Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The influence of nutritional factors on the prognosis of multiple sclerosis

Abstract

The effect of nutrition and dietary supplements on the course of multiple sclerosis (MS) is a topic of great interest to both patients and clinicians. In particular, vitamin D status has been shown to influence both the incidence and the course of MS. High vitamin D levels are probably protective against the development of MS, although the efficacy of vitamin D supplementation in slowing progression of MS remains to be established. The influence of polyunsaturated fatty acids (PUFAs) on the development and course of MS has also long been under investigation. Small clinical trials suggest a modest reduction in the severity and duration of relapses in patients with MS receiving PUFA supplements. Other nutritional factors have been evaluated for their effect on MS disease progression, including milk proteins, gluten, probiotics, antioxidants (uric acid, vitamins A, C and E, lipoic acid), polyphenols, Ginkgo biloba extracts and curcumin. However, further studies are needed to evaluate the effects of these dietary components on the relapse rate and progression of MS. This Review gives an overview of the literature on the nutritional factors most commonly implicated as having an effect on MS and discusses the biological rationale that is thought to underlie their influence.

Key Points

  • Dietary changes and nutritional supplements are widely used by patients with multiple sclerosis (MS), but reliable evidence of their risks, benefits, and underlying mechanisms is limited

  • In observational studies, low vitamin D levels are associated with a worse course of disease in patients with MS

  • Polyunsaturated fatty acid supplementation and a low-fat diet attenuate MS immune responses in vitro and in animal models, but limited trials have shown no clear benefit in patients with MS

  • Antioxidants, probiotics and vitamin B12 supplementation attenuate MS immune responses in vitro and reduce disease symptoms in animal models, but data from human studies are limited

  • Milk proteins and gluten are thought to worsen the outcomes of patients with MS, but no randomized controlled trials have assessed the effect of dietary restrictions in this setting

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nutritional factors and their potential effects on MS

Similar content being viewed by others

References

  1. Swank, R. L. Multiple sclerosis: a correlation of its incidence with dietary fat. Am. J. Med. Sci. 220, 421–430 (1950).

    Article  CAS  PubMed  Google Scholar 

  2. Yadav, V., Shinto, L. & Bourdette, D. Complementary and alternative medicine for the treatment of multiple sclerosis. Expert Rev. Clin. Immunol. 6, 381–395 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zerwekh, J. E. Blood biomarkers of vitamin D status. Am. J. Clin. Nutr. 87 (Suppl.), 1087S–1091S (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Lehmann, B. et al. UVB-induced conversion of 7-dehydrocholesterol to 1α-25-dihydroxyvitamin D3 in an in vitro human skin equivalent model. J. Invest. Dermatol. 117, 1179–1185 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Ross, A. C. et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J. Clin. Endocrinol. Metab. 96, 53–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Garriguet, D. Bone health: osteoporosis, calcium and vitamin D. Health Rep. 22, 7–14 (2011).

    PubMed  Google Scholar 

  8. Vieth, R. Implications for 25-hydroxyvitamin D testing of public health policies about the benefits and risks of vitamin D fortification and supplementation. Scand. J. Clin. Lab. Invest. Suppl. 72, 144–153 (2012).

    CAS  Google Scholar 

  9. Munger, K. L., Levin, L. I., Hollis, B. W., Howard, N. S. & Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296, 2832–2838 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. van der Mei, I. A. et al. Vitamin D levels in people with multiple sclerosis and community controls in Tasmania, Australia. J. Neurol. 254, 581–590 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Smolders, J., Menheere, P., Kessels, A., Damoiseaux, J. & Hupperts, R. Association of vitamin D metabolite levels with relapse rate and disability in multiple sclerosis. Mult. Scler. 14, 1220–1224 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Mowry, E. M. et al. Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis. Ann. Neurol. 67, 618–624 (2010).

    CAS  PubMed  Google Scholar 

  13. Simpson, S. et al. Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann. Neurol. 68, 193–203 (2010).

    CAS  PubMed  Google Scholar 

  14. Mowry, E. M. et al. Vitamin D predicts new brain MRI activity in multiple sclerosis. Ann. Neurol. 72, 234–240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Løken-Amsrud, K. I. et al. Vitamin D and disease activity in multiple sclerosis before and during interferon-β treatment. Neurology 79, 267–273 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Tsoukas, C. D., Provvedini D. M. & Manolagas S. C. 1,25-dihydroxyvitamin D3: a novel immunoregulatory hormone. Science 224, 1438–1440 (1984).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, S. et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J. Immunol. 179, 1634–1647 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Jordan, S. C. et al. 1,25-dihydroxyvitamin-D3 regulation of interleukin-2 and interleukin-2 receptor levels and gene expression in human T cells. Mol. Immunol. 26, 979–984 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Gauzzi, M. C. et al. Suppressive effect of 1α,25-dihydroxyvitamin D3 on type I IFN-mediated monocyte differentiation into dendritic cells: impairment of functional activities and chemotaxis. J. Immunol. 174, 270–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Lyakh, L. A., Sanford, M., Chekol, S., Young, H. A. & Roberts, A. B. TGF-β and vitamin D3 utilize distinct pathways to suppress IL-12 production and modulate rapid differentiation of human monocytes into CD83+ dendritic cells. J. Immunol. 174, 2061–2070 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Holmøy, T. et al. Intrathecal levels of vitamin D and IgG in multiple sclerosis. Acta Neurol. Scand. 125, 28–31 (2012).

    Article  Google Scholar 

  22. Knippenberg, S. et al. Effect of vitamin D3 supplementation on peripheral B cell differentiation and isotype switching in patients with multiple sclerosis. Mult. Scler. 17, 1418–1423 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Penna, G. et al. Manipulating dendritic cells to induce regulatory T cells. Microbes Infect. 7, 1033–1039 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Adorini, L. Intervention in autoimmunity: the potential of vitamin D receptor agonists. Cell. Immunol. 233, 115–124 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Gregori, S., Giarratana, N., Smiroldo, S., Uskokovic, M. & Adorini L. A 1α,25-dihydroxyvitamin D3 analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice. Diabetes 51, 1367–1374 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kimball, S. et al. Cholecalciferol plus calcium suppresses abnormal PBMC reactivity in patients with multiple sclerosis. J. Clin. Endocrinol. Metab. 96, 2826–2834 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cantorna, M. T., Zhao, J. & Yang, L. Vitamin D, invariant natural killer T-cells and experimental autoimmune disease. Proc. Nutr. Soc. 71, 62–66 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cantorna, M. T., Hayes, C. E. & DeLuca, H. F. 1,25-dixydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc. Natl Acad. Sci. USA 93, 7861–7864 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cantorna, M. T., Humpal-Winter, J. M. & DeLuca, H. F. Dietary calcium is a major factor in 1,25-dihydroxycholecalciferol suppression of experimental autoimmune encephalomyelitis in mice. J. Nutr. 129, 1966–1971 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Becklund, B. R., Severson, K. S., Vang, S. V. & DeLuca, H. F. UV radiation suppresses experimental autoimmune encephalomyelitis independent of vitamin D production. Proc. Natl Acad. Sci. USA 107, 6418–6423 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hauser, S. L. et al. Prevention of experimental allergic encephalomyelitis (EAE) in the SJL/J mouse by whole body ultraviolet irradiation. J. Immunol. 132, 1276–1281 (1984).

    CAS  PubMed  Google Scholar 

  32. Garcion, E. et al. Treatment of experimental autoimmune encephalomyelitis in rat by 1,25-dihydroxyvitamin D3 leads to early effects within the central nervous system. Acta Neuropathol. 105, 438–448 (2003).

    CAS  PubMed  Google Scholar 

  33. Nashold, F. E., Miller, D. J. & Hayes, C. E. 1,25-dihydroxyvitamin D3 treatment decreases macrophage accumulation in the CNS of mice with experimental autoimmune encephalomyelitis. J. Neuroimmunol. 103, 171–179 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Pederson, L. B., Nashold, F. E., Spach, K. M. & Hayes, C. E. 1,25-dihydroxyvitamin D3 reverses experimental autoimmune encephalomyelitis by inhibiting chemokine synthesis and monocyte trafficking. J. Neurosci. Res. 85, 2480–2490 (2007).

    Article  CAS  Google Scholar 

  35. Mayne, C. G., Spanier, J. A., Relland, L. M., Williams, C. B. & Hayes, C. E. 1,25-dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis. Eur. J. Immunol. 41, 822–832 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Penna, G. et al. Treatment of experimental autoimmune prostatitis in nonobese diabetic mice by the vitamin D receptor agonist elocalcitol. J. Immunol. 177, 8504–8511 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Stromnes, I. M., Cerretti, L. M., Liggitt, D., Harris, R. A. & Governman, J. M. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat. Med. 14, 337–342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. DeLuca, H. F. & Plum, L. A. Vitamin D deficiency diminishes the severity and delays onset of experimental autoimmune encephalomyelitis. Arch. Biochem. Biophys. 513, 140–143 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Fernandes de Abreu, D. A., Ibrahim, E. C., Boucraut, J., Khrestchatisky, M. & Féron, F. Severity of experimental autoimmune encephalomyelitis is unexpectedly reduced in mice born to vitamin D-deficient mothers. J. Steroid Biochem. Mol. Biol. 121, 250–253 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Wergeland, S. et al. Dietary vitamin D3 supplements reduce demyelination in the cuprizone model. PLoS ONE 6, e26262 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neveu, I. et al. 1,25-dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res. Mol. Brain Res. 24, 70–76 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Naveilhan, P., Neveu, I., Wion, D. & Brachet, P. 1,25-dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport 7, 2171–2175 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Garcion, E., Sindji, L., Leblondel, G., Brachet, P. & Darcy, F. 1,25-dihydroxyvitamin D3 regulates the synthesis of γ-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J. Neurochem. 73, 859–866 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Ibi, M. et al. Protective effects of 1α,25-(OH)2D3 against the neurotoxicity of glutamate and reactive oxygen species in mesencephalic culture. Neuropharmacology 40, 761–771 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Burton, J. M. et al. A phase I/II dose-escalation trial of vitamin D3 and calcium in multiple sclerosis. Neurology 74, 1852–1859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kampman, M. T., Steffensen, L. H., Mellgren, S. I. & Jørgensen, L. Effect of vitamin D3 supplementation on relapses, disease progression and measures of function in persons with multiple sclerosis: exploratory outcomes from a double-blind randomised controlled trial. Mult. Scler. 18, 1144–1451 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Stein, M. S. et al. A randomized trial of high-dose vitamin D2 in relapsing–remitting multiple sclerosis. Neurology 77, 1611–1618 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Soilu-Hänninen, M. et al. A randomised, double blind, placebo controlled trial with vitamin D3 as an add on treatment to interferon β-1b in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 83, 565–571 (2012).

    Article  PubMed  Google Scholar 

  49. Shaygannejad, V., Janghorbani, M., Ashtari, F. & Dehghan, H. Effects of adjunct low-dose vitamin D on relapsing–remitting multiple sclerosis progression: preliminary findings of a randomized placebo-controlled trial. Mult. Scler. Int. http://dx.doi.org/10.1155/2012/452541.

  50. Smolders, J. et al. Efficacy of vitamin D3 as add-on therapy in patients with relapsing–remitting multiple sclerosis receiving subcutaneous interferon β-1a: a phase II, multicenter, double-blind, randomized, placebo-controlled trial. J. Neurol. Sci. 311, 44–49 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Mehta, L. R., Dworkin, R. H. & Schwid, S. R. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 5, 82–92 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Swank, R. L., Lerstad, O., Strøm, A. & Backer, J. Multiple sclerosis in rural Norway its geographic and occupational incidence in relation to nutrition. N. Engl. J. Med. 246, 721–728 (1952).

    Article  CAS  Google Scholar 

  53. Alter, M., Yamoor, M. & Harshe, M. Multiple sclerosis and nutrition. Arch. Neurol. 31, 267–272 (1974).

    Article  CAS  PubMed  Google Scholar 

  54. Agranoff, B. W. & Goldberg, D. Diet and the geographical distribution of multiple sclerosis. Lancet 2, 1061–1066 (1974).

    Article  CAS  PubMed  Google Scholar 

  55. Lauer, K. The risk of multiple sclerosis in the USA in relation to sociogeographic features: a factor-analytic study. J. Clin. Epidemiol. 47, 43–48 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Ghadirian, P., Jain, M., Ducic, S., Shatenstein, B. & Morisset, R. Nutritional factors in the aetiology of multiple sclerosis: a case–control study in Montreal, Canada. Int. J. Epidemiol. 27, 845–852 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Zorzon, M. et al. Risk factors of multiple sclerosis: a case–control study. Neurol. Sci. 24, 242–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Gusev, E., Boiko, A., Lauer, K., Riise, T. & Deomina, T. Environmental risk factors in MS: a case–control study in Moscow. Acta Neurol. Scand. 94, 386–394 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, S. M., Willett, W. C., Hernan, M. A., Olek, M. J. & Ascherio, A. Dietary fat in relation to risk of multiple sclerosis among two large cohorts of women. Am. J. Epidemiol. 152, 1056–1064 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Mertin, J., Stackpoole, A. & Shumway, S. Nutrition and immunity: the immunoregulatory effect of n-6 essential fatty acids is mediated through prostaglandin E. Int. Arch. Allergy Appl. Immunol. 77, 390–395 (1985).

    Article  CAS  PubMed  Google Scholar 

  61. Santoli, D. & Zurier, R. B. Prostaglandin E precursor fatty acids inhibit human IL-2 production by a prostaglandin E-independent mechanism. J. Immunol. 143, 1303–1309 (1989).

    CAS  PubMed  Google Scholar 

  62. Namazi, M. R. The beneficial and detrimental effects of linoleic acid on autoimmune disorders. Autoimmunity 37, 73–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Rossetti, R. G., Seiler, C. M., DeLuca, P., Laposata, M. and Zurier, R. B. Oral administration of unsaturated fatty acids: effects on human peripheral blood T lymphocyte proliferation. J. Leukoc. Biol. 62, 438–443 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Gallai, V. et al. Cytokine secretion and eicosanoid production in the peripheral blood mononuclear cells of MS patients undergoing dietary supplementation with n-3 polyunsaturated fatty acids. J. Neuroimmunol. 56, 143–153 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Endres, S. et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N. Engl. J. Med. 320, 265–271 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Ferrante, A. et al. Neutrophil migration inhibitory properties of polyunsaturated fatty acids. The role of fatty acid structure, metabolism, and possible second messenger systems. J. Clin. Invest. 93, 1063–1070 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Salvati, S. et al. Eicosapentaenoic acid stimulates the expression of myelin proteins in rat brain. J. Neurosci. Res. 86, 776–784 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Torkildsen, Ø. et al. Effects of dietary intervention on MRI activity, de- and remyelination in the cuprizone model for demyelination. Exp. Neurol. 215, 160–166 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Dworkin, R. H., Bates, D., Millar, J. H. D. & Paty, D. W. Linoleic acid and multiple sclerosis: a reanalysis of three double-blind trials. Neurology 34, 1441–1445 (1984).

    Article  CAS  PubMed  Google Scholar 

  70. Millar, J. H. et al. Double-blind trial of linoleate supplementation of the diet in multiple sclerosis. Br. Med. J. 1, 765–768 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bates, D. et al. A double-blind controlled trial of long chain n-3 polyunsaturated fatty acids in the treatment of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 52, 18–22 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Weinstock-Guttman, B. et al. Low fat dietary intervention with ω-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins Leukot. Essent. Fatty Acids 73, 397–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Bates, D., Fawcett, P. R., Shaw, D. A. & Weightman, D. Trial of polyunsaturated fatty acids in non-relapsing multiple sclerosis. Br. Med. J. 2, 932–933 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Farinotti, M. et al. Dietary interventions for multiple sclerosis. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD004192. http://dx.doi.org/10.1002/14651858.CD004192.pub2 (2007).

  75. Esparza, M. L., Sasaki, S. & Kesteloot, H. Nutrition, latitude, and multiple sclerosis mortality: an ecologic study. Am. J. Epidemiol. 142, 733–737 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. D'Hooghe, M. B., Haentjens, P., Nagels, G. & De Keyser, J. Alcohol, coffee, fish, smoking and disease progression in multiple sclerosis. Eur. J. Neurol. 19, 616–624 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Torkildsen, O. et al. ω-3 fatty acid treatment in multiple sclerosis (OFAMS Study): a randomized, double-blind, placebo-controlled trial. Arch. Neurol. http://dx.doi.org/10.1001/archneurol.2012.283.

  78. Swank, R. L. & Goodwin, J. Review of MS patient survival on a Swank low saturated fat diet. Nutrition 19, 161–162 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Weinstock-Guttman, B. et al. Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. Neuroinflammation 8, 127 (2011).

    Article  CAS  Google Scholar 

  80. Weinstock-Guttman, B., Zivadinov, R., Ramanathan, M. Inter-dependence of vitamin D levels with serum lipid profiles in multiple sclerosis. J. Neurol. Sci. 311, 86–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Valerio, M. et al. Phytosterols ameliorate clinical manifestations and inflammation in experimental autoimmune encephalomyelitis. Inflamm. Res. 60, 457–465 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Desai, F. et al. Comparison of the immunomodulatory effects of the plant sterol β-sitosterol to simvastatin in peripheral blood cells from multiple sclerosis patients. Int. Immunopharmacol. 9, 153–157 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Gilgun-Sherki, Y., Melamed, E. & Offen, D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J. Neurol. 251, 261–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Langemann, H., Kabiersch, A. & Newcombe, J. Measurement of low-molecular-weight antioxidants, uric acid, tyrosine and tryptophan in plaques and white matter from patients with multiple sclerosis. Eur. Neurol. 32, 248–252 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. Lin, R. F., Lin, T. S., Tilton, R. G. & Cross, A. H. Nitric oxide localized to spinal cords of mice with experimental allergic encephalomyelitis: an electron paramagnetic resonance study. J. Exp. Med. 178, 643–648 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Hunter, M. I., Nlemadim, B. C. & Davidson, D. L. Lipid peroxidation produces and antioxidant proteins in plasma and cerebrospinal fluid from multiple sclerosis patients. Neurochem. Res. 10, 1645–1652 (1985).

    Article  CAS  PubMed  Google Scholar 

  87. Naidoo, R. & Knapp, M. L. Studies of lipid peroxidation products in cerebrospinal fluid and serum in multiple sclerosis and other conditions. Clin. Chem. 38, 2449–2454 (1992).

    CAS  PubMed  Google Scholar 

  88. Ruuls, S. R. et al. Reactive oxygen species are involved in the pathogenesis of experimental allergic encephalomyelitis in Lewis rats. J. Neuroimmunol. 56, 207–217 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Lehmann, D. et al. Oral administration of the oxidant-scavenger N-acetyl-L-cysteine inhibits acute experimental autoimmune encephalomyelitis. J. Neuroimmunol. 50, 35–42 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Cross, A. H. et al. Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J. Clin. Invest. 93, 2684–2690 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jolivalt, C. G., Howard, R. B., Chen, L. S., Mizisin, A. P. & Lai, C. S. A novel nitric oxide scavenger in combination with cyclosporine A ameliorates experimental autoimmune encephalomyelitis progression in mice. J. Neuroimmunol. 138, 56–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. O'Brien, N. C., Charlton, B., Cowden, W. B. & Willenborg, D. O. Nitric oxide plays a critical role in the recovery of Lewis rats from experimental autoimmune encephalomyelitis and the maintenance of resistance to reinduction. J. Immunol. 163, 6841–6847 (1999).

    CAS  PubMed  Google Scholar 

  93. O'Brien, N. C., Charlton, B., Cowden, W. B. & Willenborg, D. O. Inhibition of nitric oxide synthase initiates relapsing remitting experimental autoimmune encephalomyelitis in rats, yet nitric oxide appears to be essential for clinical expression of disease. J. Immunol. 167, 5904–5912 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. van Meeteren, M. E., Teunissen, C. E., Dijkstra, C. D. & van Tol, E. A. Antioxidants and polyunsaturated fatty acids in multiple sclerosis. Eur. J. Clin. Nutr. 59, 1347–1361 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Touil, T., Deloire-Grassin, M. S., Vital, C., Petry, K. G. & Brochet, B. In vivo damage of CNS myelin and axons induced by peroxynitrite. Neuroreport 12, 3637–3644 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Hooper, D. C. et al. Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood–CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis. FASEB J. 14, 691–698 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Hooper, D. C. et al. Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc. Natl Acad. Sci. USA 95, 675–680 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Massa, J., O'Reilly, E., Munger, K. L., DeLorenze, G. N. & Ascherio, A. Serum uric acid and risk of multiple sclerosis. J. Neurol. 256, 1643–1648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guerrero, A. L. et al. Variation of serum uric acid levels in multiple sclerosis during relapses and immunomodulatory treatment. Eur. J. Neurol. 15, 394–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, B. et al. Serum uric acid levels in patients with multiple sclerosis: a meta-analysis. Neurol. Res. 34, 163–171 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Spitsin, S. V. et al. Comparison of uric acid and ascorbic acid in protection against EAE. Free Radic. Biol. Med. 33, 1363–1371 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Markowitz, C. E. et al. The treatment of multiple sclerosis with inosine. J. Altern. Complement. Med. 15, 619–625 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gonsette, R. E. et al. Boosting endogenous neuroprotection in multiple sclerosis: the Association of Inosine and Interferon β in relapsing–remitting Multiple Sclerosis (ASIIMS) trial. Mult. Scler. 16, 455–462 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Besler, H. T. Comoglu, S. & Okçu, Z. Serum levels of antioxidant vitamins and lipid peroxidation in multiple sclerosis. Nutr. Neurosci. 5, 215–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Jiménez-Jiménez, F. J. et al. Cerebrospinal fluid levels of α-tocopherol in patients with multiple sclerosis. Neurosci. Lett. 249, 65–67 (1998).

    Article  PubMed  Google Scholar 

  106. Mazzanti, C. M. et al. Pre-treatment with ebselen and vitamin E modulate acetylcholinesterase activity: interaction with demyelinating agents. Int. J. Dev. Neurosci. 27, 73–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Goudarzvand, M., Javan, M., Mirnajafi-Zadeh, J., Mozafari, S. & Tiraihi, T. Vitamins E and D3 attenuate demyelination and potentiate remyelination, processes of hippocampal formation, in rats following local injection of ethidium bromide. Cell. Mol. Neurobiol. 30, 289–299 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Massacesi, L. et al. Suppression of experimental allergic encephalomyelitis by retinoic acid. J. Neurol. Sci. 80, 55–64 (1987).

    Article  CAS  PubMed  Google Scholar 

  109. Massacesi, L., Abbamondi, A. L., Sarlo, F. & Amaducci, L. The control of experimental allergic encephalomyelitis with retinoic acid. Further studies. Riv. Neurol. 57, 166–169 (1987).

    CAS  PubMed  Google Scholar 

  110. Massacesi, L. et al. Immunosuppressive activity of 13-cis-retinoic acid and prevention of experimental autoimmune encephalomyelitis in rats. J. Clin. Invest. 88, 1331–1337 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Racke, M. K., Burnett, D., Pak, S.-H., McFarlin, D. E. & Scott, D. E. Retinoid treatment of experimental allergic encephalomyelitis. IL-4 production correlates with improved disease course. J. Immunol. 154, 450–458 (1995).

    CAS  PubMed  Google Scholar 

  112. Xiao, S. et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of TH17 cells by enhancing TGF-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J. Immunol. 181, 2277–2284 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Marracci, G. H., Jones, R. E., McKeon, G. P. & Bourdette, D. N. Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis. J. Neuroimmunol. 131, 104–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Morini, M. et al. α-Lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 148, 146–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Schreibelt, G. et al. Lipoic acid affects cellular migration into the central nervous system and stabilizes blood–brain barrier integrity. J. Immunol. 177, 2630–2637 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Chaudhary, P. et al. Lipoic acid decreases inflammation and confers neuroprotection in experimental autoimmune optic neuritis. J. Neuroimmunol. 233, 90–96 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yadav, V. et al. Lipoic acid in multiple sclerosis: a pilot study. Mult. Scler. 11, 159 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Yadav, V. et al. Pharmacokinetic study of lipoic acid in multiple sclerosis: comparing mice and human pharmacokinetic parameters. Mult. Scler. 16, 387–397 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hendriks, J. J. et al. Flavonoids influence monocytic GTPase activity and are protective in experimental allergic encephalitis. J. Exp. Med. 200, 1667–1672 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Muthian, G. & Bright, J. J. Quercetin, a flavonoid phytoestrogen, ameliorates EAE by blocking IL-12 signaling through JAK–STAT pathway in T lymphocytes. J. Clin. Immunol. 24, 542–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Imler, T. J. & Petro, T. M. Decreased severity of experimental autoimmune encephalomyelitis during resveratrol administration is associated with increased IL-17+IL-10+ T cells, CD4 IFN-γ+ cells, and decreased macrophage IL-6 expression. Int. Immunopharmacol. 9, 134–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Aktas, O. et al. Green tea epigallocatechine-3-gallate mediates T cellular NF-κB inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J. Immunol. 173, 5794–5800 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, Y. et al. Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage. Exp. Neurol. 193, 75–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Brewer, G. J. et al. Age-related toxicity of amyloid-β associated with increased pERK and pCREB in primary hippocampal neurons: reversal by blueberry extract. J. Nutr. Biochem. 21, 991–998 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. McGuire, S. O. et al. Dietary supplementation with blueberry extract improves survival of transplanted dopamine neurons. Nutr. Neurosci. 9, 251–258 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Xin, J., Feinstein, D. L., Hejna, M. J., Lorens, S. A. & McGuire, S. O. Beneficial effects of blueberries in experimental autoimmune encephalomyelitis. J. Agric. Food Chem. http://dx.doi.org/10.1021/jf203611t.

  127. Mandel, S. et al. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (–)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J. Neurochem. 88, 1555–1569 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Hinz, M. et al. NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol. Cell Biol. 19, 2690–2698 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Demeule, M., Brossard, M., Pagé, M., Gingras, D. & Béliveau, R. Matrix metalloproteinase inhibition by green tea catechins. Biochim. Biophys. Acta 1478, 51–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Shindler, K. S., Ventura, E., Rex, T. S., Elliott, P. & Rostami, A. SIRT1 activation confers neuroprotection in experimental optic neuritis. Invest. Ophthalmol. Vis. Sci. 48, 3602–3609 (2007).

    Article  PubMed  Google Scholar 

  131. Shindler, K. S. et al. Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J. Neuroophthalmol. 30, 328–339 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gao, X., Xu, Y. X., Janakiraman, N., Chapman, R. A. & Gautam, S. C. Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production. Biochem. Pharmacol. 62, 1299–1308 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Culpitt, S. V. et al. Inhibition by red wine extract, resveratrol, of cytokine release by alveolar macrophages in COPD. Thorax 58, 942–946 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Singh, N. P., Hegde, V. L., Hofseth, L. J., Nagarkatti, M. & Nagarkatti, P. Resveratrol (trans-3,5,4'-trihydroxystilbene) ameliorates experimental allergic encephalomyelitis (EAE) primarily via induction of apoptosis in T cells involving activation of aryl hydrocarbon receptor and estrogen receptor. Mol. Pharmacol. 72, 508–521 (2007).

    Article  CAS  Google Scholar 

  135. Weinmann, S., Roll, S., Schwarzbach, S., Vauth, C. & Willich, S. N. Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatr. 10, 14 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Leong, E. M. et al. Complementary and alternative medicines and dietary interventions in multiple sclerosis: what is being used in South Australia and why? Complement. Ther. Med. 17, 216–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Yadav, V. et al. Use and self-reported benefit of complementary and alternative medicine among multiple sclerosis patients. Int. J. MS Care 8, 5–10 (2006).

    Article  Google Scholar 

  138. Bowling, A. C. & Stewart, T. M. Current complementary and alternative therapies for multiple sclerosis. Curr. Treat. Options Neurol. 5, 55–68 (2003).

    Article  PubMed  Google Scholar 

  139. Bent, S., Goldberg, H., Padula, A. & Avins, A. L. Spontaneous bleeding associated with Ginkgo biloba. A case report and systematic review of the literature. J. Gen. Intern. Med. 20, 657–661 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Braquet, P. et al. Recent progress in ginkgolide research. Med. Res. Rev. 11, 295–355 (1991).

    Article  CAS  PubMed  Google Scholar 

  141. Brochet, B. et al. Pilot study of Ginkgolide B, a PAF-acether specific inhibitor in the treatment of acute outbreaks of multiple sclerosis [French]. Rev. Neurol. (Paris) 48, 229–301 (1992).

    Google Scholar 

  142. Johnson, S. K. et al. The effect of Ginkgo biloba on functional measures in multiple sclerosis: a pilot randomized controlled trial. Explore (NY) 2, 19–24 (2006).

    Article  Google Scholar 

  143. Brochet, B. et al. Double-blind, placebo controlled, multicentre study of ginkgolide B in treatment of acute exacerbations for multiple sclerosis. The Ginkgolide Study Group in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 58, 360–362 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lovera, J. et al. Ginkgo biloba for the improvement of cognitive performance in multiple sclerosis: a randomized, placebo-controlled trial. Mult. Scler. 13, 376–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Xie, L. et al. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int. Immunopharmacol. 9, 575–581 (1994).

    Article  CAS  Google Scholar 

  146. Riccio, P. The molecular basis of nutritional intervention in multiple sclerosis: a narrative review. Complement. Ther. Med. 19, 228–237 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Joe, B. & Lokesh, B. R. Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim. Biophys. Acta 1224, 255–263 (1994).

    Article  CAS  PubMed  Google Scholar 

  148. van Meeteren, M. E., Hendriks, J. J., Dijkstra, C. D. & van Tol, E. A. Dietary compounds prevent oxidative damage and nitric oxide production by cells involved in demyelinating disease. Biochem. Pharmacol. 67, 967–975 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Soliman, K. F. & Mazzio, E. A. In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds. Proc. Soc. Exp. Biol. Med. 218, 390–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Kanakasabai, S. et al. Differential regulation of CD4+ T helper cell responses by curcumin in experimental autoimmune encephalomyelitis. J. Nutr. Biochem. http://dx.doi.org/10.1016/j.jnutbio.2011.10.002.

  151. Chearwae, W. & Bright, J. J. 15-deoxy-Δ12,14-prostaglandin J2 and curcumin modulate the expression of Toll-like receptors 4 and 9 in autoimmune T lymphocyte. J. Clin. Immunol. 28, 558–570 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. King, M. D. et al. Attenuation of hematoma size and neurological injury with curcumin following intracerebral hemorrhage in mice. J. Neurosurg. 115, 116–123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Xie, L., Li, X. K. & Takahara, S. Curcumin has bright prospects for the treatment of multiple sclerosis. Int. Immunopharmacol. 11, 323–330 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Tamura, J. et al. Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin. Exp. Immunol. 116, 28–32 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Goodkin, D. E. et al. Serum cobalamin deficiency is uncommon in multiple sclerosis. Arch. Neurol. 51, 1110–1114 (1994).

    Article  CAS  PubMed  Google Scholar 

  156. Nijst, T. Q. Wevers, R. A., Schoonderwaldt, H. C., Hommes, O. R. & de Haan, A. F. Vitamin B12 and folate concentrations in serum and cerebrospinal fluid of neurological patients with special reference to multiple sclerosis and dementia. J. Neurol. Neurosurg. Psychiatry 53, 951–954 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kira, J., Tobimatsu, S. & Goto, I. Vitamin B12 metabolism and massive-dose methyl vitamin B12 therapy in Japanese patients with multiple sclerosis. Intern. Med. 33, 82–86 (1994).

    Article  CAS  PubMed  Google Scholar 

  158. Wade, D. T., Young, C. A., Chaudhuri, K. R. & Davidson, D. L. A randomised placebo controlled exploratory study of vitamin B-12, lofepramine, and L-phenylalanine (the “Cari Loder regime”) in the treatment of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 73, 246–249 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Riccio, P., Rossano, R. & Liuzzi, G. M. May diet and dietary supplements improve the wellness of multiple sclerosis patients? A molecular approach. Autoimmune Dis. http://dx.doi.org/10.4061/2010/249842.

  160. Butcher, J. The distribution of multiple sclerosis in relation to the dairy industry and milk consumption. N. Z. Med. J. 83, 427–430 (1976).

    CAS  PubMed  Google Scholar 

  161. Malosse, D., Perron, H., Sasco, A. & Seigneurin, J. M. Correlation between milk and dairy product consumption and multiple sclerosis prevalence: a worldwide study. Neuroepidemiology 11, 304–312 (1992).

    Article  CAS  PubMed  Google Scholar 

  162. Stefferl, A. et al. Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis. J. Immunol. 165, 2859–2865 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Kennel de March, A. et al. Anti-myelin oligodendrocyte glycoprotein B-cell responses in multiple sclerosis. J. Neuroimmunol. 135, 117–125 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Guggenmos, J. et al. Antibody crossreactivity between myelin oligodendrocyte glycoprotein and the milk protein butyrophilin in multiple sclerosis. J. Immunol. 172, 661–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Lange, L. S. & Shiner, M. Small-bowel abnormalities in multiple sclerosis. Lancet 2, 1319–1322 (1976).

    Article  CAS  PubMed  Google Scholar 

  166. Jones, P. E., Pallis, C. & Peters, T. J. Morphological and biochemical findings in jejunal biopsies from patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 42, 402–406 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Reichelt, K. L. & Jensen, D. IgA antibodies against gliadin and gluten in multiple sclerosis. Acta Neurol. Scand. 110, 239–241 (2004).

    Article  PubMed  Google Scholar 

  168. Rodrigo, L. et al. Prevalence of celiac disease in multiple sclerosis. BMC Neurol. 11, 31–38 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Borhani Haghighi, A., Ansari, N., Mokhtari, M., Geramizadeh, B. & Lankarani, K. B. Multiple sclerosis and gluten sensitivity. Clin. Neurol. Neurosurg. 109, 651–653 (2007).

    Article  PubMed  Google Scholar 

  170. Nicoletti, A. et al. Frequency of celiac disease is not increased among multiple sclerosis patients. Mult. Scler. 14, 698–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Issazadeh-Navikas, S., Roman Teimer, R. & Bockermann, R. Influence of dietary components on regulatory T cells. Mol. Med. 18, 95–110 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Di Marco, R. et al. Exacerbation of protracted-relapsing experimental allergic encephalomyelitis in DA rats by gluten-free diet. APMIS 112, 651–655 (2004).

    Article  PubMed  Google Scholar 

  173. Liversedge, L. Treatment and management of multiple sclerosis. Br. Med. Bull. 33, 78–83 (1977).

    Article  CAS  PubMed  Google Scholar 

  174. Food and Agriculture Organization of the United Nations & World Health Organization. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. World Health Organization [online], (2001).

  175. Ezendam, J. & van Loveren, H. Lactobacillus casei Shirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice. Br. J.Nutr. 99, 83–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Baken, K. A. et al. Evaluation of immunomodulation by Lactobacillus casei Shirota: immune function, autoimmunity and gene expression. Int. J. Food Microbiol. 112, 8–18 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Kobayashi, T. et al. Oral administration of probiotic bacteria, Lactobacillus casei and Bifidobacterium breve, does not exacerbate neurological symptoms in experimental autoimmune encephalomyelitis. Immunopharmacol. Immunotoxicol. 32, 116–124 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Maassen, C. B. & Claassen, E. Strain-dependent effects of probiotic lactobacilli on EAE autoimmunity. Vaccine 26, 2056–2057 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Ochoa-Repáraz, J. et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 3, 487–495 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Ochoa-Repáraz, J. et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J. Immunol. 185, 4101–4108 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Lavasani, S. et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10-producing regulatory T cells. PLoS ONE 5, e9009 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ochoa-Repáraz, J., Mielcarz, D. W., Haque-Begum, S. & Kasper, L. H. Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes. 1, 103–108 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Fleming, J. O. et al. Probiotic helminth administration in relapsing–remitting multiple sclerosis: a phase I study. Mult. Scler. 17, 743–754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mowry, E. M. et al. Gut bacterial populations in multiple sclerosis and in health [abstract P05.106]. Neurology 78, P05.106 (2012).

    Google Scholar 

Download references

Acknowledgements

G. von Geldern is supported by grants from Project Restore at the Johns Hopkins University Comprehensive MS Center. E. Mowry is supported by a grant from the NIH (K23NS067055).

Author information

Authors and Affiliations

Authors

Contributions

G. von Geldern researched most of the data and drafted the article with substantial contributions from E. M. Mowry; both authors contributed equally to discussion of the content, reviewing, and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Ellen M. Mowry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Geldern, G., Mowry, E. The influence of nutritional factors on the prognosis of multiple sclerosis. Nat Rev Neurol 8, 678–689 (2012). https://doi.org/10.1038/nrneurol.2012.194

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing