insights from cellular and mouse models. Neurodegener. Dis. 10, 195–202 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Tansey, M. G. & Goldberg, M. S. Neuroinflammation in Parkinson's disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis. 37, 510–518 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Ahmed, I. et al. Association between Parkinson's disease and the HLA-DRB1 locus. Mov. Disord. 27, 1104–1110 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Hamza, T. H. et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease. Nat. Genet. 42, 781–785 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Simón-Sánchez, J. et al. Genome-wide association study confirms extant PD risk loci among the Dutch. Eur. J. Hum. Genet. 19, 655–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. UK Parkinson's Disease Consortium & Wellcome Trust Case Control Consortium. Dissection of the genetics of Parkinson's disease identifies an additional association 5′ of SNCA and multiple associated haplotypes at 17q21. Hum. Mol. Genet. 20, 345–353 (2011).

  108. Lee, D. W., Wu, X., Eisenberg, E. & Greene, L. E. Recruitment dynamics of GAK and auxilin to clathrin-coated pits during endocytosis. J. Cell Sci. 119, 3502–3512 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Macleod, D. A. et al. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 77, 425–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hill-Burns, E. M. et al. A genetic basis for the variable effect of smoking/nicotine on Parkinson's disease. Pharmacogenomics J. http://dx.doi.org/10.1038/tpj.2012.38.

  111. Hamza, T. H. et al. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson's disease modifier gene via interaction with coffee. PLoS Genet. 7, e1002237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Farrer, M. J. et al. DCTN1 mutations in Perry syndrome. Nat. Genet. 41, 163–165 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Puls, I. et al. Mutant dynactin in motor neuron disease. Nat. Genet. 33, 455–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38, 1184–1191 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Di Fonzo, A. et al. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 68, 1557–1562 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Morgan, N. V. et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat. Genet. 38, 752–754 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Paisán-Ruíz, C. et al. Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann. Neurol. 65, 19–23 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Shojaee, S. et al. Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am. J. Hum. Genet. 82, 1375–1384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Di Fonzo, A. et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72, 240–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Korvatska, O. et al. Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Hum. Mol. Genet. http://dx.doi.org/10.1093/hmg/ddt180.

  122. Simon, D. K., Lin, M. T. & Pascual-Leone, A. “Nature versus nurture” and incompletely penetrant mutations. J. Neurol. Neurosurg. Psychiatry 72, 686–689 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dickson, D. et al. Pathology of PD in monozygotic twins with a 20-year discordance interval. Neurology 56, 981–982 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Piccini, P., Burn, D. J., Ceravolo, R., Maraganore, D. & Brooks, D. J. The role of inheritance in sporadic Parkinson's disease: evidence from a longitudinal study of dopaminergic function in twins. Ann. Neurol. 45, 577–582 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Goldstein, D. B. Common genetic variation and human traits. N. Engl. J. Med. 360, 1696–1698 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Ginsburg, G. S. & Willard, H. F. Genomic and personalized medicine: foundations and applications. Transl. Res. 154, 277–287 (2009).

    Article  PubMed  Google Scholar 

  127. Farrer, M. et al. Comparison of kindreds with parkinsonism and α-synuclein genomic multiplications. Ann. Neurol. 55, 174–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Farrer, M. et al. α-Synuclein gene haplotypes are associated with Parkinson's disease. Hum. Mol. Genet. 10, 1847–1851 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Brooks, J. et al. Parkin and PINK1 mutations in early-onset Parkinson's disease: comprehensive screening in publicly available cases and control. J. Med. Genet. 46, 375–381 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Nalls, M. A. et al. Measures of autozygosity in decline: globalization, urbanization, and its implications for medical genetics. PLoS Genet. 5, e1000415 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Simón-Sánchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41, 1308–1312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mollenhauer, B., El-Agnaf, O. M., Marcus, K., Trenkwalder, C. & Schlossmacher, M. G. Quantification of α-synuclein in cerebrospinal fluid as a biomarker candidate: review of the literature and considerations for future studies. Biomark. Med. 4, 683–699 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Burre, J. et al. α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663–1667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cooper, A. A. et al. α-Synuclein blocks ER–Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313, 324–328 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Masliah, E. et al. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Lewis, J. et al. In vivo silencing of α -synuclein using naked siRNA. Mol. Neurodegener. 3, 19 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. McCormack, A. L. et al. α-synuclein suppression by targeted small interfering RNA in the primate substantia nigra. PLoS ONE 5, e12122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Ebrahimi-Fakhari, D., Wahlster, L. & McLean, P. J. Molecular chaperones in Parkinson's disease—present and future. J. Parkinsons Dis. 1, 299–320 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Plowey, E. D. & Chu, C. T. Synaptic dysfunction in genetic models of Parkinson's disease: a role for autophagy? Neurobiol. Dis. 43, 60–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Cuervo, A. M. Autophagy: many paths to the same end. Mol. Cell Biochem. 263, 55–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Orenstein, S. J. et al. Interplay of LRRK2 with chaperone-mediated autophagy. Nat. Neurosci. 16, 394–406 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cook, C., Stetler, C. & Petrucelli, L. Disruption of protein quality control in Parkinson's disease. Cold Spring Harbor Perspect. Med. 2, a009423 (2012).

    Article  CAS  Google Scholar 

  144. Matsuda, W. et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29, 444–453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kasai, H., Takahashi, N. & Tokumaru, H. Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol. Rev. 92, 1915–1964 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Jahn, R. & Fasshauer, D. Molecular machines governing exocytosis of synaptic vesicles. Nature 490, 201–207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Burgoyne, R. D. & Morgan, A. Chaperoning the SNAREs: a role in preventing neurodegeneration? Nat. Cell Biol. 13, 8–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Westphal, C. H. & Chandra, S. S. Monomeric synucleins generate membrane curvature. J. Biol. Chem. 288, 1829–1840 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. McPherson, P. S. et al. A presynaptic inositol-5-phosphatase. Nature 379, 353–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  151. Milosevic, I. et al. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron 72, 587–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bonifacino, J. S. & Hurley, J. H. Retromer. Curr. Opin. Cell Biol. 20, 427–436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shi, A. et al. Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8. EMBO J. 28, 3290–3302 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Seaman, M. N. Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Schneider, A. & Simons, M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res. 352, 33–47 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Braschi, E. et al. Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr. Biol. 20, 1310–1315 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Seaman, M. N. The retromer complex—endosomal protein recycling and beyond. J. Cell Sci. 125, 4693–4702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Sheerin, U. M. et al. Screening for VPS35 mutations in Parkinson's disease. Neurobiol. Aging 33, 838.e1–838.e5 (2012).

    Article  CAS  Google Scholar 

  160. Edwards, A. W. G. H. Hardy (1908) and Hardy–Weinberg equilibrium. Genetics 179, 1143–1150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Saad, M. et al. Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson's disease in the European population. Hum. Mol. Genet. 20, 615–627 (2011).

    Article  PubMed  Google Scholar 

  162. Edwards, T. L. et al. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann. Hum. Genet. 74, 97–109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wijsman, E. M. The role of large pedigrees in an era of high-throughput sequencing. Hum. Genet. 131, 1555–1563 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Krebs, C. E. & Paisán-Ruíz, C. The use of next-generation sequencing in movement disorders. Front. Genet. 3, 75 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Toft, M. et al. Parkinsonism, FXTAS, and FMR1 premutations. Mov. Disord. 20, 230–233 (2005).

    Article  PubMed  Google Scholar 

  166. Baba, Y., Uitti, R. J., Farrer, M. J. & Wszolek, Z. K. Atypical parkinsonism and SCA8. Parkinsonism Relat. Disord. 12, 396 (2006).

    Article  PubMed  Google Scholar 

  167. Furtado, S. et al. Profile of families with parkinsonism-predominant spinocerebellar ataxia type 2 (SCA2). Mov. Disord. 19, 622–629 (2004).

    Article  PubMed  Google Scholar 

  168. Gwinn-Hardy, K. et al. Spinocerebellar ataxia type 3 phenotypically resembling Parkinson disease in a black family. Arch. Neurol. 58, 296–299 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Nalls, M. A. et al. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 377, 641–649 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Lill, C. M. et al. Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: the PDGene database. PLoS Genet. 8, e1002548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is funded by the Leading Edge Endowment Fund (to J. Trinh), and through a Canada Excellence Research Chair and the Don Rix Chair in Genetic Medicine (to M. Farrer).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article and made substantial contributions to discussion of the content, writing of the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Matt Farrer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinh, J., Farrer, M. Advances in the genetics of Parkinson disease. Nat Rev Neurol 9, 445–454 (2013). https://doi.org/10.1038/nrneurol.2013.132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing