Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Immunotherapy for Alzheimer disease—the challenge of adverse effects

Abstract

Amyloid-β (Aβ) plays a crucial part in the pathogenesis of Alzheimer disease (AD), making this peptide an attractive therapeutic target. However, clearance of brain Aβ in clinical trials of Aβ-specific antibodies did not improve cognition in patients with AD, leading to reassessment of the current therapeutic strategies. Moreover, current immunotherapies are associated with autoimmunity-related adverse effects, and mobilization of neurotoxic insoluble Aβ-oligomers. Despite the fact that antibodies to the N-terminal domain of Aβ can promote Aβ production, immunotherapies in ongoing clinical trials predominantly target this peptide region. Here, we address the challenges of adverse effects of immunotherapy for AD. We discuss available evidence regarding the mechanisms of both endogenous and exogenous Aβ-specific antibodies, with a view to developing optimal immunotherapy based on peripheral Aβ clearance, targeting of the toxic domain of Aβ, and improvement of antibody specificity. Such strategies should help to make immunotherapy a safe and efficacious disease-modifying treatment option for AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adverse effects associated with Alzheimer disease immunotherapy.
Figure 2: Epitopes of the amyloid-β (Aβ) peptide sequence.

Similar content being viewed by others

References

  1. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  Google Scholar 

  2. Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 216–223 (2008).

    Article  CAS  Google Scholar 

  3. Salloway, S. et al. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 73, 2061–2070 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  4. Gilman, S. et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1553–1562 (2005).

    Article  CAS  Google Scholar 

  5. Hyman, B. T. Amyloid-dependent and amyloid-independent stages of Alzheimer disease. Arch. Neurol. 68, 1062–1064 (2011).

    Article  PubMed Central  Google Scholar 

  6. Knight, W. D. et al. Carbon-11-Pittsburgh compound B positron emission tomography imaging of amyloid deposition in presenilin 1 mutation carriers. Brain 134, 293–300 (2011).

    Article  PubMed Central  Google Scholar 

  7. Khachaturian, Z. S. Revised criteria for diagnosis of Alzheimer's disease: National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 253–256 (2011).

    Article  PubMed Central  Google Scholar 

  8. Yoshizawa, Y. et al. Immune responsiveness to inhaled antigens: local antibody production in the respiratory tract in health and lung diseases. Clin. Exp. Immunol. 100, 395–400 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  9. Giunta, B. et al. Inflammaging as a prodrome to Alzheimer's disease. J. Neuroinflammation 5, 51 (2008).

    Article  PubMed Central  Google Scholar 

  10. Takeuchi, M. & Yamagishi, S. Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer's disease. Curr. Pharm. Des. 14, 973–978 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  11. Nicoll, J. A. et al. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat. Med. 9, 448–452 (2003).

    Article  CAS  Google Scholar 

  12. Ferrer, I., Boada Rovira, M., Sanchez-Guerra, M. L., Rey, M. J. & Costa-Jussa, F. Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer's disease. Brain Pathol. 14, 11–20 (2004).

    Article  CAS  Google Scholar 

  13. Monsonego, A., Maron, R., Zota, V., Selkoe, D. J. & Weiner, H. L. Immune hyporesponsiveness to amyloid β-peptide in amyloid precursor protein transgenic mice: implications for the pathogenesis and treatment of Alzheimer's disease. Proc. Natl Acad. Sci. USA 98, 10273–10278 (2001).

    Article  CAS  Google Scholar 

  14. Monsonego, A. et al. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J. Clin. Invest. 112, 415–422 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  15. Wilcock, D. M. et al. Passive immunotherapy against Aβ in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J. Neuroinflammation 1, 24 (2004).

    Article  PubMed Central  Google Scholar 

  16. Patton, R. L. et al. Amyloid-β peptide remnants in AN-1792-immunized Alzheimer's disease patients: a biochemical analysis. Am. J. Pathol. 169, 1048–1063 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  17. Kaufer, D. & Gandy, S. APOE ɛ4 and bapineuzumab: infusing pharmacogenomics into Alzheimer disease therapeutics. Neurology 73, 2052–2053 (2009).

    Article  PubMed Central  Google Scholar 

  18. Racke, M. M. et al. Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid β. J. Neurosci. 25, 629–636 (2005).

    Article  CAS  Google Scholar 

  19. Petrushina, I. et al. Alzheimer's disease peptide epitope vaccine reduces insoluble but not soluble/oligomeric Aβ species in amyloid precursor protein transgenic mice. J. Neurosci. 27, 12721–12731 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  20. Dahlgren, K. N. et al. Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem. 277, 32046–32053 (2002).

    Article  CAS  Google Scholar 

  21. Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  22. Fox, N. C. et al. Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64, 1563–1572 (2005).

    Article  CAS  Google Scholar 

  23. Dodel, R. et al. Naturally occurring autoantibodies against β-amyloid: investigating their role in transgenic animal and in vitro models of Alzheimer's disease. J. Neurosci. 31, 5847–5854 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  24. Du, Y. et al. Human anti-β-amyloid antibodies block β-amyloid fibril formation and prevent β-amyloid-induced neurotoxicity. Brain 126, 1935–1939 (2003).

    Article  Google Scholar 

  25. Deng, J. et al. Autoreactive-Aβ antibodies promote APP β-secretase processing. J. Neurochem. 120, 732–740 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  26. Lee, M. et al. Aβ42 immunization in Alzheimer's disease generates Aβ N-terminal antibodies. Ann. Neurol. 58, 430–435 (2005).

    Article  CAS  Google Scholar 

  27. Colletier, J. P. et al. Molecular basis for amyloid-β polymorphism. Proc. Natl Acad. Sci. USA 108, 16938–16943 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  28. Nagele, R. G. et al. Brain-reactive autoantibodies prevalent in human sera increase intraneuronal amyloid-β1–42 deposition. J. Alzheimers Dis. 25, 605–622 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  29. Wang, Y. J., Zhou, H. D. & Zhou, X. F. Modified immunotherapies against Alzheimer's disease: toward safer and effective amyloid-β clearance. J. Alzheimers Dis. 21, 1065–1075 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  30. Boche, D. et al. Consequence of Aβ immunization on the vasculature of human Alzheimer's disease brain. Brain 131, 3299–3310 (2008).

    Article  CAS  Google Scholar 

  31. Weller, R. O., Subash, M., Preston, S. D., Mazanti, I. & Carare, R. O. Perivascular drainage of amyloid-β peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease. Brain Pathol. 18, 253–266 (2008).

    Article  CAS  Google Scholar 

  32. Schroeter, S. et al. Immunotherapy reduces vascular amyloid-β in PDAPP mice. J. Neurosci. 28, 6787–6793 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  33. Siemers, E. R. et al. Safety, tolerability and biomarker effects of an Aβ monoclonal antibody administered to patients with Alzheimer's disease. Alzheimers Dement. 4 (Suppl. 1), T774 (2008).

    Article  Google Scholar 

  34. Sperling, R. et al. Amyloid-related imaging abnormalities in patients with Alzheimer's disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol. 11, 241–249 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  35. Yamada, K. et al. Aβ immunotherapy: intracerebral sequestration of Aβ by an anti-Aβ monoclonal antibody 266 with high affinity to soluble Aβ. J. Neurosci. 29, 11393–11398 (2009).

    Article  CAS  Google Scholar 

  36. Millucci, L., Ghezzi, L., Bernardini, G. & Santucci, A. Conformations and biological activities of amyloid beta peptide 25–35. Curr. Protein Pept. Sci. 11, 54–67 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  37. Wang, Y. J. et al. p75NTR regulates Aβ deposition by increasing Aβ production but inhibiting Aβ aggregation with its extracellular domain. J. Neurosci. 31, 2292–2304 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  38. Lemere, C. A. & Masliah, E. Can Alzheimer disease be prevented by amyloid-β immunotherapy? Nat. Rev. Neurol. 6, 108–119 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  39. Hillen, H. et al. Generation and therapeutic efficacy of highly oligomer-specific β-amyloid antibodies. J. Neurosci. 30, 10369–10379 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  40. Shughrue, P. J. et al. Anti-ADDL antibodies differentially block oligomer binding to hippocampal neurons. Neurobiol. Aging 31, 189–202 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  41. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 30973144) and the Natural Science Foundation Project of CQCSTC (grant no. CSTC2010BA5004). The authors thank N. Wei at Daping Hospital of Third Military Medical University for assistance with creating the figures.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussion of the content, writing the article, and review and/or editing of the manuscript before submission. Y.-H. Liu, B. Giunta and H.-D. Zhou contributed equally to this work.

Corresponding author

Correspondence to Yan-Jiang Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YH., Giunta, B., Zhou, HD. et al. Immunotherapy for Alzheimer disease—the challenge of adverse effects. Nat Rev Neurol 8, 465–469 (2012). https://doi.org/10.1038/nrneurol.2012.118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.118

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing