Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Antihypertensive treatment can prevent stroke and cognitive decline

Abstract

Hypertension is a highly prevalent risk factor for stroke and dementia, and is the greatest risk factor for small-vessel disease—a frequent cause of lacunar infarction and intracerebral haemorrhage. Lacunar and cortical strokes contribute to the development of dementia in patients with, and in those without, Alzheimer disease pathology; this relationship between stroke and dementia is probably mediated by ischaemia-induced neuroinflammation. Antihypertensive treatment can reduce the risk of stroke and dementia, but requires optimal blood pressure targets to be established for individual patients. Although the rate of treatment and control of hypertension has improved markedly over the past two decades, many physicians remain reluctant to prescribe antihypertensive medication to elderly patients owing to potential adverse events such as cardiovascular morbidity and postural hypotension. In this article we argue that, in patients of all ages, not treating hypertension is a missed opportunity to prevent some of the most prevalent brain diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathophysiology of lacunar and haemorrhagic stroke.
Figure 2: Ischaemia–amyloid interactions.

Similar content being viewed by others

References

  1. Lawes, C. M., Vander Hoorn, S. & Rodgers, A. Global burden of blood-pressure-related disease, 2001. Lancet 371, 1513–1518 (2008).

    Article  Google Scholar 

  2. Lewington, S. et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360, 1903–1913 (2002).

    Article  Google Scholar 

  3. Li, C., Engström, G., Hedblad, B., Berglund, G. & Janzon, L. Risk factors for stroke in subjects with normal blood pressure: a prospective cohort study. Stroke 36, 234–238 (2005).

    Article  CAS  Google Scholar 

  4. Spence, J. D. Antihypertensive drugs and prevention of atherosclerotic stroke. Stroke 17, 808–810 (1986).

    Article  CAS  Google Scholar 

  5. Roger, V. L. et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125, e2–e220 (2012).

    Article  Google Scholar 

  6. Birns, J. & Kalra, L. Cognitive function and hypertension. J. Hum. Hypertens. 23, 86–96 (2009).

    Article  CAS  Google Scholar 

  7. Schiller, J. S., Lucas, J. W., Ward, B. W. & Peregoy, J. A. Summary health statistics for U.S. adults: National Health Interview Survey, 2010. Vital Health Stat. 10, 1–207 (2012).

    Google Scholar 

  8. Pantoni, L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 9, 689–701 (2010).

    Article  Google Scholar 

  9. Hachinski, V. & Norris, J. W. The Acute Stroke 1–286 (F. A. Davis, Philadelphia, 1985).

    Google Scholar 

  10. O'Rourke, M. F. & Safar, M. E. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46, 200–204 (2005).

    Article  CAS  Google Scholar 

  11. Labovitz, D. L., Halim, A., Boden-Albala, B., Hauser, W. A. & Sacco, R. L. The incidence of deep and lobar intracerebral hemorrhage in whites, blacks, and Hispanics. Neurology 65, 518–522 (2005).

    Article  CAS  Google Scholar 

  12. Vermeer, S. E. et al. Incidence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 34, 392–396 (2003).

    Article  Google Scholar 

  13. Das, R. R. et al. Prevalence and correlates of silent cerebral infarcts in the Framingham offspring study. Stroke 39, 2929–2935 (2008).

    Article  Google Scholar 

  14. Spence, J. D. Homocysteine-lowering therapy: a role in stroke prevention? Lancet Neurol. 6, 830–838 (2007).

    Article  CAS  Google Scholar 

  15. Poli, D. et al. Culprit factors for the failure of well-conducted warfarin therapy to prevent ischemic events in patients with atrial fibrillation: the role of homocysteine. Stroke 36, 2159–2163 (2005).

    Article  CAS  Google Scholar 

  16. Böger, R. H., Bode-Böger, S. M., Sydow, K., Heistad, D. D. & Lentz, S. R. Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 20, 1557–1564 (2000).

    Article  Google Scholar 

  17. Snowdon, D. A. et al. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 277, 813–817 (1997).

    Article  CAS  Google Scholar 

  18. Skoog, I., Andreasson, L. A., Landahl, S. & Lernfelt, B. A population-based study on blood pressure and brain atrophy in 85-year-olds. Hypertension 32, 404–409 (1998).

    Article  CAS  Google Scholar 

  19. Peters, R. et al. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol. 7, 683–689 (2008).

    Article  CAS  Google Scholar 

  20. Oveisgharan, S. & Hachinski, V. Hypertension, executive dysfunction, and progression to dementia: the Canadian study of health and aging. Arch. Neurol. 67, 187–192 (2010).

    Article  Google Scholar 

  21. Whitehead, S. N., Cheng, G., Hachinski, V. C. & Cechetto, D. F. Progressive increase in infarct size, neuroinflammation, and cognitive deficits in the presence of high levels of amyloid. Stroke 38, 3245–3250 (2007).

    Article  CAS  Google Scholar 

  22. Whitehead, S. N., Hachinski, V. C. & Cechetto, D. F. Interaction between a rat model of cerebral ischemia and β-amyloid toxicity: inflammatory responses. Stroke 36, 107–112 (2005).

    Article  CAS  Google Scholar 

  23. Whitehead, S., Cheng, G., Hachinski, V. & Cechetto, D. F. Interaction between a rat model of cerebral ischemia and β-amyloid toxicity: II. Effects of triflusal. Stroke 36, 1782–1789 (2005).

    Article  CAS  Google Scholar 

  24. Whitehead, S. N. et al. Triflusal reduces cerebral ischemia induced inflammation in a combined mouse model of Alzheimer's disease and stroke. Brain Res. 1366, 246–256 (2010).

    Article  CAS  Google Scholar 

  25. Musini, V. M., Tejani, A. M., Bassett, K. & Wright, J. M. Pharmacotherapy for hypertension in the elderly. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD000028. http://dx.doi.org/10.1002/14651858.CD000028.pub2.

  26. Beckett, N. S. et al. Treatment of hypertension in patients 80 years of age or older. N. Engl. J. Med. 358, 1887–1898 (2008).

    Article  CAS  Google Scholar 

  27. Lewington, S., Clarke, R., Qizilbash, N., Peto, R. & Collins, R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360, 1903–1913 (2002).

    Article  Google Scholar 

  28. Rothwell, P. M., Howard, S. C. & Spence, J. D. Relationship between blood pressure and stroke risk in patients with symptomatic carotid occlusive disease. Stroke 34, 2583–2590 (2003).

    Article  CAS  Google Scholar 

  29. Lee, M., Saver, J. L., Hong, K. S., Hao, Q. & Ovbiagele, B. Does achieving an intensive versus usual blood pressure level prevent stroke? Ann. Neurol. 71, 133–140 (2012).

    Article  Google Scholar 

  30. McGuinness, B., Todd, S., Passmore, P. & Bullock, R. Blood pressure lowering in patients without prior cerebrovascular disease for prevention of cognitive impairment and dementia. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD004034. http://dx.doi.org/10.1002/14651858.CD004034.pub3.

  31. Pendlebury, S. T., Cuthbertson, F. C., Welch, S. J., Mehta, Z. & Rothwell, P. M. Underestimation of cognitive impairment by Mini-Mental State Examination versus the Montreal Cognitive Assessment in patients with transient ischemic attack and stroke: a population-based study. Stroke 41, 1290–1293 (2010).

    Article  Google Scholar 

  32. Hachinski, V. et al. National Institute of Neurological Disorders and Stroke—Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke 37, 2220–2241 (2006).

    Article  Google Scholar 

  33. Forette, F. et al. The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch. Intern. Med. 162, 2046–2052 (2002).

    Article  Google Scholar 

  34. Spence, J. D., Sibbald, W. J. & Cape, R. D. Pseudohypertension in the elderly. Clin. Sci. Mol. Med. Suppl. 4, 399s–402s (1978).

    CAS  PubMed  Google Scholar 

  35. Spence, J. D., Sibbald, W. J. & Cape, R. D. Direct, indirect and mean blood pressures in hypertensive patients: the problem of cuff artefact due to arterial wall stiffness, and a partial solution. Clin. Invest. Med. 2, 165–173 (1979).

    CAS  PubMed  Google Scholar 

  36. Spence, J. D. Pseudohypertension. Hypertension 59, e49 (2012).

    Article  CAS  Google Scholar 

  37. Stewart, R. et al. Change in blood pressure and incident dementia: a 32-year prospective study. Hypertension 54, 233–240 (2009).

    Article  CAS  Google Scholar 

  38. Royall, D. R., Gao, J. H. & Kellogg, D. L. Jr. Insular Alzheimer's disease pathology as a cause of “age-related” autonomic dysfunction and mortality in the non-demented elderly. Med. Hypotheses 67, 747–758 (2006).

    Article  Google Scholar 

  39. Sörös, P., Inamoto, Y. & Martin, R. E. Functional brain imaging of swallowing: an activation likelihood estimation meta-analysis. Hum. Brain Mapp. 30, 2426–2439 (2009).

    Article  Google Scholar 

  40. Oppenheimer, S. M., Gelb, A., Girvin, J. P. & Hachinski, V. C. Cardiovascular effects of human insular cortex stimulation. Neurology 42, 1727–1732 (1992).

    Article  CAS  Google Scholar 

  41. Sörös, P. & Hachinski, V. Cardiovascular and neurological causes of sudden death after ischaemic stroke. Lancet Neurol. 11, 179–188 (2012).

    Article  Google Scholar 

  42. Braak, H. & Braak, E. Evolution of neuronal changes in the course of Alzheimer's disease. J. Neural Transm. Suppl. 53, 127–140 (1998).

    Article  CAS  Google Scholar 

  43. Yusuf, S. et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 364, 937–952 (2004).

    Article  Google Scholar 

  44. O'Donnell, M. J. et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case–control study. Lancet 376, 112–123 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P. Sörös and V. Hachinski researched data for the article. All authors provided substantial contribution to discussion of content, writing the article, and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Vladimir Hachinski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sörös, P., Whitehead, S., Spence, J. et al. Antihypertensive treatment can prevent stroke and cognitive decline. Nat Rev Neurol 9, 174–178 (2013). https://doi.org/10.1038/nrneurol.2012.255

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing