Nature Reviews Neurology 8, 242 (2012); published online 17 April 2012;

doi:10.1038/nrneurol.2012.72;

doi:10.1038/nrneurol.2012.73;

doi:10.1038/nrneurol.2012.74;

doi:10.1038/nrneurol.2012.75

IN BRIEF

MULTIPLE SCLEROSIS

Risk of comorbid inflammatory diseases in MS might not be genetically determined

Patients with multiple sclerosis (MS) often present with other immune-mediated disorders, such as ulcerative colitis and type 1 diabetes. Researchers in Sweden analysed data from a large register of patients with MS and their parents to determine whether the risk of such comorbidity has a genetic component. They found that, in contrast to index cases, parents of patients with MS did not show an increased likelihood of having an immune-mediated disorder compared with control parents, arguing against a genetic influence.

Original article Roshanisefat, H. *et al.* Shared genetic factors may not explain the raised risk of comorbid inflammatory diseases in multiple sclerosis. *Mult. Scler.* doi:10.1177/1352458512438240

EPILEPSY

Immunotherapy could benefit treatment-resistant epilepsy

Accumulating evidence has suggested an autoimmune component to drug-resistant epilepsy. Now, immunotherapy in 27 patients with uncontrolled seizures with suspected autoimmune aetiology has shown striking results. At a median follow-up of 10 months, 22 patients (81%) exhibited substantial improvements in seizure status, and 18 patients (67%) were seizure-free. These results suggest that the treatment of autoimmunity could help to address the large unmet medical need of drug resistance in epilepsy.

Original article Quek, A. M. et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch. Neurol. doi:10.1001/archneurol.2011.2985

MOVEMENT DISORDERS

Interferon- γ shows promise in a mouse model of Friedreich ataxia

Friedreich ataxia is a hereditary disease caused by mutation of the frataxin (FXN) gene and resultant low levels of the FXN protein. In a mouse model of the disease, Tomassini et al. found that subcutaneous injections of interferon- γ for 14 weeks restored FXN levels in dorsal root ganglion neurons, which are particularly vulnerable in this disease, and improved motor coordination. The findings open therapeutic avenues for Friedreich ataxia, a disease for which no specific treatments are currently available.

 $\begin{tabular}{ll} \textbf{Original article} Tomassini, B.\ et\ al.\ Interferon\ gamma\ upregulates\ frataxin\ and\ corrects\ the\ functional\ deficits\ in\ a\ Friedreich\ ataxia\ model.\ \textit{Hum. Mol. Genet.}\ doi:10.1093/hmg/dds110\end{tabular}$

ALZHEIMER DISEASE

Targeting apolipoprotein E improves AD phenotype in mice

Apolipoprotein E (APOE) is indirectly involved in the proteolytic degradation of amyloid- β , and allelic variation in the APOE gene is the leading genetic risk factor for Alzheimer disease (AD). As APOE expression is transcriptionally regulated by retinoid X receptors (RXRs), Cramer et al. investigated the oral RXR agonist bexarotene in AD mice. The resultant increase in APOE levels was accompanied by increased clearance of amyloid- β , rapid reduction in plaque volume and improvements in functional deficits associated with AD. Bexarotene is already approved as an anticancer drug.

Original article Cramer, P. E. *et al.* ApoE-directed therapeutics rapidly clear β -amyloid and reverse deficits in AD mouse models. *Science* **335**, 1503–1506 (2012)