Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypothermia for acute brain injury—mechanisms and practical aspects

Abstract

Hypothermia is widely accepted as the gold-standard method by which the body can protect the brain. Therapeutic cooling—or targeted temperature management (TTM)—is increasingly being used to prevent secondary brain injury in patients admitted to the emergency department and intensive care unit. Rapid cooling to 33 °C for 24 h is considered the standard of care for minimizing neurological injury after cardiac arrest, mild-to-moderate hypothermia (33–35 °C) can be used as an effective component of multimodal therapy for patients with elevated intracranial pressure, and advanced cooling technology can control fever in patients who have experienced trauma, haemorrhagic stroke, or other forms of severe brain injury. However, the practical application of therapeutic hypothermia is not trivial, and the treatment carries risks. Development of clinical management protocols that focus on detection and control of shivering and minimize the risk of other potential complications of TTM will be essential to maximize the benefits of this emerging therapeutic modality. This Review provides an overview of the potential neuroprotective mechanisms of hypothermia, practical considerations for the application of TTM, and disease-specific evidence for the use of this therapy in patients with acute brain injuries.

Key Points

  • Targeted temperature management (TTM) is the most powerful mechanism of neuroprotection currently available

  • Hypothermia is proven to have clinically beneficial effects in preventing secondary brain injury in patients who have experienced cardiac arrest, and in neonates with hypoxic–ischaemic injuries

  • Cooling is an effective mechanism to reduce intracranial pressure in patients who do not respond to standard medications

  • Shivering is a common and potentially damaging adverse effect of TTM that needs to be controlled

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Effect of meperidine on temperature thresholds for vasoconstriction and shivering in normal volunteers.

Similar content being viewed by others

References

  1. Bigelow, W. G., Lindsay, W. K. & Greenwood, W. F. Hypothermia; its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann. Surg. 132, 849–866 (1950).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosomoff, H. L. & Holaday, D. A. Cerebral blood flow and cerebral oxygen consumption during hypothermia. Am. J. Physiol. 179, 85–88 (1954).

    Article  CAS  PubMed  Google Scholar 

  3. Benson, D. W., Williams, G. R. Jr, Spencer, F. C. & Yates, A. J. The use of hypothermia after cardiac arrest. Anesth. Analg. 38, 423–428 (1959).

    Article  CAS  PubMed  Google Scholar 

  4. Williams, G. R. Jr & Spencer, F. C. The clinical use of hypothermia following cardiac arrest. Ann. Surg. 148, 462–468 (1958).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Young, R. S., Zalneraitis, E. L. & Dooling, E. C. Neurological outcome in cold water drowning. JAMA 244, 1233–1235 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Polderman, K. H. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet 371, 1955–1969 (2008).

    Article  PubMed  Google Scholar 

  7. Bernard, S. A. et al. Treatment of comatose survivors of outofhospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 346, 557–563 (2002).

    Article  PubMed  Google Scholar 

  8. The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 346, 549–556 (2002).

  9. Steen, P. A., Newberg, L., Milde, J. H. & Michenfelder, J. D. Hypothermia and barbiturates: individual and combined effects on canine cerebral oxygen consumption. Anesthesiology 58, 527–532 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Baker, A. J. et al. Hypothermia prevents ischemia-induced increases in hippocampal glycine concentrations in rabbits. Stroke 22, 666–673 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Feng, J. F. et al. Effect of therapeutic mild hypothermia on the genomics of the hippocampus after moderate traumatic brain injury in rats. Neurosurgery 67, 730–742 (2010).

    Article  PubMed  Google Scholar 

  12. Truettner, J. S., Alonso, O. F., Bramlett, H. M. & Dietrich, W. D. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. J. Cereb. Blood Flow Metab. 31, 1897–1907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kil, H. Y., Zhang, J. & Piantadosi, C. A. Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats. J. Cereb. Blood Flow Metab. 16, 100–106 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Olsen, T. S., Weber, U. J. & Kammersgaard, L. P. Therapeutic hypothermia for acute stroke. Lancet Neurol. 2, 410–416 (2003).

    Article  PubMed  Google Scholar 

  15. van der Worp, H. B., Sena, E. S., Donnan, G. A., Howells, D. W. & Macleod, M. R. Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta-analysis. Brain 130, 3063–3074 (2007).

    Article  PubMed  Google Scholar 

  16. Karibe, H., Zarow, G. J., Graham, S. H. & Weinstein, P. R. Mild intraischemic hypothermia reduces postischemic hyperperfusion, delayed postischemic hypoperfusion, blood–brain barrier disruption, brain edema, and neuronal damage volume after temporary focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 14, 620–627 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Eguchi, Y., Yamashita, K., Iwamoto, T. & Ito, H. Effects of brain temperature on calmodulin and microtubule-associated protein 2 immunoreactivity in the gerbil hippocampus following transient forebrain ischemia. J. Neurotrauma 14, 109–118 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, L., Yenari, M. A., Steinberg, G. K. & Giffard, R. G. Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade. J. Cereb. Blood Flow Metab. 22, 21–28 (2002).

    Article  PubMed  Google Scholar 

  19. Lotocki, G. et al. Alterations in blood-brain barrier permeability to large and small molecules and leukocyte accumulation after traumatic brain injury: effects of post-traumatic hypothermia. J. Neurotrauma 26, 1123–1134 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wartenberg, K. E., Schmidt, J. M. & Mayer, S. A. Multimodality monitoring in neurocritical care. Crit. Care Clin. 23, 507–538 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, J., Yu, M. & Zhu, C. Effect of long-term mild hypothermia therapy in patients with severe traumatic brain injury: 1 year follow-up review of 87 cases. J. Neurosurg. 93, 546–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Clifton, G. L. et al. Lack of effect of induction of hypothermia after acute brain injury. N. Engl. J. Med. 344, 556–563 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Qiu, W. et al. Effects of therapeutic mild hypothermia on patients with severe traumatic brain injury after craniotomy. J. Crit. Care 22, 229–235 (2007).

    Article  PubMed  Google Scholar 

  24. Shiozaki, T. et al. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J. Neurosurg. 79, 363–368 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Tokutomi, T. et al. Optimal temperature for the management of severe traumatic brain injury: effect of hypothermia on intracranial pressure, systemic and intracranial hemodynamics, and metabolism. Neurosurgery 52, 102–111 (2003).

    PubMed  Google Scholar 

  26. Sahuquillo, J. et al. Intravascular cooling for rapid induction of moderate hypothermia in severely head-injured patients: results of a multicenter study (IntraCool). Intensive Care Med. 35, 890–898 (2009).

    Article  PubMed  Google Scholar 

  27. Schreckinger, M. & Marion, D. W. Contemporary management of traumatic intracranial hypertension: is there a role for therapeutic hypothermia? Neurocrit. Care 11, 427–436 (2009).

    Article  PubMed  Google Scholar 

  28. Kliegel, A. et al. Cold simple intravenous infusions preceding special endovascular cooling for faster induction of mild hypothermia after cardiac arrest-a feasibility study. Resuscitation 64, 347–351 (2005).

    Article  PubMed  Google Scholar 

  29. Mayer, S. A. et al. Clinical trial of a novel surface cooling system for fever control in neurocritical care patients. Crit. Care Med. 32, 2508–2515 (2004).

    Article  PubMed  Google Scholar 

  30. De Georgia, M. A. et al. Cooling for Acute Ischemic Brain Damage (COOL AID): a feasibility trial of endovascular cooling. Neurology 63, 312–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Badjatia, N. et al. Achieving normothermia in patients with febrile subarachnoid hemorrhage: feasibility and safety of a novel intravascular cooling catheter. Neurocrit. Care 1, 145–156 (2004).

    Article  PubMed  Google Scholar 

  32. Hoedemaekers, C. W., Ezzahti, M., Gerritsen, A. & van der Hoeven, J. G. Comparison of cooling methods to induce and maintain normo- and hypothermia in intensive care unit patients: a prospective intervention study. Crit. Care 11, R91 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moran, J. L. et al. Tympanic temperature measurements: are they reliable in the critically ill? A clinical study of measures of agreement. Crit. Care Med. 35, 155–164 (2007).

    Article  PubMed  Google Scholar 

  34. Rajek, A. et al. Core cooling by central venous infusion of ice-cold (4 °C and 20 °C) fluid: isolation of core and peripheral thermal compartments. Anesthesiology 93, 629–637 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Bernard, S., Buist, M., Monteiro, O. & Smith, K. Induced hypothermia using large volume, ice-cold intravenous fluid in comatose survivors of outofhospital cardiac arrest: a preliminary report. Resuscitation 56, 9–13 (2003).

    Article  PubMed  Google Scholar 

  36. Polderman, K. H., Rijnsburger, E. R., Peerdeman, S. M. & Girbes, A. R. Induction of hypothermia in patients with various types of neurologic injury with use of large volumes of ice-cold intravenous fluid. Crit. Care Med. 33, 2744–2751 (2005).

    Article  PubMed  Google Scholar 

  37. Oddo, M. et al. Effect of shivering on brain tissue oxygenation during induced normothermia in patients with severe brain injury. Neurocrit. Care 12, 10–16 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Jiang, J. Y. et al. Effect of long-term mild hypothermia or short-term mild hypothermia on outcome of patients with severe traumatic brain injury. J. Cereb. Blood Flow Metab. 26, 771–776 (2006).

    Article  PubMed  Google Scholar 

  39. Linares, G. & Mayer, S. A. Hypothermia for the treatment of ischemic and hemorrhagic stroke. Crit. Care Med. 37, S243–249 (2009).

    Article  PubMed  Google Scholar 

  40. Clifton, G. L. Hypothermia in patients with brain injury: the way forward? Lancet Neurol. 10, 406–407 (2011).

    Article  Google Scholar 

  41. Polderman, K. H. & Herold, I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit. Care Med. 37, 1101–1120 (2009).

    Article  PubMed  Google Scholar 

  42. Badjatia, N. Fever control in the neuro-ICU: why, who, and when? Curr. Opin. Crit. Care 15, 79–82 (2009).

    Article  PubMed  Google Scholar 

  43. Sessler, D. I. Defeating normal thermoregulatory defenses: induction of therapeutic hypothermia. Stroke 40, e614–e621 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Badjatia, N. Hyperthermia and fever control in brain injury. Crit. Care Med. 37, S250–S257 (2009).

    Article  PubMed  Google Scholar 

  45. Badjatia, N. et al. Metabolic impact of shivering during therapeutic temperature modulation: the Bedside Shivering Assessment Scale. Stroke 39, 3242–3247 (2008).

    Article  PubMed  Google Scholar 

  46. Badjatia, N. et al. Metabolic benefits of surface counter warming during therapeutic temperature modulation. Crit. Care Med. 37, 1893–1897 (2009).

    Article  PubMed  Google Scholar 

  47. Choi, H. A. et al. Prevention of shivering during therapeutic temperature modulation: The Columbia Anti-Shivering Protocol. Neurocrit. Care 14, 389–394 (2011).

    Article  PubMed  Google Scholar 

  48. Zweifler, R. M., Voorhees, M. E., Mahmood, M. A. & Parnell, M. Magnesium sulfate increases the rate of hypothermia via surface cooling and improves comfort. Stroke 35, 2331–2334 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Mokhtarani, M. et al. Buspirone and meperidine synergistically reduce the shivering threshold. Anesth. Analg. 93, 1233–1239 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Kasner, S. E. et al. Acetaminophen for altering body temperature in acute stroke: a randomized clinical trial. Stroke 33, 130–134 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Lennon, R. L., Hosking, M. P., Conover, M. A. & Perkins, W. J. Evaluation of a forced-air system for warming hypothermic postoperative patients. Anesth. Analg. 70, 424–427 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Doufas, A. G. et al. Dexmedetomidine and meperidine additively reduce the shivering threshold in humans. Stroke 34, 1218–1223 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Matsukawa, T. et al. Propofol linearly reduces the vasoconstriction and shivering thresholds. Anesthesiology 82, 1169–1180 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Kurz, A. et al. Midazolam minimally impairs thermoregulatory control. Anesth. Analg. 81, 393–398 (1995).

    CAS  PubMed  Google Scholar 

  55. Polderman, K. H., Peerdeman, S. M. & Girbes, A. R. Hypophosphatemia and hypomagnesemia induced by cooling in patients with severe head injury. J. Neurosurg. 94, 697–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Polderman, K. H. Application of therapeutic hypothermia in the intensive care unit. Opportunities and pitfalls of a promising treatment modality—Part 2: Practical aspects and side effects. Intensive Care Med. 30, 757–769 (2004).

    Article  PubMed  Google Scholar 

  57. Polderman, K. H. Mechanisms of action, physiological effects, and complications of hypothermia. Crit. Care Med. 37, S186–202 (2009).

    Article  PubMed  Google Scholar 

  58. Bacher, A. Effects of body temperature on blood gases. Intensive Care Med. 31, 24–27 (2005).

    Article  PubMed  Google Scholar 

  59. Lay, C. & Badjatia, N. Therapeutic hypothermia after cardiac arrest. Curr. Atheroscler. Rep. 12, 336–342 (2010).

    Article  PubMed  Google Scholar 

  60. Knight, D. R. & Horvath, S. M. Urinary responses to cold temperature during water immersion. Am. J. Physiol. 248, R560–566 (1985).

    CAS  PubMed  Google Scholar 

  61. Zeiner, A. et al. The effect of mild therapeutic hypothermia on renal function after cardiopulmonary resuscitation in men. Resuscitation 60, 253–261 (2004).

    Article  PubMed  Google Scholar 

  62. Bergman, R. et al. Haemodynamic consequences of mild therapeutic hypothermia after cardiac arrest. Eur. J. Anaesthesiol. 27, 383–387 (2010).

    Article  PubMed  Google Scholar 

  63. Hemmen, T. M. et al. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuSL): final results. Stroke 41, 2265–2270 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Seule, M. A., Muroi, C., Mink, S., Yonekawa, Y. & Keller, E. Therapeutic hypothermia in patients with aneurysmal subarachnoid hemorrhage, refractory intracranial hypertension, or cerebral vasospasm. Neurosurgery 64, 86–92 (2009).

    Article  PubMed  Google Scholar 

  65. Todd, M. M., Hindman, B. J., Clarke, W. R. & Torner, J. C. Mild intraoperative hypothermia during surgery for intracranial aneurysm. N. Engl. J. Med. 352, 135–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Schefold, J. C., Storm, C., Joerres, A. & Hasper, D. Mild therapeutic hypothermia after cardiac arrest and the risk of bleeding in patients with acute myocardial infarction. Int. J. Cardiol. 132, 387–391 (2009).

    Article  PubMed  Google Scholar 

  67. Nolan, J. P. et al. Therapeutic hypothermia after cardiac arrest: an advisory statement by the advanced life support task force of the International Liaison Committee on Resuscitation. Circulation 108, 118–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Lundbye, J. B. et al. Therapeutic hypothermia is associated with improved neurologic outcome and survival in cardiac arrest survivors of non-shockable rhythms. Resuscitation http://dx.doi.org/10.1016/j.resuscitation.2011.08.005.

  69. Testori, C. et al. Mild therapeutic hypothermia is associated with favourable outcome in patients after cardiac arrest with non-shockable rhythms. Resuscitation 82, 1162–1167 (2011).

    Article  PubMed  Google Scholar 

  70. Storm, C., Nee, J., Roser, M., Jorres, A. & Hasper, D. Mild hypothermia treatment in patients resuscitated from non-shockable cardiac arrest. Emerg. Med. J. 29, 100–103 (2011).

    Article  PubMed  Google Scholar 

  71. Bernard, S. A. et al. Induction of prehospital therapeutic hypothermia after resuscitation from nonventricular fibrillation cardiac arrest. Crit. Care Med. http://dx.doi.org/10.1097/CCM.0b013e3182377038.

  72. Azzopardi, D. V. et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N. Engl. J. Med. 361, 1349–1358 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Gluckman, P. D. et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365, 663–670 (2005).

    Article  PubMed  Google Scholar 

  74. Shankaran, S. et al. Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. N. Engl. J. Med. 353, 1574–1584 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Edwards, A. D. et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 340, c363 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jacobs, S., Hunt, R., Tarnow-Mordi, W., Inder, T. & Davis, P. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD003311 http://dx.doi.org/10.1002/14651858.CD001048.pub4.

  77. Perlman, J. M. et al. Part 11: Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 122, S516–538 (2010).

    Article  PubMed  Google Scholar 

  78. Qiu, W. S. et al. Therapeutic effect of mild hypothermia on severe traumatic head injury. Chin. J. Traumatol. 8, 27–32 (2005).

    PubMed  Google Scholar 

  79. Sydenham, E., Roberts, I. & Alderson, P. Hypothermia for traumatic head injury. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD001048 http://dx.doi.org/10.1002/14651858.CD001048.pub4.

  80. Polderman, K. H., Tjong Tjin Joe, R., Peerdeman, S. M., Vandertop, W. P. & Girbes, A. R. Effects of therapeutic hypothermia on intracranial pressure and outcome in patients with severe head injury. Intensive Care Med. 28, 1563–1573 (2002).

    Article  PubMed  Google Scholar 

  81. Marion, D. W. et al. Treatment of traumatic brain injury with moderate hypothermia. N. Engl. J. Med. 336, 540–546 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Clifton, G. L. et al. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol. 10, 131–139 (2011).

    Article  PubMed  Google Scholar 

  83. Hutchison, J. S. et al. Hypothermia therapy after traumatic brain injury in children. N. Engl. J. Med. 358, 2447–2456 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Andrews, P. J. et al. European society of intensive care medicine study of therapeutic hypothermia (32–35 °C) for intracranial pressure reduction after traumatic brain injury (the Eurotherm3235Trial). Trials 12, 8 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cappuccino, A. et al. The use of systemic hypothermia for the treatment of an acute cervical spinal cord injury in a professional football player. Spine (Phila. Pa 1976) 35, E57–62 (2010).

    Article  Google Scholar 

  86. Levi, A. D. et al. Clinical outcomes using modest intravascular hypothermia after acute cervical spinal cord injury. Neurosurgery 66, 670–677 (2010).

    Article  PubMed  Google Scholar 

  87. Levi, A. D. et al. Clinical application of modest hypothermia after spinal cord injury. J. Neurotrauma 26, 407–415 (2009).

    Article  PubMed  Google Scholar 

  88. Stroke Therapy Academic Industry Roundtable II (STAIR-II). Recommendations for clinical trial evaluation of acute stroke therapies. Stroke 32, 1598–1606 (2001).

  89. O'Collins, V. E. et al. 1,026 experimental treatments in acute stroke. Ann. Neurol. 59, 467–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Kollmar, R. et al. Neuroprotective effect of delayed moderate hypothermia after focal cerebral ischemia: an MRI study. Stroke 33, 1899–1904 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Maier, C. M., Sun, G. H., Kunis, D., Yenari, M. A. & Steinberg, G. K. Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: neurological outcome and infarct size. J. Neurosurg. 94, 90–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Markarian, G. Z., Lee, J. H., Stein, D. J. & Hong, S. C. Mild hypothermia: therapeutic window after experimental cerebral ischemia. Neurosurgery 38, 542–550 (1996).

    CAS  PubMed  Google Scholar 

  93. Ohta, H., Terao, Y., Shintani, Y. & Kiyota, Y. Therapeutic time window of post-ischemic mild hypothermia and the gene expression associated with the neuroprotection in rat focal cerebral ischemia. Neurosci. Res. 57, 424–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Guluma, K. Z., Hemmen, T. M., Olsen, S. E., Rapp, K. S. & Lyden, P. D. A trial of therapeutic hypothermia via endovascular approach in awake patients with acute ischemic stroke: methodology. Acad. Emerg. Med. 13, 820–827 (2006).

    Article  PubMed  Google Scholar 

  95. Kammersgaard, L. P. et al. Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling: A case–control study: the Copenhagen Stroke Study. Stroke 31, 2251–2256 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Guluma, K. Z. et al. Effect of endovascular hypothermia on acute ischemic edema: morphometric analysis of the ICTuS trial. Neurocrit. Care 8, 42–47 (2008).

    Article  PubMed  Google Scholar 

  97. Martin-Schild, S. et al. Combined neuroprotective modalities coupled with thrombolysis in acute ischemic stroke: a pilot study of caffeinol and mild hypothermia. J. Stroke Cerebrovasc. Dis. 18, 86–96 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Howell, D. A., Posnikoff, J. & Stratford, J. G. Prolonged hypothermia in treatment of massive cerebral haemorrhage; a preliminary report. Can. Med. Assoc. J. 75, 388–394 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Venkatasubramanian, C. et al. Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke 42, 73–80 (2011).

    Article  PubMed  Google Scholar 

  100. Kollmar, R. et al. Hypothermia reduces perihemorrhagic edema after intracerebral hemorrhage. Stroke 41, 1684–1689 (2010).

    Article  PubMed  Google Scholar 

  101. Anei, R., Sakai, H., Iihara, K. & Nagata, I. Effectiveness of brain hypothermia treatment in patients with severe subarachnoid hemorrhage: comparisons at a single facility. Neurol. Med. Chir. (Tokyo) 50, 879–883 (2010).

    Article  Google Scholar 

  102. Gasser, S., Khan, N., Yonekawa, Y., Imhof, H. G. & Keller, E. Long-term hypothermia in patients with severe brain edema after poor-grade subarachnoid hemorrhage: feasibility and intensive care complications. J. Neurosurg. Anesthesiol. 15, 240–248 (2003).

    Article  PubMed  Google Scholar 

  103. Nakamura, T., Tatara, N., Morisaki, K., Kawakita, K. & Nagao, S. Cerebral oxygen metabolism monitoring under hypothermia for severe subarachnoid hemorrhage: report of eight cases. Acta Neurol. Scand. 106, 314–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Nagao, S. et al. Protective effect of mild hypothermia on symptomatic vasospasm: a preliminary report. Acta Neurochir Suppl. 76, 547–550 (2000).

    CAS  PubMed  Google Scholar 

  105. Hindman, B. J. et al. Mild hypothermia as a protective therapy during intracranial aneurysm surgery: a randomized prospective pilot trial. Neurosurgery 44, 23–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Anderson, S. W. et al. Effects of intraoperative hypothermia on neuropsychological outcomes after intracranial aneurysm surgery. Ann. Neurol. 60, 518–527 (2006).

    Article  PubMed  Google Scholar 

  107. Dmello, D., Cruz-Flores, S. & Matuschak, G. M. Moderate hypothermia with intracranial pressure monitoring as a therapeutic paradigm for the management of acute liver failure: a systematic review. Intensive Care Med. 36, 210–213 (2010).

    Article  PubMed  Google Scholar 

  108. Jalan, R. et al. Moderate hypothermia prevents cerebral hyperemia and increase in intracranial pressure in patients undergoing liver transplantation for acute liver failure. Transplantation 75, 2034–2039 (2003).

    Article  PubMed  Google Scholar 

  109. Stravitz, R. T. et al. Intensive care of patients with acute liver failure: recommendations of the U.S. Acute Liver Failure Study Group. Crit. Care Med. 35, 2498–2508 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H. A. Choi researched data for and wrote the article. N. Badjatia provided substantial contribution to discussion of the content and to review and/or editing of the manuscript before submission. S. A. Mayer provided substantial contribution to discussion of the content, and writing, review and editing of the manuscript before submission.

Corresponding author

Correspondence to Stephan A. Mayer.

Ethics declarations

Competing interests

S. A. Mayer has received consulting fees from Medivance/CR Bard. N. Badjatia has received grant and research support from Cumberland Pharmaceuticals, Medivance/CR Bard and Philips. H. A. Choi declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H., Badjatia, N. & Mayer, S. Hypothermia for acute brain injury—mechanisms and practical aspects. Nat Rev Neurol 8, 214–222 (2012). https://doi.org/10.1038/nrneurol.2012.21

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.21

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing