Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy

  • A Correction to this article was published on 26 March 2013

Abstract

Apolipoprotein E (Apo-E) is a major cholesterol carrier that supports lipid transport and injury repair in the brain. APOE polymorphic alleles are the main genetic determinants of Alzheimer disease (AD) risk: individuals carrying the ε4 allele are at increased risk of AD compared with those carrying the more common ε3 allele, whereas the ε2 allele decreases risk. Presence of the APOE ε4 allele is also associated with increased risk of cerebral amyloid angiopathy and age-related cognitive decline during normal ageing. Apo-E–lipoproteins bind to several cell-surface receptors to deliver lipids, and also to hydrophobic amyloid-β (Aβ) peptide, which is thought to initiate toxic events that lead to synaptic dysfunction and neurodegeneration in AD. Apo-E isoforms differentially regulate Aβ aggregation and clearance in the brain, and have distinct functions in regulating brain lipid transport, glucose metabolism, neuronal signalling, neuroinflammation, and mitochondrial function. In this Review, we describe current knowledge on Apo-E in the CNS, with a particular emphasis on the clinical and pathological features associated with carriers of different Apo-E isoforms. We also discuss Aβ-dependent and Aβ-independent mechanisms that link Apo-E4 status with AD risk, and consider how to design effective strategies for AD therapy by targeting Apo-E.

Key Points

  • The ε4 allele of the apolipo protein E (APOE) gene is the main genetic risk factor for Alzheimer disease (AD)

  • APOE ε4 carriers have enhanced AD pathology, accelerated age-dependent cognitive decline and worse memory performance than do noncarriers

  • Numerous structural and functional brain changes associated with AD pathogenesis are detected in APOE ε4 carriers before clinical symptoms become evident

  • Apo-E affects amyloid-β (Aβ) clearance, aggregation and deposition in an isoform-dependent manner

  • Apo-E4 also contributes to AD pathogenesis by Aβ-independent mechanisms that involve synaptic plasticity, cholesterol homeostasis, neurovascular functions, and neuroinflammation

  • Apo-E-targeted AD therapy should focus on restoration of the physiological function of Apo-E through increased expression and lipidation, and inhibition of the detrimental effects of Apo-E4

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: APOE ε4 is a major genetic risk factor for AD.
Figure 2: Apolipoprotein E and amyloid-β metabolism in the brain.
Figure 3: The role of apolipoprotein E4 in Alzheimer disease pathogenesis.
Figure 4: Brain function, neuropathology and memory in cognitively normal APOE ε4 carriers.

Change history

  • 26 March 2013

    In the version of this article initially published, in the author list, Chia-Chen Liu's name was misspelt. The error has been corrected for the HTML and PDF versions of the article.

References

  1. 1

    Alzheimer's Association. 2012 Alzheimer's disease facts and figures. Alzheimers Dement. 8, 131–168 (2012).

  2. 2

    Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    CAS  Google Scholar 

  3. 3

    Blennow, K., de Leon, M. J. & Zetterberg, H. Alzheimer's disease. Lancet 368, 387–403 (2006).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Roberson, E. D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007).

    CAS  PubMed  Google Scholar 

  5. 5

    Zheng, H. & Koo, E. Biology and pathophysiology of the amyloid precursor protein. Mol. Neurodegener. 6, 27 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Mawuenyega, K. G. et al. Decreased clearance of CNS β-amyloid in Alzheimer's disease. Science 330, 1774 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

    CAS  PubMed  Google Scholar 

  8. 8

    Bu, G. Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat. Rev. Neurosci. 10, 333–344 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Huang, Y. & Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell 148, 1204–1222 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Farrer, L. A. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. JAMA 278, 1349–1356 (1997).

    CAS  Google Scholar 

  11. 11

    Mahley, R. W. & Rall, S. C. Jr. Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Genomics Hum. Genet. 1, 507–537 (2000).

    CAS  Google Scholar 

  12. 12

    Lahoz, C. et al. Apolipoprotein E genotype and cardiovascular disease in the Framingham Heart Study. Atherosclerosis 154, 529–537 (2001).

    CAS  Google Scholar 

  13. 13

    Frieden, C. & Garai, K. Structural differences between apoE3 and apoE4 may be useful in developing therapeutic agents for Alzheimer's disease. Proc. Natl Acad. Sci. USA 109, 8913–8918 (2012).

    CAS  Google Scholar 

  14. 14

    Chen, J., Li, Q. & Wang, J. Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc. Natl Acad. Sci. USA 108, 14813–14818 (2011).

    CAS  Google Scholar 

  15. 15

    Zhong, N. & Weisgraber, K. H. Understanding the association of apolipoprotein E4 with Alzheimer disease: clues from its structure. J. Biol. Chem. 284, 6027–6031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat. Genet. 41, 1088–1093 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat. Genet. 41, 1094–1099 (2009).

    CAS  PubMed  Google Scholar 

  18. 18

    Chartier-Harlin, M. C. et al. Apolipoprotein E, ε4 allele as a major risk factor for sporadic early and late-onset forms of Alzheimer's disease: analysis of the 19q13.2 chromosomal region. Hum. Mol. Genet. 3, 569–574 (1994).

    CAS  Google Scholar 

  19. 19

    Houlden, H. et al. ApoE genotype is a risk factor in nonpresenilin early-onset Alzheimer's disease families. Am. J. Med. Genet. 81, 117–121 (1998).

    CAS  Google Scholar 

  20. 20

    Rebeck, G. W., Reiter, J. S., Strickland, D. K. & Hyman, B. T. Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions. Neuron 11, 575–580 (1993).

    CAS  PubMed  Google Scholar 

  21. 21

    Roses, A. D. et al. A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer's disease. Pharmacogenomics J. 10, 375–384 (2010).

    CAS  Google Scholar 

  22. 22

    Cruchaga, C. et al. Association and expression analyses with single-nucleotide polymorphisms in TOMM40 in Alzheimer disease. Arch. Neurol. 68, 1013–1019 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. 23

    Ellis, R. J. et al. Cerebral amyloid angiopathy in the brains of patients with Alzheimer's disease: the CERAD experience, Part XV. Neurology 46, 1592–1596 (1996).

    CAS  Google Scholar 

  24. 24

    Namba, Y., Tomonaga, M., Kawasaki, H., Otomo, E. & Ikeda, K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt–Jakob disease. Brain Res. 541, 163–166 (1991).

    CAS  PubMed  Google Scholar 

  25. 25

    Kok, E. et al. Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Ann. Neurol. 65, 650–657 (2009).

    CAS  Google Scholar 

  26. 26

    Polvikoski, T. et al. Apolipoprotein E, dementia, and cortical deposition of β-amyloid protein. N. Engl. J. Med. 333, 1242–1247 (1995).

    CAS  Google Scholar 

  27. 27

    Schmechel, D. E. et al. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 9649–9653 (1993).

    CAS  PubMed  Google Scholar 

  28. 28

    Klunk, W. E. et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann. Neurol. 55, 306–319 (2004).

    CAS  PubMed  Google Scholar 

  29. 29

    Barthel, H. et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 10, 424–35 (2011).

    CAS  PubMed  Google Scholar 

  30. 30

    Reiman, E. M. et al. Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease. Proc. Natl Acad. Sci. USA 106, 6820–6825 (2009).

    CAS  Google Scholar 

  31. 31

    Head, D. et al. Exercise engagement as a moderator of the effects of APOE genotype on amyloid deposition. Arch. Neurol. 69, 636–643 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Prince, J. A., Zetterberg, H., Andreasen, N., Marcusson, J. & Blennow, K. APOE ε4 allele is associated with reduced cerebrospinal fluid levels of Aβ42. Neurology 62, 2116–2118 (2004).

    CAS  Google Scholar 

  33. 33

    Fleisher, A. S. et al. Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol. Aging 34, 1–12 (2013).

    CAS  Google Scholar 

  34. 34

    Berlau, D. J., Corrada, M. M., Head, E. & Kawas, C. H. APOE ε2 is associated with intact cognition but increased Alzheimer pathology in the oldest old. Neurology 72, 829–834 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Greenberg, S. M. et al. Apolipoprotein E ε4 is associated with the presence and earlier onset of hemorrhage in cerebral amyloid angiopathy. Stroke 27, 1333–1337 (1996).

    CAS  Google Scholar 

  36. 36

    Biffi, A. et al. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann. Neurol. 68, 934–943 (2010).

    PubMed  PubMed Central  Google Scholar 

  37. 37

    Vinters, H. V. Cerebral amyloid angiopathy. A critical review. Stroke 18, 311–324 (1987).

    CAS  Google Scholar 

  38. 38

    Morris, J. C. et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch. Neurol. 58, 397–405 (2001).

    CAS  Google Scholar 

  39. 39

    Petersen, R. C. et al. Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308 (1999).

    CAS  Google Scholar 

  40. 40

    Pa, J. et al. Clinical-neuroimaging characteristics of dysexecutive mild cognitive impairment. Ann. Neurol. 65, 414–423 (2009).

    PubMed  PubMed Central  Google Scholar 

  41. 41

    Farlow, M. R. et al. Impact of APOE in mild cognitive impairment. Neurology 63, 1898–1901 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Smith, G. E. et al. Apolipoprotein E genotype influences cognitive 'phenotype' in patients with Alzheimer's disease but not in healthy control subjects. Neurology 50, 355–362 (1998).

    CAS  Google Scholar 

  43. 43

    Ramakers, I. H. et al. The association between APOE genotype and memory dysfunction in subjects with mild cognitive impairment is related to age and Alzheimer pathology. Dement. Geriatr. Cogn. Disord. 26, 101–108 (2008).

    CAS  Google Scholar 

  44. 44

    Dik, M. G. et al. APOE-ε4 is associated with memory decline in cognitively impaired elderly. Neurology 54, 1492–1497 (2000).

    CAS  Google Scholar 

  45. 45

    Whitehair, D. C. et al. Influence of apolipoprotein E ε4 on rates of cognitive and functional decline in mild cognitive impairment. Alzheimers Dement. 6, 412–419 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Cosentino, S. et al. APOE ε4 allele predicts faster cognitive decline in mild Alzheimer disease. Neurology 70, 1842–1849 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Fleisher, A. S. et al. Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 68, 1588–1595 (2007).

    CAS  Google Scholar 

  48. 48

    Elias-Sonnenschein, L. S., Viechtbauer, W., Ramakers, I. H., Verhey, F. R. & Visser, P. J. Predictive value of APOE- ε4 allele for progression from MCI to AD-type dementia: a meta-analysis. J. Neurol. Neurosurg. Psychiatry 82, 1149–1156 (2011).

    Google Scholar 

  49. 49

    Petersen, R. C. et al. Apolipoprotein E status as a predictor of the development of Alzheimer's disease in memory-impaired individuals. JAMA 273, 1274–1278 (1995).

    CAS  Google Scholar 

  50. 50

    Vemuri, P. et al. Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease. Ann. Neurol. 67, 308–316 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Pike, K. E. et al. β-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain 130, 2837–2844 (2007).

    Google Scholar 

  52. 52

    Bunce, D., Fratiglioni, L., Small, B. J., Winblad, B. & Bäckman, L. APOE and cognitive decline in preclinical Alzheimer disease and non-demented aging. Neurology 63, 816–821 (2004).

    CAS  Google Scholar 

  53. 53

    Lin, A. L., Laird, A. R., Fox, P. T. & Gao, J. H. Multimodal MRI neuroimaging biomarkers for cognitive normal adults, amnestic mild cognitive impairment, and Alzheimer's disease. Neurology Res. Int. 2012, 907409 (2012).

    Google Scholar 

  54. 54

    Caselli, R. J. et al. Cognitive domain decline in healthy apolipoprotein E ε4 homozygotes before the diagnosis of mild cognitive impairment. Arch. Neurol. 64, 1306–1311 (2007).

    Google Scholar 

  55. 55

    Caselli, R. J. et al. Longitudinal changes in cognition and behavior in asymptomatic carriers of the APOE e4 allele. Neurology 62, 1990–1995 (2004).

    CAS  Google Scholar 

  56. 56

    Caselli, R. J. et al. Longitudinal modeling of age-related memory decline and the APOE ε4 effect. N. Engl. J. Med. 361, 255–263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Caselli, R. J. et al. Longitudinal modeling of frontal cognition in APOE ε4 homozygotes, heterozygotes, and noncarriers. Neurology 76, 1383–1388 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Izaks, G. J. et al. The association of APOE genotype with cognitive function in persons aged 35 years or older. PLoS ONE 6, e27415 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Mondadori, C. R. et al. Better memory and neural efficiency in young apolipoprotein E ε4 carriers. Cereb. Cortex 17, 1934–1947 (2007).

    Google Scholar 

  60. 60

    Jochemsen, H. M., Muller, M., van der Graaf, Y. & Geerlings, M. I. APOE ε4 differentially influences change in memory performance depending on age. The SMART-MR study. Neurobiol. Aging 33, 832 e15–e22 (2012).

    Google Scholar 

  61. 61

    Bloss, C. S., Delis, D. C., Salmon, D. P. & Bondi, M. W. Decreased cognition in children with risk factors for Alzheimer's disease. Biol. Psychiatry 64, 904–906 (2008).

    PubMed  PubMed Central  Google Scholar 

  62. 62

    Tuminello, E. R. & Han, S. D. The apolipoprotein E antagonistic pleiotropy hypothesis: review and recommendations. Int. J. Alzheimers Dis. 2011, 726197 (2011).

    PubMed  PubMed Central  Google Scholar 

  63. 63

    Castellano, J. M. et al. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci. Transl. Med. 3, 89ra57 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Morris, J. C. et al. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol. 67, 122–131 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Haan, M. N., Shemanski, L., Jagust, W. J., Manolio, T. A. & Kuller, L. The role of APOE ε4 in modulating effects of other risk factors for cognitive decline in elderly persons. JAMA 282, 40–46 (1999).

    CAS  Google Scholar 

  66. 66

    Peila, R., Rodriguez, B. L. & Launer, L. J. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu-Asia Aging Study. Diabetes 51, 1256–1262 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Kalmijn, S., Feskens, E. J., Launer, L. J. & Kromhout, D. Cerebrovascular disease, the apolipoprotein e4 allele, and cognitive decline in a community-based study of elderly men. Stroke 27, 2230–2235 (1996).

    CAS  Google Scholar 

  68. 68

    Irie, F. et al. Enhanced risk for Alzheimer disease in persons with type 2 diabetes and APOE ε4: the Cardiovascular Health Study Cognition Study. Arch. Neurol. 65, 89–93 (2008).

    Google Scholar 

  69. 69

    Matsuzaki, T. et al. Insulin resistance is associated with the pathology of Alzheimer disease: the Hisayama study. Neurology 75, 764–770 (2010).

    CAS  Google Scholar 

  70. 70

    Bell, R. D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Verghese, P. B., Castellano, J. M. & Holtzman, D. M. Apolipoprotein E in Alzheimer's disease and other neurological disorders. Lancet Neurol. 10, 241–252 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Zhou, W. et al. Meta-analysis of APOE4 allele and outcome after traumatic brain injury. J. Neurotrauma 25, 279–290 (2008).

    Google Scholar 

  73. 73

    Fleminger, S., Oliver, D. L., Lovestone, S., Rabe-Hesketh, S. & Giora, A. Head injury as a risk factor for Alzheimer's disease: the evidence 10 years on; a partial replication. J. Neurol. Neurosurg. Psychiatry 74, 857–862 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Magnoni, S. & Brody, D. L. New perspectives on amyloid-β dynamics after acute brain injury: moving between experimental approaches and studies in the human brain. Arch. Neurol. 67, 1068–1073 (2010).

    Google Scholar 

  75. 75

    Nicoll, J. A., Roberts, G. W. & Graham, D. I. Apolipoprotein E ε4 allele is associated with deposition of amyloid β-protein following head injury. Nat. Med. 1, 135–137 (1995).

    CAS  Google Scholar 

  76. 76

    Jellinger, K. A. Morphologic diagnosis of “vascular dementia”—a critical update. J. Neurol. Sci. 270, 1–12 (2008).

    Google Scholar 

  77. 77

    Yin, Y. W. et al. Association between apolipoprotein E gene polymorphism and the risk of vascular dementia: a meta-analysis. Neurosci. Lett. 514, 6–11 (2012).

    CAS  Google Scholar 

  78. 78

    Prince, M. et al. The association between APOE and dementia does not seem to be mediated by vascular factors. Neurology 54, 397–402 (2000).

    CAS  Google Scholar 

  79. 79

    Bender, A. R. & Raz, N. Age-related differences in memory and executive functions in healthy APOE ε4 carriers: the contribution of individual differences in prefrontal volumes and systolic blood pressure. Neuropsychologia 50, 704–714 (2012).

    PubMed  PubMed Central  Google Scholar 

  80. 80

    Lanterna, L. A. et al. Meta-analysis of APOE genotype and subarachnoid hemorrhage. Neurology 69, 766–775 (2007).

    CAS  Google Scholar 

  81. 81

    Biffi, A. et al. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. Lancet Neurol. 10, 702–709 (2011).

    PubMed  PubMed Central  Google Scholar 

  82. 82

    Federoff, M., Jimenez-Rolando, B., Nalls, M. A. & Singleton, A. B. A large study reveals no association between APOE and Parkinson's disease. Neurobiol. Dis. 46, 389–392 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Ezquerra, M. et al. Lack of association of APOE and tau polymorphisms with dementia in Parkinson's disease. Neurosci. Lett. 448, 20–23 (2008).

    CAS  Google Scholar 

  84. 84

    McKeith, I. G. et al. Dementia with Lewy bodies. Semin. Clin. Neuropsychiatry 8, 46–57 (2003).

    Google Scholar 

  85. 85

    Harrington, C. R. et al. Influence of apolipoprotein E genotype on senile dementia of the Alzheimer and Lewy body types. Significance for etiological theories of Alzheimer's disease. Am. J. Pathol. 145, 1472–1484 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Mann, D. M., Brown, S. M., Owen, F., Baba, M. & Iwatsubo, T. Amyloid β protein (Aβ) deposition in dementia with Lewy bodies: predominance of Aβ42(43) and paucity of Aβ40 compared with sporadic Alzheimer's disease. Neuropathol. Appl. Neurobiol. 24, 187–194 (1998).

    CAS  Google Scholar 

  87. 87

    Pletnikova, O. et al. Aβ deposition is associated with enhanced cortical α-synuclein lesions in Lewy body diseases. Neurobiol. Aging 26, 1183–1192 (2005).

    CAS  PubMed  Google Scholar 

  88. 88

    Seripa, D. et al. The APOE gene locus in frontotemporal dementia and primary progressive aphasia. Arch. Neurol. 68, 622–628 (2011).

    Google Scholar 

  89. 89

    Saft, C. et al. Apolipoprotein E genotypes do not influence the age of onset in Huntington's disease. J. Neurol. Neurosurg. Psychiatry 75, 1692–1696 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Jawaid, A. et al. Does apolipoprotein E genotype modify the clinical expression of ALS? Eur. J. Neurol. 18, 618–624 (2011).

    CAS  Google Scholar 

  91. 91

    Bales, K. R. et al. Human APOE isoform-dependent effects on brain β-amyloid levels in PDAPP transgenic mice. J. Neurosci. 29, 6771–6779 (2009).

    CAS  Google Scholar 

  92. 92

    Osenkowski, P., Ye, W., Wang, R., Wolfe, M. S. & Selkoe, D. J. Direct and potent regulation of γ-secretase by its lipid microenvironment. J. Biol. Chem. 283, 22529–22540 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Riddell, D. R. et al. Impact of apolipoprotein E (apoE) polymorphism on brain ApoE levels. J. Neurosci. 28, 11445–11453 (2008).

    CAS  PubMed  Google Scholar 

  94. 94

    Sullivan, P. M. et al. Reduced levels of human apoE4 protein in an animal model of cognitive impairment. Neurobiol. Aging 32, 791–801 (2011).

    CAS  Google Scholar 

  95. 95

    Wahrle, S. E. et al. Apolipoprotein E levels in cerebrospinal fluid and the effects of ABCA1 polymorphisms. Mol. Neurodegener. 2, 7 (2007).

    PubMed  PubMed Central  Google Scholar 

  96. 96

    Beffert, U. et al. Apolipoprotein E and β-amyloid levels in the hippocampus and frontal cortex of Alzheimer's disease subjects are disease-related and apolipoprotein E genotype dependent. Brain Res. 843, 87–94 (1999).

    CAS  Google Scholar 

  97. 97

    DeMattos, R. B. et al. ApoE and clusterin cooperatively suppress Aβ levels and deposition: evidence that ApoE regulates extracellular Aβ metabolism in vivo. Neuron 41, 193–202 (2004).

    CAS  Google Scholar 

  98. 98

    Riddell, D. R. et al. The LXR agonist TO901317 selectively lowers hippocampal Aβ42 and improves memory in the Tg2576 mouse model of Alzheimer's disease. Mol. Cell Neurosci. 34, 621–628 (2007).

    CAS  Google Scholar 

  99. 99

    Vanmierlo, T. et al. Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiol. Aging 32, 1262–1272 (2011).

    CAS  Google Scholar 

  100. 100

    Cramer, P. E. et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335, 1503–1506 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Fitz, N. F. et al. Abca1 deficiency affects Alzheimer's disease-like phenotype in human ApoE4 but not in ApoE3-targeted replacement mice. J. Neurosci. 32, 13125–13136 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Kim, J., Basak, J. M. & Holtzman, D. M. The role of apolipoprotein E in Alzheimer's disease. Neuron 63, 287–303 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    LaDu, M. J. et al. Isoform-specific binding of apolipoprotein E to β-amyloid. J. Biol. Chem. 269, 23403–23406 (1994).

    CAS  PubMed  Google Scholar 

  104. 104

    Deane, R. et al. ApoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J. Clin. Invest. 118, 4002–4013 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Jiang, Q. et al. ApoE promotes the proteolytic degradation of Aβ. Neuron 58, 681–693 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Bales, K. R. et al. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat. Genet. 17, 263–264 (1997).

    CAS  Google Scholar 

  107. 107

    Ries, M. L. et al. Magnetic resonance imaging characterization of brain structure and function in mild cognitive impairment: a review. J. Am. Geriatr. Soc. 56, 920–934 (2008).

    PubMed  PubMed Central  Google Scholar 

  108. 108

    Nestor, P. J., Scheltens, P. & Hodges, J. R. Advances in the early detection of Alzheimer's disease. Nat. Med. 10 (Suppl.), S34–S41 (2004).

    Google Scholar 

  109. 109

    Korf, E. S., Wahlund, L.-O., Visser, P. J. & Scheltens, P. Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. Neurology 63, 94–100 (2004).

    PubMed  PubMed Central  Google Scholar 

  110. 110

    Hashimoto, M. et al. Apolipoprotein E ε4 and the pattern of regional brain atrophy in Alzheimer's disease. Neurology 57, 1461–1466 (2001).

    CAS  Google Scholar 

  111. 111

    Espeseth, T. et al. Accelerated age-related cortical thinning in healthy carriers of apolipoprotein E ε4. Neurobiol. Aging 29, 329–340 (2008).

    CAS  Google Scholar 

  112. 112

    Reiman, E. M. et al. Hippocampal volumes in cognitively normal persons at genetic risk for Alzheimer's disease. Ann. Neurol. 44, 288–291 (1998).

    CAS  Google Scholar 

  113. 113

    Fennema-Notestine, C. et al. Presence of APOE ε4 allele associated with thinner frontal cortex in middle age. J. Alzheimers Dis. 26, 49–60 (2011).

    PubMed  PubMed Central  Google Scholar 

  114. 114

    Sheline, Y. I. et al. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aβ42. J. Neurosci. 30, 17035–17040 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Machulda M. M. et al. Effect of APOE ε4 status on intrinsic network connectivity in cognitively normal elderly subjects. Arch. Neurol. 68, 1131–1136 (2011).

    PubMed  PubMed Central  Google Scholar 

  116. 116

    Bookheimer, S. Y. et al. Patterns of brain activation in people at risk for Alzheimer's disease. N. Engl. J. Med. 343, 450–456 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Filippini, N. et al. Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proc. Natl Acad. Sci. USA 106, 7209–7214 (2009).

    CAS  Google Scholar 

  118. 118

    Bondi, M. W., Houston, W. S., Eyler, L. T. & Brown, G. G. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 64, 501–508 (2005).

    PubMed  PubMed Central  Google Scholar 

  119. 119

    Bero, A. W. et al. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat. Neurosci. 14, 750–756 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Cirrito, J. R. et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 48, 913–922 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Putcha, D. et al. Hippocampal hyperactivation associated with cortical thinning in Alzheimer's disease signature regions in non-demented elderly adults. J. Neurosci. 31, 17680–17688 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    O'Brien, J. L. et al. Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology 74, 1969–1976 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Mosconi, L. et al. Pre-clinical detection of Alzheimer's disease using FDG-PET, with or without amyloid imaging. J. Alzheimers Dis. 20, 843–854 (2010).

    PubMed  PubMed Central  Google Scholar 

  124. 124

    Small, G. W. et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 273, 942–947 (1995).

    CAS  Google Scholar 

  125. 125

    Reiman, E. M. et al. Preclinical evidence of Alzheimer's disease in persons homozygous for the ε4 allele for apolipoprotein E. N. Engl. J. Med. 334, 752–758 (1996).

    CAS  Google Scholar 

  126. 126

    Small, G. W. et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proc. Natl Acad. Sci. USA 97, 6037–6042 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Reiman, E. M. et al. Correlations between apolipoprotein E ε4 gene dose and brain-imaging measurements of regional hypometabolism. Proc. Natl Acad. Sci. USA 102, 8299–8302 (2005).

    CAS  Google Scholar 

  128. 128

    Huang, Y. Aβ-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer's disease. Trends Mol. Med. 16, 287–294 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Aoki, K. et al. Increased expression of neuronal apolipoprotein E in human brain with cerebral infarction. Stroke 34, 875–880 (2003).

    CAS  PubMed  Google Scholar 

  130. 130

    Brecht, W. J. et al. Neuron-specific apolipoprotein E4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J. Neurosci. 24, 2527–2534 (2004).

    CAS  PubMed  Google Scholar 

  131. 131

    Mahley, R. W., Weisgraber, K. H. & Huang, Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc. Natl Acad. Sci. USA 103, 5644–5651 (2006).

    CAS  PubMed  Google Scholar 

  132. 132

    Aboud, O., Mrak, R. E., Boop, F. & Griffin, S. T. Apolipoprotein epsilon 3 alleles are associated with indicators of neuronal resilience. BMC Med. 10, 35 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Buttini, M. et al. Cellular source of apolipoprotein E4 determines neuronal susceptibility to excitotoxic injury in transgenic mice. Am. J. Pathol. 177, 563–569 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294, 1354–1357 (2001).

    CAS  Google Scholar 

  135. 135

    Pfrieger, F. W. Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol. Life Sci. 60, 1158–1171 (2003).

    CAS  Google Scholar 

  136. 136

    Svennerholm, L. & Gottfries, C.-G. Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (Type I) and demyelination in late-onset form (Type II). J. Neurochem. 62, 1039–1047 (1994).

    CAS  Google Scholar 

  137. 137

    Rapp, A., Gmeiner, B. & Hüttinger, M. Implication of apoE isoforms in cholesterol metabolism by primary rat hippocampal neurons and astrocytes. Biochimie 88, 473–483 (2006).

    CAS  PubMed  Google Scholar 

  138. 138

    Hamanaka, H. et al. Altered cholesterol metabolism in human apolipoprotein E4 knock-in mice. Hum. Mol. Genet. 9, 353–361 (2000).

    CAS  PubMed  Google Scholar 

  139. 139

    Selkoe, D. J. Alzheimer's disease is a synaptic failure. Science 298, 789–791 (2002).

    CAS  Google Scholar 

  140. 140

    Koffie, R., Hyman, B. & Spires-Jones, T. Alzheimer's disease: synapses gone cold. Mol. Neurodegener. 6, 63 (2011).

    PubMed  PubMed Central  Google Scholar 

  141. 141

    Chen, Y., Durakoglugil, M. S., Xian, X. & Herz, J. ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.0914984107.

  142. 142

    Buttini, M. et al. Modulation of Alzheimer-like synaptic and cholinergic deficits in transgenic mice by human apolipoprotein E depends on isoform, aging, and overexpression of amyloid β peptides but not on plaque formation. J. Neurosci. 22, 10539–10548 (2002).

    CAS  Google Scholar 

  143. 143

    Ji, Y. et al. Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer's disease patients. Neuroscience 122, 305–315 (2003).

    CAS  PubMed  Google Scholar 

  144. 144

    Dumanis, S. B. et al. ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J. Neurosci. 29, 15317–15322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Wang, C. et al. Human apoE4-targeted replacement mice display synaptic deficits in the absence of neuropathology. Neurobiol. Dis. 18, 390–398 (2005).

    CAS  PubMed  Google Scholar 

  146. 146

    Sen, A., Alkon, D. L. & Nelson, T. J. Apolipoprotein E3 (ApoE3) but not ApoE4 protects against synaptic loss through increased expression of protein kinase Cε. J. Biol. Chem. 287, 15947–15958 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Klein, R. C., Mace, B. E., Moore, S. D. & Sullivan, P. M. Progressive loss of synaptic integrity in human apolipoprotein E4 targeted replacement mice and attenuation by apolipoprotein E2. Neuroscience 171, 1265–1272 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Bales, K. R., Du, Y., Holtzman, D., Cordell, B. & Paul, S. M. Neuroinflammation and Alzheimer's disease: critical roles for cytokine/Aβ-induced glial activation, NF-κB, and apolipoprotein E. Neurobiol. Aging 21, 427–432 (2000).

    CAS  Google Scholar 

  149. 149

    LaDu, M. J. et al. Apolipoprotein E and apolipoprotein E receptors modulate Aβ-induced glial neuroinflammatory responses. Neurochem. Int. 39, 427–434 (2001).

    CAS  Google Scholar 

  150. 150

    Lynch, J. R., Morgan, D., Mance, J., Matthew, W. D. & Laskowitz, D. T. Apolipoprotein E modulates glial activation and the endogenous central nervous system inflammatory response. J. Neuroimmunol. 114, 107–113 (2001).

    CAS  Google Scholar 

  151. 151

    Keene, C. D., Cudaback, E., Li, X., Montine, K. S. & Montine, T. J. Apolipoprotein E isoforms and regulation of the innate immune response in brain of patients with Alzheimer's disease. Curr. Opin. Neurobiol. 21, 920–928 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Lynch, J. R. et al. APOE genotype and an ApoE-mimetic peptide modify the systemic and central nervous system inflammatory response. J. Biol. Chem. 278, 48529–48533 (2003).

    CAS  Google Scholar 

  153. 153

    Ringman, J. M. et al. Plasma signaling proteins in persons at genetic risk for Alzheimer disease: influence of APOE genotype. Arch. Neurol. 69, 757–764 (2012).

    PubMed  PubMed Central  Google Scholar 

  154. 154

    Szekely, C. A. et al. NSAID use and dementia risk in the Cardiovascular Health Study: role of APOE and NSAID type. Neurology 70, 17–24 (2008).

    CAS  Google Scholar 

  155. 155

    Mu, Y. & Gage, F. Adult hippocampal neurogenesis and its role in Alzheimer's disease. Mol. Neurodegener. 6, 85 (2011).

    PubMed  PubMed Central  Google Scholar 

  156. 156

    Yang, C.-P., Gilley, J. A., Zhang, G. & Kernie, S. G. ApoE is required for maintenance of the dentate gyrus neural progenitor pool. Development 138, 4351–4362 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Andrews-Zwilling, Y. et al. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J. Neurosci. 30, 13707–13717 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Li, G. et al. GABAergic interneuron dysfunction impairs hippocampal neurogenesis in adult apolipoprotein E4 knockin mice. Cell Stem Cell 5, 634–645 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Salloway, S. et al. A randomized, double-blind, placebo-controlled clinical trial of intravenous bapineuzumab in patients with Alzheimer's disease who are apolipoprotein E ε4 non-carriers. Presented at the 16th meeting of the European Federation of Neurological Societies (Stockholm, Sweden, 2012).

  160. 160

    Sperling, R. et al. A randomized, double-blind, placebo-controlled clinical trial of intravenous bapineuzumab in patients with Alzheimer's disease who are apolipoprotein E ε4 carriers. Presented at the 16th meeting of the European Federation of Neurological Societies (Stockholm, Sweden, 2012).

  161. 161

    Ferrari, C. et al. How can elderly apolipoprotein E ε4 carriers remain free from dementia? Neurobiol. Aging http://dx.doi.org/j.neurobiolaging.2012.03.003.

  162. 162

    Hesse, C. et al. Measurement of apolipoprotein E (apoE) in cerebrospinal fluid. Neurochem. Res. 25, 511–517 (2000).

    CAS  Google Scholar 

  163. 163

    Gupta, V. B. et al. Plasma apolipoprotein E and Alzheimer disease risk. Neurology 76, 1091–1098 (2011).

    CAS  Google Scholar 

  164. 164

    Chawla, A. et al. A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol. Cell 7, 161–171 (2001).

    CAS  Google Scholar 

  165. 165

    Vaya, J. & Schipper, H. M. Oxysterols, cholesterol homeostasis, and Alzheimer disease. J. Neurochem. 102, 1727–1737 (2007).

    CAS  PubMed  Google Scholar 

  166. 166

    Donkin, J. J. et al. ATP-binding cassette transporter A1 mediates the beneficial effects of the liver X receptor agonist GW3965 on object recognition memory and amyloid burden in amyloid precursor protein/presenilin 1 mice. J. Biol. Chem. 285, 34144–34154 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167

    Fryer, J. D. et al. Human apolipoprotein E4 alters the amyloid-β 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J. Neurosci. 25, 2803–2810 (2005).

    CAS  PubMed  Google Scholar 

  168. 168

    Kim, J. et al. Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-β amyloidosis. J. Neurosci. 31, 18007–18012 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Bien-Ly, N., Gillespie, A. K., Walker, D., Yoon, S. Y. & Huang, Y. Reducing human apolipoprotein E levels attenuates age-dependent Aβ accumulation in mutant human amyloid precursor protein transgenic mice. J. Neurosci. 32, 4803–4811 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Sadowski, M. J. et al. Blocking the apolipoprotein E/amyloid-β interaction as a potential therapeutic approach for Alzheimer's disease. Proc. Natl Acad. Sci. USA 103, 18787–18792 (2006).

    CAS  PubMed  Google Scholar 

  171. 171

    Chen, H. K. et al. Small molecule structure correctors abolish detrimental effects of apolipoprotein E4 in cultured neurons. J. Biol. Chem. 287, 5253–5266 (2012).

    CAS  Google Scholar 

  172. 172

    Aono, M. et al. Protective effect of apolipoprotein E-mimetic peptides on N-methyl-D-aspartate excitotoxicity in primary rat neuronal-glial cell cultures. Neuroscience 116, 437–445 (2003).

    CAS  PubMed  Google Scholar 

  173. 173

    Li, F. Q. et al. Apolipoprotein E-derived peptides ameliorate clinical disability and inflammatory infiltrates into the spinal cord in a murine model of multiple sclerosis. J. Pharmacol. Exp. Ther. 318, 956–965 (2006).

    CAS  Google Scholar 

  174. 174

    Li, F. Q., Fowler, K. A., Neil, J. E., Colton, C. A. & Vitek, M. P. An apolipoprotein E-mimetic stimulates axonal regeneration and remyelination after peripheral nerve injury. J. Pharmacol. Exp. Ther. 334, 106–115 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175

    Kanekiyo, T. et al. Heparan sulphate proteoglycan and the low-density lipoprotein receptor-related protein 1 constitute major pathways for neuronal amyloid-β uptake. J. Neurosci. 31, 1644–1651 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176

    Liu, Q. et al. Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration. J. Neurosci. 30, 17068–17078 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. 177

    Kim, J. et al. Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular Aβ clearance. Neuron 64, 632–644 (2009).

    PubMed  PubMed Central  Google Scholar 

  178. 178

    Herz, J. & Chen, Y. Reelin, lipoprotein receptors and synaptic plasticity. Nat. Rev. Neurosci. 7, 850–859 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

Work in authors' laboratories is supported by the NIH, the Alzheimer's Association, the American Health Assistance Foundation, and Xiamen University Research Funds. We thank C. Stetler and O. Ross for critical reading of the manuscript before submission.

Author information

Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussion of the content, writing the article, and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Guojun Bu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, C., Kanekiyo, T., Xu, H. et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9, 106–118 (2013). https://doi.org/10.1038/nrneurol.2012.263

Download citation

Further reading