Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic susceptibility to ischemic stroke

Abstract

Clinicians who treat patients with stroke need to be aware of several single-gene disorders that have ischemic stroke as a major feature, including sickle cell disease, Fabry disease, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, and retinal vasculopathy with cerebral leukodystrophy. The reported genome-wide association studies of ischemic stroke and several related phenotypes (for example, ischemic white matter disease) have shown that no single common genetic variant imparts major risk. Larger studies with samples numbering in the thousands are ongoing to identify common variants with smaller effects on risk. Pharmacogenomic studies have uncovered genetic determinants of response to warfarin, statins and clopidogrel. Despite increasing knowledge of stroke genetics, incorporating this new knowledge into clinical practice remains a challenge. The goals of this article are to review common single-gene disorders relevant to ischemic stroke, summarize the status of candidate gene and genome-wide studies aimed at discovering genetic stroke risk factors, and to briefly discuss pharmacogenomics related to stroke treatment.

Key Points

  • Several single-gene disorders, including sickle cell disease, have ischemic stroke as a major feature

  • Single-gene disorders such as Fabry disease are vital to recognize because they have specific treatments beyond standard stroke preventive therapies that reduce morbidity from stroke and other complications of the underlying disease

  • Genome-wide association and linkage studies have revealed no single locus of major effect applying to ischemic stroke

  • A region on chromosome 9p21.3, containing genetic variants known to associate with coronary artery disease, seems to increase the risk of large-vessel atherosclerotic ischemic stroke, independent of its association with myocardial infarction

  • A region on chromosome 4q25 and the zinc finger homeobox 3 (ZFHX3) gene on chromosome 16q22 are associated with risk of both atrial fibrillation and cardioembolic stroke

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromosome 9p21.3 and cardiovascular outcomes.

Similar content being viewed by others

References

  1. Roger, V. L. et al. Heart disease and stroke statistics-—2011 update: a report from the American Heart Association. Circulation 123, e18–e209 (2011).

    Article  PubMed  Google Scholar 

  2. Flossmann, E., Schulz, U. G. & Rothwell, P. M. Systematic review of methods and results of studies of the genetic epidemiology of ischemic stroke. Stroke 35, 212–227 (2004).

    Article  PubMed  Google Scholar 

  3. Goldstein, J. L. & Brown, M. S. Molecular medicine. The cholesterol quartet. Science 292, 1310–1312 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Reyes, S. et al. Apathy: a major symptom in CADASIL. Neurology 72, 905–910 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Monet-Leprêtre, M. et al. Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain 132, 1601–1612 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tikka, S. et al. Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain 132, 933–939 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Joutel, A. et al. Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis. Lancet 358, 2049–2051 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Singhal, S., Rich, P. & Markus, H. S. The spatial distribution of MR imaging abnormalities in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and their relationship to age and clinical features. AJNR Am. J. Neuroradiol. 26, 2481–2487 (2005).

    PubMed  PubMed Central  Google Scholar 

  9. Liem, M. K. et al. MRI correlates of cognitive decline in CADASIL: a 7-year follow-up study. Neurology 72, 143–148 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Hara, K. et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N. Engl. J. Med. 360, 1729–1739 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Mendioroz, M. et al. A missense HTRA1 mutation expands CARASIL syndrome to the Caucasian population. Neurology 75, 2033–2035 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Fellgiebel, A., Müller, M. J. & Ginsberg, L. CNS manifestations of Fabry's disease. Lancet Neurol. 5, 791–795 (2006).

    Article  PubMed  Google Scholar 

  13. Sims, K., Politei, J., Banikazemi, M. & Lee, P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: natural history data from the Fabry Registry. Stroke 40, 788–794 (2009).

    Article  PubMed  Google Scholar 

  14. Mehta, A. et al. Enzyme replacement therapy with agalsidase alfa in patients with Fabry's disease: an analysis of registry data. Lancet 374, 1986–1996 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Rolfs, A. et al. Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet 366, 1794–1796 (2005).

    Article  PubMed  Google Scholar 

  16. Wozniak, M. A. et al. Frequency of unrecognized Fabry disease among young European-American and African-American men with first ischemic stroke. Stroke 41, 78–81 (2010).

    Article  PubMed  Google Scholar 

  17. Baptista, M. V. et al. Mutations of the GLA gene in young patients with stroke: the PORTYSTROKE study–screening genetic conditions in Portuguese young stroke patients. Stroke 41, 431–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Brouns, R. et al. Belgian Fabry study: prevalence of Fabry disease in a cohort of 1,000 young patients with cerebrovascular disease. Stroke 41, 863–868 (2010).

    Article  PubMed  Google Scholar 

  19. Richards, A. et al. C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat. Genet. 39, 1068–1070 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Mateen, F. J. et al. Evolution of a tumor-like lesion in cerebroretinal vasculopathy and TREX1 mutation. Neurology 75, 1211–1213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kernt, M., Gschwendtner, A., Neubauer, A. S., Dichgans, M. & Haritoglou, C. Effects of intravitreal bevacizumab treatment on proliferative retinopathy in a patient with cerebroretinal vasculopathy. J. Neurol. 257, 1213–1214 (2010).

    Article  PubMed  Google Scholar 

  22. Desai, D. & Dhanani, H. Sickle cell disease: history and origin. The Internet Journal of Hematology [online] (2004).

    Google Scholar 

  23. Oner, C. et al. Beta S haplotypes in various world populations. Hum. Genet. 89, 99–104 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Lemos Cardoso, G. & Farias Guerreiro, J. African gene flow to north Brazil as revealed by HBB*S. gene haplotype analysis. Am. J. Hum. Biol. 18, 93–98 (2006).

    Article  PubMed  Google Scholar 

  25. Rahimi, Z., Merat, A., Gerard, N., Krishnamoorthy, R. & Nagel, R. L. Implications of the genetic epidemiology of globin haplotypes linked to the sickle cell gene in southern Iran. Hum. Biol. 78, 719–731 (2006).

    Article  PubMed  Google Scholar 

  26. Ohene-Frempong, K. et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood 91, 288–294 (1998).

    CAS  PubMed  Google Scholar 

  27. Lee, M. T. et al. Stroke Prevention Trial in Sickle Cell Anemia (STOP): extended follow-up and final results. Blood 108, 847–852 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sebastiani, P., Ramoni, M. F., Nolan, V., Baldwin, C. T. & Steinberg, M. H. Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat. Genet. 37, 435–440 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Taylor VI, J. G. et al. Variants in the VCAM1 gene and risk for symptomatic stroke in sickle cell disease. Blood 100, 4303–4309 (2002).

    Article  CAS  Google Scholar 

  30. Seshadri, S. et al. Parental occurrence of stroke and risk of stroke in their children: the Framingham study. Circulation 121, 1304–1312 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. MacClellan, L. R. et al. Familial aggregation of ischemic stroke in young women: the Stroke Prevention in Young Women Study. Genet. Epidemiol. 30, 602–608 (2006).

    Article  PubMed  Google Scholar 

  32. Jerrard-Dunne, P., Cloud, G., Hassan, A. & Markus, H. S. Evaluating the genetic component of ischemic stroke subtypes: a family history study. Stroke 34, 1364–1369 (2003).

    Article  PubMed  Google Scholar 

  33. Schulz, U. G., Flossmann, E. & Rothwell, P. M. Heritability of ischemic stroke in relation to age, vascular risk factors, and subtypes of incident stroke in population-based studies. Stroke 35, 819–824 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Meschia, J. F. Addressing the heterogeneity of the ischemic stroke phenotype in human genetics research. Stroke 33, 2770–2774 (2002).

    Article  PubMed  Google Scholar 

  35. Dichgans, M. & Markus, H. S. Genetic association studies in stroke: methodological issues and proposed standard criteria. Stroke 36, 2027–2031 (2005).

    Article  PubMed  Google Scholar 

  36. Luke, M. M. et al. Gene variants associated with ischemic stroke: the cardiovascular health study. Stroke 40, 363–368 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Matarin, M. et al. Candidate gene polymorphisms for ischemic stroke. Stroke 40, 3436–3442 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Casas, J. P., Hingorani, A. D., Bautista, L. E. & Sharma, P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch. Neurol. 61, 1652–1661 (2004).

    Article  PubMed  Google Scholar 

  39. Wang, X. et al. A meta-analysis of candidate gene polymorphisms and ischemic stroke in 6 study populations: association of lymphotoxin-alpha in nonhypertensive patients. Stroke 40, 683–695 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ariyaratnam, R. et al. Genetics of ischaemic stroke among persons of non-European descent: a meta-analysis of eight genes involving approximately 32,500 individuals. PLoS Med. 4, e131 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Xin, X. Y. et al. Gene polymorphisms and risk of adult early-onset ischemic stroke: a meta-analysis. Thromb. Res. 124, 619–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Gretarsdottir, S. et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat. Genet. 35, 131–138 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Helgadottir, A. et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat. Genet. 36, 233–239 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Bevan, S. et al. Variation in the PDE4D gene and ischemic stroke risk: a systematic review and meta-analysis on 5,200 cases and 6,600 controls. Stroke 39, 1966–1971 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Zintzaras, E., Rodopoulou, P. & Sakellaridis, N. Variants of the arachidonate 5-lipoxygenase-activating protein (ALOX5AP) gene and risk of stroke: a HuGE gene-disease association review and meta-analysis. Am. J. Epidemiol. 169, 523–532 (2009).

    Article  PubMed  Google Scholar 

  46. McPherson, R. et al. A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488–1491 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Helgadottir, A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316, 1491–1493 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  49. Samani, N. J. et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gschwendtner, A. et al. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann. Neurol. 65, 531–539 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gretarsdottir, S. et al. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann. Neurol. 64, 402–409 (2008).

    Article  PubMed  Google Scholar 

  52. Lemmens, R. et al. The association of the 4q25 susceptibility variant for atrial fibrillation with stroke is limited to stroke of cardioembolic etiology. Stroke 41, 1850–1857 (2010).

    Article  PubMed  Google Scholar 

  53. Gudbjartsson, D. F. et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat. Genet. 41, 876–878 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ikram, M. A. et al. Genomewide association studies of stroke. N. Engl. J. Med. 360, 1718–1728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. International Stroke Genetics Consortium; Wellcome Trust Case–Control Consortium 2. Failure to validate association between 12p13 variants and ischemic stroke. N. Engl. J. Med. 362, 1547–1550 (2010).

  56. Anderson, C. D. et al. The effect of survival bias on case–control genetic association studies of highly lethal diseases. Circ. Cardiovasc. Genet. 4, 188–196 (2011).

    Article  Google Scholar 

  57. Yamada, Y. et al. Identification of CELSR1 as a susceptibility gene for ischemic stroke in Japanese individuals by a genome-wide association study. Atherosclerosis 207, 144–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Lanktree, M. B., Dichgans, M. & Hegele, R. A. Advances in genomic analysis of stroke: what have we learned and where are we headed? Stroke 41, 825–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Anderson, C. D. et al. Common mitochondrial sequence variants in ischemic stroke. Ann. Neurol. 69, 471–480 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chinnery, P. F., Elliott, H. R., Syed, A. & Rothwell, P. M. Mitochondrial DNA haplogroups and risk of transient ischaemic attack and ischaemic stroke: a genetic association study. Lancet Neurol. 9, 498–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rosa, A. et al. Mitochondrial haplogroup H1 is protective for ischemic stroke in Portuguese patients. BMC Med. Genet. 9, 57 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Nishigaki, Y. et al. Mitochondrial haplogroup A is a genetic risk factor for atherothrombotic cerebral infarction in Japanese females. Mitochondrion 7, 72–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Benn, M., Schwartz, M., Nordestgaard, B. G. & Tybjaerg-Hansen, A. Mitochondrial haplogroups: ischemic cerebrovascular disease, other diseases, mortality, and longevity in the general population. Circulation 117, 2492–2501 (2008).

    Article  PubMed  Google Scholar 

  64. Jood, K., Ladenvall, C., Rosengren, A., Blomstrand, C. & Jern, C. Family history in ischemic stroke before 70 years of age: the Sahlgrenska Academy Study on Ischemic Stroke. Stroke 36, 1383–1387 (2005).

    Article  PubMed  Google Scholar 

  65. FDA Announces new boxed warning on Plavix. FDA [online] (2010).

  66. Mega, J. L. et al. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet 376, 1312–1319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wallentin, L. et al. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet 376, 1320–1328 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Paré, G. et al. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N. Engl. J. Med. 363, 1704–1714 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Klein, T. E. et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360, 753–764 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Tan, G. M., Wu, E., Lam, Y. Y. & Yan, B. P. Role of warfarin pharmacogenetic testing in clinical practice. Pharmacogenomics 11, 439–448 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Link, E. et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N. Engl. J. Med. 359, 789–799 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Voora, D. et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J. Am. Coll. Cardiol. 54, 1609–1616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Table of pharmacogenomic biomakers in drug labels. FDA [online] (2011).

  74. Gershon, E. S. & Goldin, L. R. Clinical methods in psychiatric genetics. I. Robustness of genetic marker investigative strategies. Acta Psychiatr. Scand. 74, 113–118 (1986).

    Article  CAS  Google Scholar 

  75. Dong, C. et al. Genomewide linkage and peakwide association analyses of carotid plaque in Caribbean Hispanics. Stroke 41, 2750–2756 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Belfer, I. et al. Linkage of large-vessel carotid atherosclerotic stroke to inflammatory genes via a systematic screen. Int. J. Stroke 5, 145–151 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sacco, R. L. et al. Heritability and linkage analysis for carotid intima–media thickness: the Family Study of Stroke Risk and Carotid Atherosclerosis. Stroke 40, 2307–2312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. O'Donnell, C. et al. Genome-wide association study for subclinical atherosclerosis in major arterial territories in the NHLBI's Framingham Heart Study. BMC Med. Genet. 8 (Suppl. 1), S4 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Debette, S. & Markus, H. S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341, c3666 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Carmelli, D. et al. Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke 29, 1177–1181 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Atwood, L. D. et al. Genetic variation in white matter hyperintensity volume in the Framingham Study. Stroke 35, 1609–1613 (2004).

    Article  PubMed  Google Scholar 

  82. Turner, S. T. et al. Heritability of leukoaraiosis in hypertensive sibships. Hypertension 43, 483–487 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Paternoster, L., Chen, W. & Sudlow, C. L. Genetic determinants of white matter hyperintensities on brain scans: a systematic assessment of 19 candidate gene polymorphisms in 46 studies in 19,000 subjects. Stroke 40, 2020–2026 (2009).

    Article  PubMed  Google Scholar 

  84. Turner, S. T. et al. Genomic susceptibility loci for brain atrophy, ventricular volume, and leukoaraiosis in hypertensive sibships. Arch. Neurol. 66, 847–857 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Debette, S. et al. Genome-wide association studies of MRI-defined brain infarcts: meta-analysis from the CHARGE Consortium. Stroke 41, 210–217 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. dbSNP. National Center for Biotechnology In formation [online] (2011).

  87. International HapMap Project. National Center for Biotechnology In formation [online] (2011).

  88. 1000 Genomes Project. 1000 Genomes [online] (2011).

  89. Ng, S. B., Nickerson, D. A., Bamshad, M. J. & Shendure, J. Massively parallel sequencing and rare disease. Hum. Mol. Genet. 19, R119–R124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. The NINDS Stroke Genetics Network (SiGN) study. University of Maryland School of Medicine [online] (2011).

  91. Causative classification system for ischemic stroke (CCS–Stroke Genetics). The General Hospital Corporation [online] (2011).

  92. dbGAP. National Center for Biotechnology In formation [online] (2011).

  93. Genomics and randomized trials network. Collaborative Health Studies Coordinating Center, University of Washington [online] (2011).

Download references

Acknowledgements

J. F. Meschia, S. S. Rich and B. B. Worrall receive support from the Siblings with Ischemic Stroke Study (National Institute of Neurological Disorders and Stroke [NINDS] grant code R01 NS39987) and the NINDS Stroke Genetics Network. S. S. Rich also receives support from the US National Heart, Lung and Blood Institute Exome Project, and B. B. Worrall receives support from the Genomics and Randomized Trials Network.

Author information

Authors and Affiliations

Authors

Contributions

B. B. Worrall and S. S. Rich researched data for the article and provided substantial contributions to the discussion of content. J. F. Meschia, B. B. Worrall and S. S. Rich contributed equally to writing, reviewing and editing the article.

Corresponding author

Correspondence to James F. Meschia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meschia, J., Worrall, B. & Rich, S. Genetic susceptibility to ischemic stroke. Nat Rev Neurol 7, 369–378 (2011). https://doi.org/10.1038/nrneurol.2011.80

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing