The influence of nutritional factors on the prognosis of multiple sclerosis

Abstract

The effect of nutrition and dietary supplements on the course of multiple sclerosis (MS) is a topic of great interest to both patients and clinicians. In particular, vitamin D status has been shown to influence both the incidence and the course of MS. High vitamin D levels are probably protective against the development of MS, although the efficacy of vitamin D supplementation in slowing progression of MS remains to be established. The influence of polyunsaturated fatty acids (PUFAs) on the development and course of MS has also long been under investigation. Small clinical trials suggest a modest reduction in the severity and duration of relapses in patients with MS receiving PUFA supplements. Other nutritional factors have been evaluated for their effect on MS disease progression, including milk proteins, gluten, probiotics, antioxidants (uric acid, vitamins A, C and E, lipoic acid), polyphenols, Ginkgo biloba extracts and curcumin. However, further studies are needed to evaluate the effects of these dietary components on the relapse rate and progression of MS. This Review gives an overview of the literature on the nutritional factors most commonly implicated as having an effect on MS and discusses the biological rationale that is thought to underlie their influence.

Key Points

  • Dietary changes and nutritional supplements are widely used by patients with multiple sclerosis (MS), but reliable evidence of their risks, benefits, and underlying mechanisms is limited

  • In observational studies, low vitamin D levels are associated with a worse course of disease in patients with MS

  • Polyunsaturated fatty acid supplementation and a low-fat diet attenuate MS immune responses in vitro and in animal models, but limited trials have shown no clear benefit in patients with MS

  • Antioxidants, probiotics and vitamin B12 supplementation attenuate MS immune responses in vitro and reduce disease symptoms in animal models, but data from human studies are limited

  • Milk proteins and gluten are thought to worsen the outcomes of patients with MS, but no randomized controlled trials have assessed the effect of dietary restrictions in this setting

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Nutritional factors and their potential effects on MS

References

  1. 1

    Swank, R. L. Multiple sclerosis: a correlation of its incidence with dietary fat. Am. J. Med. Sci. 220, 421–430 (1950).

  2. 2

    Yadav, V., Shinto, L. & Bourdette, D. Complementary and alternative medicine for the treatment of multiple sclerosis. Expert Rev. Clin. Immunol. 6, 381–395 (2010).

  3. 3

    Zerwekh, J. E. Blood biomarkers of vitamin D status. Am. J. Clin. Nutr. 87 (Suppl.), 1087S–1091S (2008).

  4. 4

    Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007).

  5. 5

    Lehmann, B. et al. UVB-induced conversion of 7-dehydrocholesterol to 1α-25-dihydroxyvitamin D3 in an in vitro human skin equivalent model. J. Invest. Dermatol. 117, 1179–1185 (2001).

  6. 6

    Ross, A. C. et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J. Clin. Endocrinol. Metab. 96, 53–58 (2011).

  7. 7

    Garriguet, D. Bone health: osteoporosis, calcium and vitamin D. Health Rep. 22, 7–14 (2011).

  8. 8

    Vieth, R. Implications for 25-hydroxyvitamin D testing of public health policies about the benefits and risks of vitamin D fortification and supplementation. Scand. J. Clin. Lab. Invest. Suppl. 72, 144–153 (2012).

  9. 9

    Munger, K. L., Levin, L. I., Hollis, B. W., Howard, N. S. & Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296, 2832–2838 (2006).

  10. 10

    van der Mei, I. A. et al. Vitamin D levels in people with multiple sclerosis and community controls in Tasmania, Australia. J. Neurol. 254, 581–590 (2007).

  11. 11

    Smolders, J., Menheere, P., Kessels, A., Damoiseaux, J. & Hupperts, R. Association of vitamin D metabolite levels with relapse rate and disability in multiple sclerosis. Mult. Scler. 14, 1220–1224 (2008).

  12. 12

    Mowry, E. M. et al. Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis. Ann. Neurol. 67, 618–624 (2010).

  13. 13

    Simpson, S. et al. Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann. Neurol. 68, 193–203 (2010).

  14. 14

    Mowry, E. M. et al. Vitamin D predicts new brain MRI activity in multiple sclerosis. Ann. Neurol. 72, 234–240 (2012).

  15. 15

    Løken-Amsrud, K. I. et al. Vitamin D and disease activity in multiple sclerosis before and during interferon-β treatment. Neurology 79, 267–273 (2012).

  16. 16

    Tsoukas, C. D., Provvedini D. M. & Manolagas S. C. 1,25-dihydroxyvitamin D3: a novel immunoregulatory hormone. Science 224, 1438–1440 (1984).

  17. 17

    Chen, S. et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J. Immunol. 179, 1634–1647 (2007).

  18. 18

    Jordan, S. C. et al. 1,25-dihydroxyvitamin-D3 regulation of interleukin-2 and interleukin-2 receptor levels and gene expression in human T cells. Mol. Immunol. 26, 979–984 (1989).

  19. 19

    Gauzzi, M. C. et al. Suppressive effect of 1α,25-dihydroxyvitamin D3 on type I IFN-mediated monocyte differentiation into dendritic cells: impairment of functional activities and chemotaxis. J. Immunol. 174, 270–276 (2005).

  20. 20

    Lyakh, L. A., Sanford, M., Chekol, S., Young, H. A. & Roberts, A. B. TGF-β and vitamin D3 utilize distinct pathways to suppress IL-12 production and modulate rapid differentiation of human monocytes into CD83+ dendritic cells. J. Immunol. 174, 2061–2070 (2005).

  21. 21

    Holmøy, T. et al. Intrathecal levels of vitamin D and IgG in multiple sclerosis. Acta Neurol. Scand. 125, 28–31 (2012).

  22. 22

    Knippenberg, S. et al. Effect of vitamin D3 supplementation on peripheral B cell differentiation and isotype switching in patients with multiple sclerosis. Mult. Scler. 17, 1418–1423 (2011).

  23. 23

    Penna, G. et al. Manipulating dendritic cells to induce regulatory T cells. Microbes Infect. 7, 1033–1039 (2005).

  24. 24

    Adorini, L. Intervention in autoimmunity: the potential of vitamin D receptor agonists. Cell. Immunol. 233, 115–124 (2005).

  25. 25

    Gregori, S., Giarratana, N., Smiroldo, S., Uskokovic, M. & Adorini L. A 1α,25-dihydroxyvitamin D3 analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice. Diabetes 51, 1367–1374 (2002).

  26. 26

    Kimball, S. et al. Cholecalciferol plus calcium suppresses abnormal PBMC reactivity in patients with multiple sclerosis. J. Clin. Endocrinol. Metab. 96, 2826–2834 (2011).

  27. 27

    Cantorna, M. T., Zhao, J. & Yang, L. Vitamin D, invariant natural killer T-cells and experimental autoimmune disease. Proc. Nutr. Soc. 71, 62–66 (2012).

  28. 28

    Cantorna, M. T., Hayes, C. E. & DeLuca, H. F. 1,25-dixydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc. Natl Acad. Sci. USA 93, 7861–7864 (1996).

  29. 29

    Cantorna, M. T., Humpal-Winter, J. M. & DeLuca, H. F. Dietary calcium is a major factor in 1,25-dihydroxycholecalciferol suppression of experimental autoimmune encephalomyelitis in mice. J. Nutr. 129, 1966–1971 (1999).

  30. 30

    Becklund, B. R., Severson, K. S., Vang, S. V. & DeLuca, H. F. UV radiation suppresses experimental autoimmune encephalomyelitis independent of vitamin D production. Proc. Natl Acad. Sci. USA 107, 6418–6423 (2010).

  31. 31

    Hauser, S. L. et al. Prevention of experimental allergic encephalomyelitis (EAE) in the SJL/J mouse by whole body ultraviolet irradiation. J. Immunol. 132, 1276–1281 (1984).

  32. 32

    Garcion, E. et al. Treatment of experimental autoimmune encephalomyelitis in rat by 1,25-dihydroxyvitamin D3 leads to early effects within the central nervous system. Acta Neuropathol. 105, 438–448 (2003).

  33. 33

    Nashold, F. E., Miller, D. J. & Hayes, C. E. 1,25-dihydroxyvitamin D3 treatment decreases macrophage accumulation in the CNS of mice with experimental autoimmune encephalomyelitis. J. Neuroimmunol. 103, 171–179 (2000).

  34. 34

    Pederson, L. B., Nashold, F. E., Spach, K. M. & Hayes, C. E. 1,25-dihydroxyvitamin D3 reverses experimental autoimmune encephalomyelitis by inhibiting chemokine synthesis and monocyte trafficking. J. Neurosci. Res. 85, 2480–2490 (2007).

  35. 35

    Mayne, C. G., Spanier, J. A., Relland, L. M., Williams, C. B. & Hayes, C. E. 1,25-dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis. Eur. J. Immunol. 41, 822–832 (2011).

  36. 36

    Penna, G. et al. Treatment of experimental autoimmune prostatitis in nonobese diabetic mice by the vitamin D receptor agonist elocalcitol. J. Immunol. 177, 8504–8511 (2006).

  37. 37

    Stromnes, I. M., Cerretti, L. M., Liggitt, D., Harris, R. A. & Governman, J. M. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat. Med. 14, 337–342 (2008).

  38. 38

    DeLuca, H. F. & Plum, L. A. Vitamin D deficiency diminishes the severity and delays onset of experimental autoimmune encephalomyelitis. Arch. Biochem. Biophys. 513, 140–143 (2011).

  39. 39

    Fernandes de Abreu, D. A., Ibrahim, E. C., Boucraut, J., Khrestchatisky, M. & Féron, F. Severity of experimental autoimmune encephalomyelitis is unexpectedly reduced in mice born to vitamin D-deficient mothers. J. Steroid Biochem. Mol. Biol. 121, 250–253 (2010).

  40. 40

    Wergeland, S. et al. Dietary vitamin D3 supplements reduce demyelination in the cuprizone model. PLoS ONE 6, e26262 (2011).

  41. 41

    Neveu, I. et al. 1,25-dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res. Mol. Brain Res. 24, 70–76 (1994).

  42. 42

    Naveilhan, P., Neveu, I., Wion, D. & Brachet, P. 1,25-dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport 7, 2171–2175 (1996).

  43. 43

    Garcion, E., Sindji, L., Leblondel, G., Brachet, P. & Darcy, F. 1,25-dihydroxyvitamin D3 regulates the synthesis of γ-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J. Neurochem. 73, 859–866 (1999).

  44. 44

    Ibi, M. et al. Protective effects of 1α,25-(OH)2D3 against the neurotoxicity of glutamate and reactive oxygen species in mesencephalic culture. Neuropharmacology 40, 761–771 (2001).

  45. 45

    Burton, J. M. et al. A phase I/II dose-escalation trial of vitamin D3 and calcium in multiple sclerosis. Neurology 74, 1852–1859 (2010).

  46. 46

    Kampman, M. T., Steffensen, L. H., Mellgren, S. I. & Jørgensen, L. Effect of vitamin D3 supplementation on relapses, disease progression and measures of function in persons with multiple sclerosis: exploratory outcomes from a double-blind randomised controlled trial. Mult. Scler. 18, 1144–1451 (2012).

  47. 47

    Stein, M. S. et al. A randomized trial of high-dose vitamin D2 in relapsing–remitting multiple sclerosis. Neurology 77, 1611–1618 (2011).

  48. 48

    Soilu-Hänninen, M. et al. A randomised, double blind, placebo controlled trial with vitamin D3 as an add on treatment to interferon β-1b in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 83, 565–571 (2012).

  49. 49

    Shaygannejad, V., Janghorbani, M., Ashtari, F. & Dehghan, H. Effects of adjunct low-dose vitamin D on relapsing–remitting multiple sclerosis progression: preliminary findings of a randomized placebo-controlled trial. Mult. Scler. Int. http://dx.doi.org/10.1155/2012/452541.

  50. 50

    Smolders, J. et al. Efficacy of vitamin D3 as add-on therapy in patients with relapsing–remitting multiple sclerosis receiving subcutaneous interferon β-1a: a phase II, multicenter, double-blind, randomized, placebo-controlled trial. J. Neurol. Sci. 311, 44–49 (2011).

  51. 51

    Mehta, L. R., Dworkin, R. H. & Schwid, S. R. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 5, 82–92 (2009).

  52. 52

    Swank, R. L., Lerstad, O., Strøm, A. & Backer, J. Multiple sclerosis in rural Norway its geographic and occupational incidence in relation to nutrition. N. Engl. J. Med. 246, 721–728 (1952).

  53. 53

    Alter, M., Yamoor, M. & Harshe, M. Multiple sclerosis and nutrition. Arch. Neurol. 31, 267–272 (1974).

  54. 54

    Agranoff, B. W. & Goldberg, D. Diet and the geographical distribution of multiple sclerosis. Lancet 2, 1061–1066 (1974).

  55. 55

    Lauer, K. The risk of multiple sclerosis in the USA in relation to sociogeographic features: a factor-analytic study. J. Clin. Epidemiol. 47, 43–48 (1994).

  56. 56

    Ghadirian, P., Jain, M., Ducic, S., Shatenstein, B. & Morisset, R. Nutritional factors in the aetiology of multiple sclerosis: a case–control study in Montreal, Canada. Int. J. Epidemiol. 27, 845–852 (1998).

  57. 57

    Zorzon, M. et al. Risk factors of multiple sclerosis: a case–control study. Neurol. Sci. 24, 242–247 (2003).

  58. 58

    Gusev, E., Boiko, A., Lauer, K., Riise, T. & Deomina, T. Environmental risk factors in MS: a case–control study in Moscow. Acta Neurol. Scand. 94, 386–394 (1996).

  59. 59

    Zhang, S. M., Willett, W. C., Hernan, M. A., Olek, M. J. & Ascherio, A. Dietary fat in relation to risk of multiple sclerosis among two large cohorts of women. Am. J. Epidemiol. 152, 1056–1064 (2000).

  60. 60

    Mertin, J., Stackpoole, A. & Shumway, S. Nutrition and immunity: the immunoregulatory effect of n-6 essential fatty acids is mediated through prostaglandin E. Int. Arch. Allergy Appl. Immunol. 77, 390–395 (1985).

  61. 61

    Santoli, D. & Zurier, R. B. Prostaglandin E precursor fatty acids inhibit human IL-2 production by a prostaglandin E-independent mechanism. J. Immunol. 143, 1303–1309 (1989).

  62. 62

    Namazi, M. R. The beneficial and detrimental effects of linoleic acid on autoimmune disorders. Autoimmunity 37, 73–75 (2004).

  63. 63

    Rossetti, R. G., Seiler, C. M., DeLuca, P., Laposata, M. and Zurier, R. B. Oral administration of unsaturated fatty acids: effects on human peripheral blood T lymphocyte proliferation. J. Leukoc. Biol. 62, 438–443 (1997).

  64. 64

    Gallai, V. et al. Cytokine secretion and eicosanoid production in the peripheral blood mononuclear cells of MS patients undergoing dietary supplementation with n-3 polyunsaturated fatty acids. J. Neuroimmunol. 56, 143–153 (1995).

  65. 65

    Endres, S. et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N. Engl. J. Med. 320, 265–271 (1989).

  66. 66

    Ferrante, A. et al. Neutrophil migration inhibitory properties of polyunsaturated fatty acids. The role of fatty acid structure, metabolism, and possible second messenger systems. J. Clin. Invest. 93, 1063–1070 (1994).

  67. 67

    Salvati, S. et al. Eicosapentaenoic acid stimulates the expression of myelin proteins in rat brain. J. Neurosci. Res. 86, 776–784 (2008).

  68. 68

    Torkildsen, Ø. et al. Effects of dietary intervention on MRI activity, de- and remyelination in the cuprizone model for demyelination. Exp. Neurol. 215, 160–166 (2009).

  69. 69

    Dworkin, R. H., Bates, D., Millar, J. H. D. & Paty, D. W. Linoleic acid and multiple sclerosis: a reanalysis of three double-blind trials. Neurology 34, 1441–1445 (1984).

  70. 70

    Millar, J. H. et al. Double-blind trial of linoleate supplementation of the diet in multiple sclerosis. Br. Med. J. 1, 765–768 (1973).

  71. 71

    Bates, D. et al. A double-blind controlled trial of long chain n-3 polyunsaturated fatty acids in the treatment of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 52, 18–22 (1989).

  72. 72

    Weinstock-Guttman, B. et al. Low fat dietary intervention with ω-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins Leukot. Essent. Fatty Acids 73, 397–404 (2005).

  73. 73

    Bates, D., Fawcett, P. R., Shaw, D. A. & Weightman, D. Trial of polyunsaturated fatty acids in non-relapsing multiple sclerosis. Br. Med. J. 2, 932–933 (1977).

  74. 74

    Farinotti, M. et al. Dietary interventions for multiple sclerosis. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD004192. http://dx.doi.org/10.1002/14651858.CD004192.pub2 (2007).

  75. 75

    Esparza, M. L., Sasaki, S. & Kesteloot, H. Nutrition, latitude, and multiple sclerosis mortality: an ecologic study. Am. J. Epidemiol. 142, 733–737 (1995).

  76. 76

    D'Hooghe, M. B., Haentjens, P., Nagels, G. & De Keyser, J. Alcohol, coffee, fish, smoking and disease progression in multiple sclerosis. Eur. J. Neurol. 19, 616–624 (2012).

  77. 77

    Torkildsen, O. et al. ω-3 fatty acid treatment in multiple sclerosis (OFAMS Study): a randomized, double-blind, placebo-controlled trial. Arch. Neurol. http://dx.doi.org/10.1001/archneurol.2012.283.

  78. 78

    Swank, R. L. & Goodwin, J. Review of MS patient survival on a Swank low saturated fat diet. Nutrition 19, 161–162 (2003).

  79. 79

    Weinstock-Guttman, B. et al. Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. Neuroinflammation 8, 127 (2011).

  80. 80

    Weinstock-Guttman, B., Zivadinov, R., Ramanathan, M. Inter-dependence of vitamin D levels with serum lipid profiles in multiple sclerosis. J. Neurol. Sci. 311, 86–91 (2011).

  81. 81

    Valerio, M. et al. Phytosterols ameliorate clinical manifestations and inflammation in experimental autoimmune encephalomyelitis. Inflamm. Res. 60, 457–465 (2011).

  82. 82

    Desai, F. et al. Comparison of the immunomodulatory effects of the plant sterol β-sitosterol to simvastatin in peripheral blood cells from multiple sclerosis patients. Int. Immunopharmacol. 9, 153–157 (2009).

  83. 83

    Gilgun-Sherki, Y., Melamed, E. & Offen, D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J. Neurol. 251, 261–268 (2004).

  84. 84

    Langemann, H., Kabiersch, A. & Newcombe, J. Measurement of low-molecular-weight antioxidants, uric acid, tyrosine and tryptophan in plaques and white matter from patients with multiple sclerosis. Eur. Neurol. 32, 248–252 (1992).

  85. 85

    Lin, R. F., Lin, T. S., Tilton, R. G. & Cross, A. H. Nitric oxide localized to spinal cords of mice with experimental allergic encephalomyelitis: an electron paramagnetic resonance study. J. Exp. Med. 178, 643–648 (1993).

  86. 86

    Hunter, M. I., Nlemadim, B. C. & Davidson, D. L. Lipid peroxidation produces and antioxidant proteins in plasma and cerebrospinal fluid from multiple sclerosis patients. Neurochem. Res. 10, 1645–1652 (1985).

  87. 87

    Naidoo, R. & Knapp, M. L. Studies of lipid peroxidation products in cerebrospinal fluid and serum in multiple sclerosis and other conditions. Clin. Chem. 38, 2449–2454 (1992).

  88. 88

    Ruuls, S. R. et al. Reactive oxygen species are involved in the pathogenesis of experimental allergic encephalomyelitis in Lewis rats. J. Neuroimmunol. 56, 207–217 (1995).

  89. 89

    Lehmann, D. et al. Oral administration of the oxidant-scavenger N-acetyl-L-cysteine inhibits acute experimental autoimmune encephalomyelitis. J. Neuroimmunol. 50, 35–42 (1994).

  90. 90

    Cross, A. H. et al. Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J. Clin. Invest. 93, 2684–2690 (1994).

  91. 91

    Jolivalt, C. G., Howard, R. B., Chen, L. S., Mizisin, A. P. & Lai, C. S. A novel nitric oxide scavenger in combination with cyclosporine A ameliorates experimental autoimmune encephalomyelitis progression in mice. J. Neuroimmunol. 138, 56–64 (2003).

  92. 92

    O'Brien, N. C., Charlton, B., Cowden, W. B. & Willenborg, D. O. Nitric oxide plays a critical role in the recovery of Lewis rats from experimental autoimmune encephalomyelitis and the maintenance of resistance to reinduction. J. Immunol. 163, 6841–6847 (1999).

  93. 93

    O'Brien, N. C., Charlton, B., Cowden, W. B. & Willenborg, D. O. Inhibition of nitric oxide synthase initiates relapsing remitting experimental autoimmune encephalomyelitis in rats, yet nitric oxide appears to be essential for clinical expression of disease. J. Immunol. 167, 5904–5912 (2001).

  94. 94

    van Meeteren, M. E., Teunissen, C. E., Dijkstra, C. D. & van Tol, E. A. Antioxidants and polyunsaturated fatty acids in multiple sclerosis. Eur. J. Clin. Nutr. 59, 1347–1361 (2005).

  95. 95

    Touil, T., Deloire-Grassin, M. S., Vital, C., Petry, K. G. & Brochet, B. In vivo damage of CNS myelin and axons induced by peroxynitrite. Neuroreport 12, 3637–3644 (2001).

  96. 96

    Hooper, D. C. et al. Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood–CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis. FASEB J. 14, 691–698 (2000).

  97. 97

    Hooper, D. C. et al. Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc. Natl Acad. Sci. USA 95, 675–680 (1998).

  98. 98

    Massa, J., O'Reilly, E., Munger, K. L., DeLorenze, G. N. & Ascherio, A. Serum uric acid and risk of multiple sclerosis. J. Neurol. 256, 1643–1648 (2009).

  99. 99

    Guerrero, A. L. et al. Variation of serum uric acid levels in multiple sclerosis during relapses and immunomodulatory treatment. Eur. J. Neurol. 15, 394–397 (2008).

  100. 100

    Liu, B. et al. Serum uric acid levels in patients with multiple sclerosis: a meta-analysis. Neurol. Res. 34, 163–171 (2012).

  101. 101

    Spitsin, S. V. et al. Comparison of uric acid and ascorbic acid in protection against EAE. Free Radic. Biol. Med. 33, 1363–1371 (2002).

  102. 102

    Markowitz, C. E. et al. The treatment of multiple sclerosis with inosine. J. Altern. Complement. Med. 15, 619–625 (2009).

  103. 103

    Gonsette, R. E. et al. Boosting endogenous neuroprotection in multiple sclerosis: the Association of Inosine and Interferon β in relapsing–remitting Multiple Sclerosis (ASIIMS) trial. Mult. Scler. 16, 455–462 (2010).

  104. 104

    Besler, H. T. Comoglu, S. & Okçu, Z. Serum levels of antioxidant vitamins and lipid peroxidation in multiple sclerosis. Nutr. Neurosci. 5, 215–220 (2002).

  105. 105

    Jiménez-Jiménez, F. J. et al. Cerebrospinal fluid levels of α-tocopherol in patients with multiple sclerosis. Neurosci. Lett. 249, 65–67 (1998).

  106. 106

    Mazzanti, C. M. et al. Pre-treatment with ebselen and vitamin E modulate acetylcholinesterase activity: interaction with demyelinating agents. Int. J. Dev. Neurosci. 27, 73–80 (2009).

  107. 107

    Goudarzvand, M., Javan, M., Mirnajafi-Zadeh, J., Mozafari, S. & Tiraihi, T. Vitamins E and D3 attenuate demyelination and potentiate remyelination, processes of hippocampal formation, in rats following local injection of ethidium bromide. Cell. Mol. Neurobiol. 30, 289–299 (2010).

  108. 108

    Massacesi, L. et al. Suppression of experimental allergic encephalomyelitis by retinoic acid. J. Neurol. Sci. 80, 55–64 (1987).

  109. 109

    Massacesi, L., Abbamondi, A. L., Sarlo, F. & Amaducci, L. The control of experimental allergic encephalomyelitis with retinoic acid. Further studies. Riv. Neurol. 57, 166–169 (1987).

  110. 110

    Massacesi, L. et al. Immunosuppressive activity of 13-cis-retinoic acid and prevention of experimental autoimmune encephalomyelitis in rats. J. Clin. Invest. 88, 1331–1337 (1991).

  111. 111

    Racke, M. K., Burnett, D., Pak, S.-H., McFarlin, D. E. & Scott, D. E. Retinoid treatment of experimental allergic encephalomyelitis. IL-4 production correlates with improved disease course. J. Immunol. 154, 450–458 (1995).

  112. 112

    Xiao, S. et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of TH17 cells by enhancing TGF-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J. Immunol. 181, 2277–2284 (2008).

  113. 113

    Marracci, G. H., Jones, R. E., McKeon, G. P. & Bourdette, D. N. Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis. J. Neuroimmunol. 131, 104–114 (2002).

  114. 114

    Morini, M. et al. α-Lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 148, 146–153 (2004).

  115. 115

    Schreibelt, G. et al. Lipoic acid affects cellular migration into the central nervous system and stabilizes blood–brain barrier integrity. J. Immunol. 177, 2630–2637 (2006).

  116. 116

    Chaudhary, P. et al. Lipoic acid decreases inflammation and confers neuroprotection in experimental autoimmune optic neuritis. J. Neuroimmunol. 233, 90–96 (2011).

  117. 117

    Yadav, V. et al. Lipoic acid in multiple sclerosis: a pilot study. Mult. Scler. 11, 159 (2005).

  118. 118

    Yadav, V. et al. Pharmacokinetic study of lipoic acid in multiple sclerosis: comparing mice and human pharmacokinetic parameters. Mult. Scler. 16, 387–397 (2010).

  119. 119

    Hendriks, J. J. et al. Flavonoids influence monocytic GTPase activity and are protective in experimental allergic encephalitis. J. Exp. Med. 200, 1667–1672 (2004).

  120. 120

    Muthian, G. & Bright, J. J. Quercetin, a flavonoid phytoestrogen, ameliorates EAE by blocking IL-12 signaling through JAK–STAT pathway in T lymphocytes. J. Clin. Immunol. 24, 542–552 (2004).

  121. 121

    Imler, T. J. & Petro, T. M. Decreased severity of experimental autoimmune encephalomyelitis during resveratrol administration is associated with increased IL-17+IL-10+ T cells, CD4 IFN-γ+ cells, and decreased macrophage IL-6 expression. Int. Immunopharmacol. 9, 134–143 (2009).

  122. 122

    Aktas, O. et al. Green tea epigallocatechine-3-gallate mediates T cellular NF-κB inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J. Immunol. 173, 5794–5800 (2004).

  123. 123

    Wang, Y. et al. Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage. Exp. Neurol. 193, 75–84 (2005).

  124. 124

    Brewer, G. J. et al. Age-related toxicity of amyloid-β associated with increased pERK and pCREB in primary hippocampal neurons: reversal by blueberry extract. J. Nutr. Biochem. 21, 991–998 (2010).

  125. 125

    McGuire, S. O. et al. Dietary supplementation with blueberry extract improves survival of transplanted dopamine neurons. Nutr. Neurosci. 9, 251–258 (2006).

  126. 126

    Xin, J., Feinstein, D. L., Hejna, M. J., Lorens, S. A. & McGuire, S. O. Beneficial effects of blueberries in experimental autoimmune encephalomyelitis. J. Agric. Food Chem. http://dx.doi.org/10.1021/jf203611t.

  127. 127

    Mandel, S. et al. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (–)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J. Neurochem. 88, 1555–1569 (2004).

  128. 128

    Hinz, M. et al. NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol. Cell Biol. 19, 2690–2698 (1999).

  129. 129

    Demeule, M., Brossard, M., Pagé, M., Gingras, D. & Béliveau, R. Matrix metalloproteinase inhibition by green tea catechins. Biochim. Biophys. Acta 1478, 51–60 (2000).

  130. 130

    Shindler, K. S., Ventura, E., Rex, T. S., Elliott, P. & Rostami, A. SIRT1 activation confers neuroprotection in experimental optic neuritis. Invest. Ophthalmol. Vis. Sci. 48, 3602–3609 (2007).

  131. 131

    Shindler, K. S. et al. Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J. Neuroophthalmol. 30, 328–339 (2010).

  132. 132

    Gao, X., Xu, Y. X., Janakiraman, N., Chapman, R. A. & Gautam, S. C. Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production. Biochem. Pharmacol. 62, 1299–1308 (2001).

  133. 133

    Culpitt, S. V. et al. Inhibition by red wine extract, resveratrol, of cytokine release by alveolar macrophages in COPD. Thorax 58, 942–946 (2003).

  134. 134

    Singh, N. P., Hegde, V. L., Hofseth, L. J., Nagarkatti, M. & Nagarkatti, P. Resveratrol (trans-3,5,4'-trihydroxystilbene) ameliorates experimental allergic encephalomyelitis (EAE) primarily via induction of apoptosis in T cells involving activation of aryl hydrocarbon receptor and estrogen receptor. Mol. Pharmacol. 72, 508–521 (2007).

  135. 135

    Weinmann, S., Roll, S., Schwarzbach, S., Vauth, C. & Willich, S. N. Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatr. 10, 14 (2010).

  136. 136

    Leong, E. M. et al. Complementary and alternative medicines and dietary interventions in multiple sclerosis: what is being used in South Australia and why? Complement. Ther. Med. 17, 216–223 (2009).

  137. 137

    Yadav, V. et al. Use and self-reported benefit of complementary and alternative medicine among multiple sclerosis patients. Int. J. MS Care 8, 5–10 (2006).

  138. 138

    Bowling, A. C. & Stewart, T. M. Current complementary and alternative therapies for multiple sclerosis. Curr. Treat. Options Neurol. 5, 55–68 (2003).

  139. 139

    Bent, S., Goldberg, H., Padula, A. & Avins, A. L. Spontaneous bleeding associated with Ginkgo biloba. A case report and systematic review of the literature. J. Gen. Intern. Med. 20, 657–661 (2005).

  140. 140

    Braquet, P. et al. Recent progress in ginkgolide research. Med. Res. Rev. 11, 295–355 (1991).

  141. 141

    Brochet, B. et al. Pilot study of Ginkgolide B, a PAF-acether specific inhibitor in the treatment of acute outbreaks of multiple sclerosis [French]. Rev. Neurol. (Paris) 48, 229–301 (1992).

  142. 142

    Johnson, S. K. et al. The effect of Ginkgo biloba on functional measures in multiple sclerosis: a pilot randomized controlled trial. Explore (NY) 2, 19–24 (2006).

  143. 143

    Brochet, B. et al. Double-blind, placebo controlled, multicentre study of ginkgolide B in treatment of acute exacerbations for multiple sclerosis. The Ginkgolide Study Group in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 58, 360–362 (1995).

  144. 144

    Lovera, J. et al. Ginkgo biloba for the improvement of cognitive performance in multiple sclerosis: a randomized, placebo-controlled trial. Mult. Scler. 13, 376–385 (2007).

  145. 145

    Xie, L. et al. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int. Immunopharmacol. 9, 575–581 (1994).

  146. 146

    Riccio, P. The molecular basis of nutritional intervention in multiple sclerosis: a narrative review. Complement. Ther. Med. 19, 228–237 (2011).

  147. 147

    Joe, B. & Lokesh, B. R. Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim. Biophys. Acta 1224, 255–263 (1994).

  148. 148

    van Meeteren, M. E., Hendriks, J. J., Dijkstra, C. D. & van Tol, E. A. Dietary compounds prevent oxidative damage and nitric oxide production by cells involved in demyelinating disease. Biochem. Pharmacol. 67, 967–975 (2004).

  149. 149

    Soliman, K. F. & Mazzio, E. A. In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds. Proc. Soc. Exp. Biol. Med. 218, 390–397 (1998).

  150. 150

    Kanakasabai, S. et al. Differential regulation of CD4+ T helper cell responses by curcumin in experimental autoimmune encephalomyelitis. J. Nutr. Biochem. http://dx.doi.org/10.1016/j.jnutbio.2011.10.002.

  151. 151

    Chearwae, W. & Bright, J. J. 15-deoxy-Δ12,14-prostaglandin J2 and curcumin modulate the expression of Toll-like receptors 4 and 9 in autoimmune T lymphocyte. J. Clin. Immunol. 28, 558–570 (2008).

  152. 152

    King, M. D. et al. Attenuation of hematoma size and neurological injury with curcumin following intracerebral hemorrhage in mice. J. Neurosurg. 115, 116–123 (2011).

  153. 153

    Xie, L., Li, X. K. & Takahara, S. Curcumin has bright prospects for the treatment of multiple sclerosis. Int. Immunopharmacol. 11, 323–330 (2011).

  154. 154

    Tamura, J. et al. Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin. Exp. Immunol. 116, 28–32 (1999).

  155. 155

    Goodkin, D. E. et al. Serum cobalamin deficiency is uncommon in multiple sclerosis. Arch. Neurol. 51, 1110–1114 (1994).

  156. 156

    Nijst, T. Q. Wevers, R. A., Schoonderwaldt, H. C., Hommes, O. R. & de Haan, A. F. Vitamin B12 and folate concentrations in serum and cerebrospinal fluid of neurological patients with special reference to multiple sclerosis and dementia. J. Neurol. Neurosurg. Psychiatry 53, 951–954 (1990).

  157. 157

    Kira, J., Tobimatsu, S. & Goto, I. Vitamin B12 metabolism and massive-dose methyl vitamin B12 therapy in Japanese patients with multiple sclerosis. Intern. Med. 33, 82–86 (1994).

  158. 158

    Wade, D. T., Young, C. A., Chaudhuri, K. R. & Davidson, D. L. A randomised placebo controlled exploratory study of vitamin B-12, lofepramine, and L-phenylalanine (the “Cari Loder regime”) in the treatment of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 73, 246–249 (2002).

  159. 159

    Riccio, P., Rossano, R. & Liuzzi, G. M. May diet and dietary supplements improve the wellness of multiple sclerosis patients? A molecular approach. Autoimmune Dis. http://dx.doi.org/10.4061/2010/249842.

  160. 160

    Butcher, J. The distribution of multiple sclerosis in relation to the dairy industry and milk consumption. N. Z. Med. J. 83, 427–430 (1976).

  161. 161

    Malosse, D., Perron, H., Sasco, A. & Seigneurin, J. M. Correlation between milk and dairy product consumption and multiple sclerosis prevalence: a worldwide study. Neuroepidemiology 11, 304–312 (1992).

  162. 162

    Stefferl, A. et al. Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis. J. Immunol. 165, 2859–2865 (2000).

  163. 163

    Kennel de March, A. et al. Anti-myelin oligodendrocyte glycoprotein B-cell responses in multiple sclerosis. J. Neuroimmunol. 135, 117–125 (2003).

  164. 164

    Guggenmos, J. et al. Antibody crossreactivity between myelin oligodendrocyte glycoprotein and the milk protein butyrophilin in multiple sclerosis. J. Immunol. 172, 661–668 (2004).

  165. 165

    Lange, L. S. & Shiner, M. Small-bowel abnormalities in multiple sclerosis. Lancet 2, 1319–1322 (1976).

  166. 166

    Jones, P. E., Pallis, C. & Peters, T. J. Morphological and biochemical findings in jejunal biopsies from patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 42, 402–406 (1979).

  167. 167

    Reichelt, K. L. & Jensen, D. IgA antibodies against gliadin and gluten in multiple sclerosis. Acta Neurol. Scand. 110, 239–241 (2004).

  168. 168

    Rodrigo, L. et al. Prevalence of celiac disease in multiple sclerosis. BMC Neurol. 11, 31–38 (2011).

  169. 169

    Borhani Haghighi, A., Ansari, N., Mokhtari, M., Geramizadeh, B. & Lankarani, K. B. Multiple sclerosis and gluten sensitivity. Clin. Neurol. Neurosurg. 109, 651–653 (2007).

  170. 170

    Nicoletti, A. et al. Frequency of celiac disease is not increased among multiple sclerosis patients. Mult. Scler. 14, 698–700 (2008).

  171. 171

    Issazadeh-Navikas, S., Roman Teimer, R. & Bockermann, R. Influence of dietary components on regulatory T cells. Mol. Med. 18, 95–110 (2012).

  172. 172

    Di Marco, R. et al. Exacerbation of protracted-relapsing experimental allergic encephalomyelitis in DA rats by gluten-free diet. APMIS 112, 651–655 (2004).

  173. 173

    Liversedge, L. Treatment and management of multiple sclerosis. Br. Med. Bull. 33, 78–83 (1977).

  174. 174

    Food and Agriculture Organization of the United Nations & World Health Organization. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. World Health Organization [online], (2001).

  175. 175

    Ezendam, J. & van Loveren, H. Lactobacillus casei Shirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice. Br. J.Nutr. 99, 83–90 (2008).

  176. 176

    Baken, K. A. et al. Evaluation of immunomodulation by Lactobacillus casei Shirota: immune function, autoimmunity and gene expression. Int. J. Food Microbiol. 112, 8–18 (2006).

  177. 177

    Kobayashi, T. et al. Oral administration of probiotic bacteria, Lactobacillus casei and Bifidobacterium breve, does not exacerbate neurological symptoms in experimental autoimmune encephalomyelitis. Immunopharmacol. Immunotoxicol. 32, 116–124 (2010).

  178. 178

    Maassen, C. B. & Claassen, E. Strain-dependent effects of probiotic lactobacilli on EAE autoimmunity. Vaccine 26, 2056–2057 (2008).

  179. 179

    Ochoa-Repáraz, J. et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 3, 487–495 (2010).

  180. 180

    Ochoa-Repáraz, J. et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J. Immunol. 185, 4101–4108 (2010).

  181. 181

    Lavasani, S. et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10-producing regulatory T cells. PLoS ONE 5, e9009 (2010).

  182. 182

    Ochoa-Repáraz, J., Mielcarz, D. W., Haque-Begum, S. & Kasper, L. H. Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes. 1, 103–108 (2010).

  183. 183

    Fleming, J. O. et al. Probiotic helminth administration in relapsing–remitting multiple sclerosis: a phase I study. Mult. Scler. 17, 743–754 (2011).

  184. 184

    Mowry, E. M. et al. Gut bacterial populations in multiple sclerosis and in health [abstract P05.106]. Neurology 78, P05.106 (2012).

Download references

Acknowledgements

G. von Geldern is supported by grants from Project Restore at the Johns Hopkins University Comprehensive MS Center. E. Mowry is supported by a grant from the NIH (K23NS067055).

Author information

G. von Geldern researched most of the data and drafted the article with substantial contributions from E. M. Mowry; both authors contributed equally to discussion of the content, reviewing, and/or editing of the manuscript before submission.

Correspondence to Ellen M. Mowry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

von Geldern, G., Mowry, E. The influence of nutritional factors on the prognosis of multiple sclerosis. Nat Rev Neurol 8, 678–689 (2012) doi:10.1038/nrneurol.2012.194

Download citation

Further reading