Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging therapeutic targets in schwannomas and other merlin-deficient tumors

Abstract

Deficiency of the tumor suppressor protein merlin leads to the development of benign tumors of the nervous system such as schwannomas, ependymomas and meningiomas. These tumors can occur spontaneously or as part of a tumor predisposition syndrome called neurofibromatosis type 2 (NF2), which involves multiple tumors. Schwannomas are the hallmark tumors of NF2 and are the most frequent and well-characterized of the merlin-deficient tumors. Surgery or radiotherapy are used to treat single tumors and can leave the patient with substantial morbidity. Limitations of other treatment options for merlin-deficient tumors, such as the lack of effectiveness of chemotherapy, have led to an urgent requirement for new pharmaceutical therapies. Merlin-deficient tumors are genetically well-defined, which allows rational testing of new molecular therapies that have been developed and successfully used to treat various cancers in the past few years. This Review centers on four key families of receptor tyrosine kinases—the ErbB family, platelet-derived growth factor receptor β, insulin-like growth factor 1 receptor, and vascular endothelial growth factor receptors—focusing on their role in schwannoma pathobiology and the therapeutic potential of targeting these receptors and their downstream signaling pathways.

Key Points

  • Deficiency of the tumor suppressor protein merlin leads to a high burden of benign tumors—most commonly schwannomas, but also meningiomas and ependymomas

  • Emerging preclinical and clinical data suggest that prevention of tumor growth and survival by inhibiting the receptor tyrosine kinases ErbB2, platelet-derived growth factor receptor β, and insulin-like growth factor 1 receptor could be a promising therapeutic strategy

  • Drugs targeting vascular endothelial growth factor receptor signaling, which inhibit tumor vascularization, are also currently in phase II trials for schwannoma

  • Inhibiting multiple targets or a single downstream target that is common to several pathways may be the most effective approach and could help to limit adverse effects associated with long treatment times

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ErbB2 signaling in merlin-deficient tumors.
Figure 2: PDGFRβ signaling in merlin-deficient tumors.

Similar content being viewed by others

References

  1. Hanemann, C. O. & Evans, D. G. News on the genetics, epidemiology, medical care and translational research of schwannomas. J. Neurol. 253, 1533–1541 (2006).

    CAS  PubMed  Google Scholar 

  2. Evans, D. G., Sainio, M. & Baser, M. E. Neurofibromatosis type 2. J. Med. Genet. 37, 897–904 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tzahar, E. & Yarden, Y. The ErbB-2/HER2 oncogenic receptor of adenocarcinomas: from orphanhood to multiple stromal ligands. Biochim. Biophys. Acta 1377, M25–M37 (1998).

    CAS  PubMed  Google Scholar 

  4. Bange, J., Zwick, E. & Ullrich, A. Molecular targets for breast cancer therapy and prevention. Nat. Med. 7, 548–552 (2001).

    CAS  PubMed  Google Scholar 

  5. Wickremesekera, A., Hovens, C. M. & Kaye, A. H. Expression of ErbB-1 and 2 in vestibular schwannomas. J. Clin. Neurosci. 14, 1199–1206 (2007).

    CAS  PubMed  Google Scholar 

  6. Anglesio, M. S. et al. Mutation of ERBB2 provides a novel alternative mechanism for the ubiquitous activation of RAS-MAPK in ovarian serous low malignant potential tumors. Mol. Cancer Res. 6, 1678–1690 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Groenen, L. C., Nice, E. C. & Burgess, A. W. Structure-function relationships for the EGF/TGF-alpha family of mitogens. Growth Factors 11, 235–257 (1994).

    CAS  PubMed  Google Scholar 

  8. Toyoda, H., Komurasaki, T., Ikeda, Y., Yoshimoto, M. & Morimoto, S. Molecular cloning of mouse epiregulin, a novel epidermal growth factor-related protein, expressed in the early stage of development. FEBS Lett. 377, 403–407 (1995).

    CAS  PubMed  Google Scholar 

  9. Lonardo, F. et al. The normal erbB-2 product is an atypical receptor-like tyrosine kinase with constitutive activity in the absence of ligand. New Biol. 2, 992–1003 (1990).

    CAS  PubMed  Google Scholar 

  10. Beerli, R. R. et al. Neu differentiation factor activation of ErbB-3 and ErbB-4 is cell specific and displays a differential requirement for ErbB-2. Mol. Cell Biol. 15, 6496–6505 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Karunagaran, D. et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J. 15, 254–264 (15-1-1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stern, D. F. ERBB3/HER3 and ERBB2/HER2 duet in mammary development and breast cancer. J. Mammary Gland Biol. Neoplasia 13, 215–223 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. Garratt, A. N., Britsch, S. & Birchmeier, C. Neuregulin, a factor with many functions in the life of a Schwann cell. Bioessays 22, 987–996 (2000).

    CAS  PubMed  Google Scholar 

  14. Birchmeier, C. & Nave, K. A. Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 56, 1491–1497 (2008).

    PubMed  Google Scholar 

  15. Shah, N. M., Marchionni, M. A., Isaacs, I., Stroobant, P. & Anderson, D. J. Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77, 349–360 (1994).

    CAS  PubMed  Google Scholar 

  16. Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–390 (1995).

    CAS  PubMed  Google Scholar 

  17. Dong, Z. et al. Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron 15, 585–596 (1995).

    CAS  PubMed  Google Scholar 

  18. Syroid, D. E. et al. Cell death in the Schwann cell lineage and its regulation by neuregulin. Proc. Natl Acad. Sci. USA 93, 9229–9234 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Marchionni, M. A. et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362, 312–318 (1993).

    CAS  PubMed  Google Scholar 

  20. Lee, K. F. et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378, 394–398 (1995).

    CAS  PubMed  Google Scholar 

  21. Meier, C., Parmantier, E., Brennan, A., Mirsky, R. & Jessen, K. R. Developing Schwann cells acquire the ability to survive without axons by establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB. J. Neurosci. 19, 3847–3859 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Riese, D. J., van Raaij, T. M., Plowman, G. D., Andrews, G. C. & Stern, D. F. The cellular response to neuregulins is governed by complex interactions of the erbB receptor family. Mol. Cell Biol. 15, 5770–5776 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127–137 (2001).

    CAS  PubMed  Google Scholar 

  24. Beeser, A., Jaffer, Z. M., Hofmann, C. & Chernoff, J. Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J. Biol. Chem. 280, 36609–36615 (2005).

    CAS  PubMed  Google Scholar 

  25. Prenzel, N., Fischer, O. M., Streit, S., Hart, S. & Ullrich, A. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr. Relat. Cancer 8, 11–31 (2001).

    CAS  PubMed  Google Scholar 

  26. Arteaga, C. L., Moulder, S. L. & Yakes, F. M. HER (erbB) tyrosine kinase inhibitors in the treatment of breast cancer. Semin. Oncol. 29, 4–10 (2002).

    CAS  PubMed  Google Scholar 

  27. Zhang, H. et al. ErbB receptors: from oncogenes to targeted cancer therapies. J. Clin. Invest. 117, 2051–2058 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gullick, W. J. Prevalence of aberrant expression of the epidermal growth factor receptor in human cancers. Br. Med. Bull. 47, 87–98 (1991).

    CAS  PubMed  Google Scholar 

  29. Mischel, P. S. et al. Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene 22, 2361–2373 (2003).

    CAS  PubMed  Google Scholar 

  30. Andersson, U. et al. Epidermal growth factor receptor family (EGFR, ErbB2–4) in gliomas and meningiomas. Acta Neuropathol. 108, 135–142 (2004).

    CAS  PubMed  Google Scholar 

  31. Pinkas-Kramarski, R. et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 15, 2452–2467 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Goldman, R., Levy, R. B., Peles, E. & Yarden, Y. Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulation. Biochemistry 29, 11024–11028 (1990).

    CAS  PubMed  Google Scholar 

  33. Ben-Levy, R., Paterson, H. F., Marshall, C. J. & Yarden, Y. A single autophosphorylation site confers oncogenicity to the Neu/ErbB-2 receptor and enables coupling to the MAP kinase pathway. EMBO J. 13, 3302–3311 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Klapper, L. N. et al. A subclass of tumor-inhibitory monoclonal antibodies to ErbB-2/HER2 blocks crosstalk with growth factor receptors. Oncogene 14, 2099–2109 (1997).

    CAS  PubMed  Google Scholar 

  35. Riethmacher, D. et al. Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389, 725–730 (1997).

    CAS  PubMed  Google Scholar 

  36. Houshmandi, S. S., Emnett, R. J., Giovannini, M. & Gutmann, D. H. The neurofibromatosis 2 protein, merlin, regulates glial cell growth in an ErbB2- and Src-dependent manner. Mol. Cell Biol. 29, 1472–1486 (2009).

    CAS  PubMed  Google Scholar 

  37. Ammoun, S., Flaiz, C., Ristic, N., Schuldt, J. & Hanemann, C. O. Dissecting and targeting the growth factor-dependent and growth factor-independent extracellular signal-regulated kinase pathway in human schwannoma. Cancer Res. 68, 5236–5245 (2008).

    CAS  PubMed  Google Scholar 

  38. Prayson, R. A., Yoder, B. J. & Barnett, G. H. Epidermal growth factor receptor is not amplified in schwannomas. Ann. Diagn. Pathol. 11, 326–329 (2007).

    PubMed  Google Scholar 

  39. Doherty, J. K., Ongkeko, W., Crawley, B., Andalibi, A. & Ryan, A. F. ErbB and Nrg: potential molecular targets for vestibular schwannoma pharmacotherapy. Otol. Neurotol. 29, 50–57 (2008).

    PubMed  Google Scholar 

  40. Stonecypher, M. S., Chaudhury, A. R., Byer, S. J. & Carroll, S. L. Neuregulin growth factors and their ErbB receptors form a potential signaling network for schwannoma tumorigenesis. J. Neuropathol. Exp. Neurol. 65, 162–175 (2006).

    CAS  PubMed  Google Scholar 

  41. Wickremesekera, A., Hovens, C. M. & Kaye, A. H. Expression of ErbB-1 and ErbB-2 in meningioma. J. Clin. Neurosci. 17, 1155–1158 (2010).

    CAS  PubMed  Google Scholar 

  42. Curto, M., Cole, B. K., Lallemand, D., Liu, C. H. & McClatchey, A. I. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J. Cell Biol. 177, 893–903 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hansen, M. R. & Linthicum, F. H. Jr. Expression of neuregulin and activation of erbB receptors in vestibular schwannomas: possible autocrine loop stimulation. Otol. Neurotol. 25, 155–159 (2004).

    PubMed  Google Scholar 

  44. Brown, K. D. & Hansen, M. R. Lipid raft localization of ErbB2 in vestibular schwannoma and schwann cells. Otol. Neurotol. 29, 79–85 (2008).

    PubMed  Google Scholar 

  45. Lallemand, D. et al. Merlin regulates transmembrane receptor accumulation and signaling at the plasma membrane in primary mouse Schwann cells and in human schwannomas. Oncogene 28, 854–865 (2009).

    CAS  PubMed  Google Scholar 

  46. Thaxton, C., Lopera, J., Bott, M. & Fernandez-Valle, C. Neuregulin and laminin stimulate phosphorylation of the NF2 tumor suppressor in Schwann cells by distinct protein kinase A and p21-activated kinase-dependent pathways. Oncogene 27, 2705–2715 (2008).

    CAS  PubMed  Google Scholar 

  47. Ammoun, S. et al. ErbB/HER receptor activation and preclinical efficacy of lapatinib in vestibular schwannoma. Neuro Oncol. 12, 834–843 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schaefer, G., Shao, L., Totpal, K. & Akita, R. W. Erlotinib directly inhibits HER2 kinase activation and downstream signaling events in intact cells lacking epidermal growth factor receptor expression. Cancer Res. 67, 1228–1238 (2007).

    CAS  PubMed  Google Scholar 

  49. Clark, J. J. et al. The ErbB inhibitors trastuzumab and erlotinib inhibit growth of vestibular schwannoma xenografts in nude mice: a preliminary study. Otol. Neurotol. 29, 846–853 (2008).

    PubMed  PubMed Central  Google Scholar 

  50. Eccleston, P. A., Funa, K. & Heldin, C. H. Expression of platelet-derived growth factor (PDGF) and PDGF α- and β-receptors in the peripheral nervous system: an analysis of sciatic nerve and dorsal root ganglia. Dev. Biol. 155, 459–470 (1993).

    CAS  PubMed  Google Scholar 

  51. Heldin, C. H. & Westermark, B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79, 1283–1316 (1999).

    CAS  PubMed  Google Scholar 

  52. Peulve, P., Laquerriere, A., Paresy, M., Hemet, J. & Tadie, M. Establishment of adult rat Schwann cell cultures: effect of b-FGF, α-MSH, NGF, PDGF, and TGF-β on cell cycle. Exp. Cell Res. 214, 543–550 (1994).

    CAS  PubMed  Google Scholar 

  53. Monje, P. V. et al. Non-antagonistic relationship between mitogenic factors and cAMP in adult Schwann cell re-differentiation. Glia 57, 947–961 (2009).

    PubMed  PubMed Central  Google Scholar 

  54. Maudsley, S. et al. Platelet-derived growth factor receptor association with Na+/H+ exchanger regulatory factor potentiates receptor activity. Mol. Cell Biol. 20, 8352–8363 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Reczek, D., Berryman, M. & Bretscher, A. Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J. Cell Biol. 139, 169–179 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Murthy, A. et al. NHE-RF, a regulatory cofactor for Na+–H+ exchange, is a common interactor for merlin and ERM (MERM) proteins. J. Biol. Chem. 273, 1273–1276 (1998).

    CAS  PubMed  Google Scholar 

  57. James, M. F., Beauchamp, R. L., Manchanda, N., Kazlauskas, A. & Ramesh, V. A NHERF binding site links the βPDGFR to the cytoskeleton and regulates cell spreading and migration. J. Cell Sci. 117, 2951–2961 (2004).

    CAS  PubMed  Google Scholar 

  58. Fraenzer, J. T. et al. Overexpression of the NF2 gene inhibits schwannoma cell proliferation through promoting PDGFR degradation. Int. J. Oncol. 23, 1493–1500 (2003).

    CAS  PubMed  Google Scholar 

  59. Previtali, S. C. et al. Schwann cells synthesize α7β1 integrin which is dispensable for peripheral nerve development and myelination. Mol. Cell Neurosci. 23, 210–218 (2003).

    CAS  PubMed  Google Scholar 

  60. Berti, C., Nodari, A., Wrabetz, L. & Feltri, M. L. Role of integrins in peripheral nerves and hereditary neuropathies. Neuromol. Med. 8, 191–204 (2006).

    CAS  Google Scholar 

  61. Hermanson, M. et al. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res. 52, 3213–3219 (1992).

    CAS  PubMed  Google Scholar 

  62. Obremski, V. J., Hall, A. M. & Fernandez-Valle, C. Merlin, the neurofibromatosis type 2 gene product, and β1 integrin associate in isolated and differentiating Schwann cells. J. Neurobiol. 37, 487–501 (1998).

    CAS  PubMed  Google Scholar 

  63. Baron, V. & Schwartz, M. Cell adhesion regulates ubiquitin-mediated degradation of the platelet-derived growth factor receptor β. J. Biol. Chem. 275, 39318–39323 (2000).

    CAS  PubMed  Google Scholar 

  64. Miyamoto, S. et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell Biol. 131, 791–805 (1995).

    CAS  PubMed  Google Scholar 

  65. Uhrbom, L., Hesselager, G., Ostman, A., Nister, M. & Westermark, B. Dependence of autocrine growth factor stimulation in platelet-derived growth factor-B-induced mouse brain tumor cells. Int. J. Cancer 85, 398–406 (2000).

    CAS  PubMed  Google Scholar 

  66. Lokker, N. A., Sullivan, C. M., Hollenbach, S. J., Israel, M. A. & Giese, N. A. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res. 62, 3729–3735 (2002).

    CAS  PubMed  Google Scholar 

  67. Servidei, T., Riccardi, A., Sanguinetti, M., Dominici, C. & Riccardi, R. Increased sensitivity to the platelet-derived growth factor (PDGF) receptor inhibitor STI571 in chemoresistant glioma cells is associated with enhanced PDGF-BB-mediated signaling and STI571-induced Akt inactivation. J. Cell. Physiol. 208, 220–228 (2006).

    CAS  PubMed  Google Scholar 

  68. Smith, J. S., Lal, A., Harmon-Smith, M., Bollen, A. W. & McDermott, M. W. Association between absence of epidermal growth factor receptor immunoreactivity and poor prognosis in patients with atypical meningioma. J. Neurosurg. 106, 1034–1040 (2007).

    CAS  PubMed  Google Scholar 

  69. Yang, S. Y. & Xu, G. M. Expression of PDGF and its receptor as well as their relationship to proliferating activity and apoptosis of meningiomas in human meningiomas. J. Clin. Neurosci. 8 (Suppl. 1), 49–53 (2001).

    PubMed  Google Scholar 

  70. Hilton, D. A., Ristic, N. & Hanemann, C. O. Activation of ERK, AKT and JNK signalling pathways in human schwannomas in situ. Histopathology 55, 744–749 (2009).

    PubMed  Google Scholar 

  71. Utermark, T., Kaempchen, K. & Hanemann, C. O. Pathological adhesion of primary human schwannoma cells is dependent on altered expression of integrins. Brain Pathol. 13, 352–363 (2003).

    PubMed  Google Scholar 

  72. Bello, L. et al. αVβ3 and αVβ5 integrin expression in meningiomas. Neurosurgery 47, 1185–1195 (2000).

    CAS  PubMed  Google Scholar 

  73. Wang, Y., Ji, Q. S., Mulvihill, M. & Pachter, J. A. Inhibition of the IGF-I receptor for treatment of cancer. Kinase inhibitors and monoclonal antibodies as alternative approaches. Recent Results Cancer Res. 172, 59–76 (2007).

    CAS  PubMed  Google Scholar 

  74. Clark, J. W., Eder, J. P., Ryan, D., Lathia, C. & Lenz, H. J. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43-9006, in patients with advanced, refractory solid tumors. Clin. Cancer Res. 11, 5472–5480 (2005).

    CAS  PubMed  Google Scholar 

  75. Ammoun, S., Schmid, M. C., Triner, J., Manley, P. & Hanemann, C. O. Nilotinib alone or in combination with selumetinib is a drug candidate for neurofibromatosis type 2. Neuro Oncol. (in press).

  76. Adjei, A. A. et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J. Clin. Oncol. 26, 2139–2146 (2008).

    CAS  PubMed  Google Scholar 

  77. Yeh, T. C. et al. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin. Cancer Res. 13, 1576–1583 (2007).

    CAS  PubMed  Google Scholar 

  78. Anlar, B., Sullivan, K. A. & Feldman, E. L. Insulin-like growth factor-I and central nervous system development. Horm. Metab. Res. 31, 120–125 (1999).

    CAS  PubMed  Google Scholar 

  79. Russo, V. C., Gluckman, P. D., Feldman, E. L. & Werther, G. A. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr. Rev. 26, 916–943 (2005).

    CAS  PubMed  Google Scholar 

  80. Myers, M. G. Jr et al. Insulin receptor substrate-1 mediates phosphatidylinositol 3′-kinase and p70S6k signaling during insulin, insulin-like growth factor-1, and interleukin-4 stimulation. J. Biol. Chem. 269, 28783–28789 (1994).

    CAS  PubMed  Google Scholar 

  81. Mirsky, R. et al. Schwann cells as regulators of nerve development. J. Physiol. Paris 96, 17–24 (2002).

    CAS  PubMed  Google Scholar 

  82. Cheng, H. L. et al. Characterization of insulin-like growth factor-I and its receptor and binding proteins in transected nerves and cultured Schwann cells. J. Neurochem. 66, 525–536 (1996).

    CAS  PubMed  Google Scholar 

  83. Stewart, H. J. et al. Regulation of rat Schwann cell Po expression and DNA synthesis by insulin-like growth factors in vitro. Eur. J. Neurosci. 8, 553–564 (1996).

    CAS  PubMed  Google Scholar 

  84. Russell, J. W., Cheng, H. L. & Golovoy, D. Insulin-like growth factor-I promotes myelination of peripheral sensory axons. J. Neuropathol. Exp. Neurol. 59, 575–584 (2000).

    CAS  PubMed  Google Scholar 

  85. Hofmann, F. & Garcia-Echeverria, C. Blocking the insulin-like growth factor-I receptor as a strategy for targeting cancer. Drug Discov. Today 10, 1041–1047 (2005).

    CAS  PubMed  Google Scholar 

  86. Rodon, J., DeSantos, V., Ferry, R. J. Jr & Kurzrock, R. Early drug development of inhibitors of the insulin-like growth factor-I receptor pathway: lessons from the first clinical trials. Mol. Cancer Ther. 7, 2575–2588 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Shinkaruk, S., Bayle, M., Lain, G. & Deleris, G. Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy. Curr. Med. Chem. Anticancer Agents 3, 95–117 (2003).

    CAS  PubMed  Google Scholar 

  88. Nussenbaum, F. & Herman, I. M. Tumor angiogenesis: insights and innovations. J. Oncol. 2010, 132641 (2010).

    PubMed  PubMed Central  Google Scholar 

  89. Pilch, H. et al. Hypoxia-stimulated expression of angiogenic growth factors in cervical cancer cells and cervical cancer-derived fibroblasts. Int. J. Gynecol. Cancer 11, 137–142 (2001).

    CAS  PubMed  Google Scholar 

  90. Ellis, L. M. The role of neuropilins in cancer. Mol. Cancer Ther. 5, 1099–1107 (2006).

    CAS  PubMed  Google Scholar 

  91. Plotkin, S. R. et al. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N. Engl. J. Med. 361, 358–367 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Caye-Thomasen, P. et al. VEGF and VEGF receptor-1 concentration in vestibular schwannoma homogenates correlates to tumor growth rate. Otol. Neurotol. 26, 98–101 (2005).

    PubMed  Google Scholar 

  93. Uesaka, T. et al. Expression of VEGF and its receptor genes in intracranial schwannomas. J. Neurooncol. 83, 259–266 (2007).

    CAS  PubMed  Google Scholar 

  94. Zhu, Z. et al. Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia 17, 604–611 (2003).

    CAS  PubMed  Google Scholar 

  95. Xue, Y. et al. Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome. Proc. Natl Acad. Sci. USA 105, 18513–18518 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhu, Z. & Witte, L. Inhibition of tumor growth and metastasis by targeting tumor-associated angiogenesis with antagonists to the receptors of vascular endothelial growth factor. Invest. New Drugs 17, 195–212 (1999).

    CAS  PubMed  Google Scholar 

  97. Yagi, Y. et al. Biodistribution of humanized anti-VEGF monoclonal antibody/bevacizumab on peritoneal metastatic models with subcutaneous xenograft of gastric cancer in mice. Cancer Chemother. Pharmacol. 66, 745–753 (2010).

    CAS  PubMed  Google Scholar 

  98. Huynh, H., Chow, P. K. & Soo, K. C. AZD6244 and doxorubicin induce growth suppression and apoptosis in mouse models of hepatocellular carcinoma. Mol. Cancer Ther. 6, 2468–2476 (2007).

    CAS  PubMed  Google Scholar 

  99. Weller, M. & Stupp, R. Approval of new drugs for glioblastoma. Curr. Opin. Neurol. 22, 617–618 (2009).

    PubMed  Google Scholar 

  100. Rouleau, G. A. et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363, 515–521 (1993).

    CAS  PubMed  Google Scholar 

  101. Bretscher, A., Edwards, K. & Fehon, R. G. ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell Biol. 3, 586–599 (2002).

    CAS  PubMed  Google Scholar 

  102. McClatchey, A. I. & Fehon, R. G. Merlin and the ERM proteins--regulators of receptor distribution and signaling at the cell cortex. Trends Cell Biol. 19, 198–206 (2009).

    PubMed  PubMed Central  Google Scholar 

  103. Li, W. et al. Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4DCAF1 in the nucleus. Cell 140, 477–490 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Evans, D. G. et al. Consensus recommendations to accelerate clinical trials for neurofibromatosis type 2. Clin. Cancer Res. 15, 5032–5039 (2009).

    PubMed  PubMed Central  Google Scholar 

  105. Leu, T. H. & Maa, M. C. Tyr-863 phosphorylation enhances focal adhesion kinase autophosphorylation at Tyr-397. Oncogene 21, 6992–7000 (2002).

    CAS  PubMed  Google Scholar 

  106. Schlaepfer, D. D. & Hunter, T. Focal adhesion kinase overexpression enhances ras-dependent integrin signaling to ERK2/mitogen-activated protein kinase through interactions with and activation of c-Src. J. Biol. Chem. 272, 13189–13195 (1997).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching data for the article, made substantial contributions to the discussions of the content, and contributed equally to writing the article and to reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to C. Oliver Hanemann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammoun, S., Hanemann, C. Emerging therapeutic targets in schwannomas and other merlin-deficient tumors. Nat Rev Neurol 7, 392–399 (2011). https://doi.org/10.1038/nrneurol.2011.82

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing