Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Positive muscle phenomena—diagnosis, pathogenesis and associated disorders

Abstract

Positive muscle phenomena arise owing to various forms of spontaneous muscle hyperactivity originating in motor neurons or in the muscle itself. Although they are common in a wide range of neurological and non-neurological diseases, clinical and scientific data on these phenomena are limited, and their presence is sometimes overlooked. This gap in our knowledge hampers effective diagnosis and treatment. In this article, we review the clinical characteristics and approach to diagnosis of the various positive muscle phenomena, and discuss their genetic underpinnings and pathophysiological mechanisms. Finally, we outline an algorithm to discriminate between the different positive muscle phenomena.

Key Points

  • Positive muscle phenomena arise from spontaneous muscle hyperactivity

  • The phenomena can originate in the upper motor neuron, the lower motor neuron, or in skeletal muscle

  • The recognition of positive muscle phenomena involves electrophysiological measurements, and observations of spontaneous and evoked phenomena

  • The genetic and cellular underpinnings of these muscle disorders are becoming increasingly understood, thereby aiding diagnosis and treatment

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristic patterns of electrical activity in skeletal muscle, as measured on electromyography.
Figure 2: Classification of myotonias.
Figure 3: Clinical algorithm to differentiate the myotonias.
Figure 4: Clinical algorithm to aid the diagnosis of positive muscle phenomena.

Similar content being viewed by others

References

  1. Malhotra, S., Pandyan, A. D., Day, C. R., Jones, P. W. & Hermens, H. Spasticity, an impairment that is poorly defined and poorly measured. Clin. Rehabil. 23, 651–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Lance, J. W. in Spasticity: Disordered Motor Control (eds Lance, J. W. et al.) 185–204 (Year Book Medical Publishers, Chicago, 1980).

    Google Scholar 

  3. Bennett, D. J., Li, Y., Harvey, P. J. & Gorassini, M. Evidence for plateau potentials in tail motoneurons of awake chronic spinal rats with spasticity. J. Neurophysiol. 86, 1972–1982 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hornby, T., Rymer, W., Benz, E. & Schmit, B. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials? J. Neurophysiol. 89, 416–426 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Nielsen, J. B., Crone, C. & Hultborn, H. The spinal pathophysiology of spasticity—from a basic science point of view. Acta Physiol. 189, 171–180 (2007).

    Article  CAS  Google Scholar 

  6. Voerman, G., Gregoric, M. & Hermens, H. Neurophysiological methods for the assessment of spasticity: the Hoffmann reflex, the tendon reflex, and the stretch reflex. Disabil. Rehabil. 27, 33–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Pandyan, A. D. et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil. Rehabil. 27, 2–6 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Brown, P. & Marsden, C. D. The stiff man and stiff man plus syndromes. J. Neurol. 246, 648–652 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Dalakas, M. C., Fujii, M., Li, M. & McElroy, B. The clinical spectrum of anti-GAD antibody-positive patients with stiff-person syndrome. Neurology 55, 1531–1535 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Alexopoulos, H. & Dalakas, M. C. A critical update on the immunopathogenesis of stiff person syndrome. Eur. J. Clin. Invest. 40, 1018–1025 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka, H. et al. Stiff man syndrome with thymoma. Ann. Thorac. Surg. 80, 739–741 (2005).

    Article  PubMed  Google Scholar 

  12. Ferrari, P., Federico, M., Grimaldi, L. M. & Silingardi, V. Stiff-man syndrome in a patient with Hodgkin's disease. An unusual paraneoplastic syndrome. Haematologica 75, 570–572 (1990).

    CAS  PubMed  Google Scholar 

  13. Meinck, H. M. & Thompson, P. D. Stiff man syndrome and related conditions. Mov. Disord. 17, 853–866 (2002).

    Article  PubMed  Google Scholar 

  14. Espay, A. J. & Chen, R. Rigidity and spasms from autoimmune encephalomyelopathies: stiff-person syndrome. Muscle Nerve 34, 677–690 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Drost, G., Verrips, A., van Engelen, B. G., Stegeman, D. F. & Zwarts, M. J. Involuntary painful muscle contractions in Satoyoshi syndrome: a surface electromyographic study. Mov. Disord. 21, 2015–2018 (2006).

    Article  PubMed  Google Scholar 

  16. Matsuura, E., Matsuyama, W., Sameshima, T. & Arimura, K. Satoyoshi syndrome has antibody against brain and gastrointestinal tissue. Muscle Nerve 36, 400–403 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Arita, J., Hamano, S., Nara, T. & Maekawa, K. Intravenous gammaglobulin therapy of Satoyoshi syndrome. Brain Dev. 18, 409–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Endo, K. et al. Improvement of Satoyoshi syndrome with tacrolimus and corticosteroids. Neurology 60, 2014–2015 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Drost, G., Verrips, A., Hooijkaas, H. & Zwarts, M. Glutamic acid decarboxylase antibodies in Satoyoshi syndrome. Ann. Neurol. 55, 450–451 (2004).

    Article  PubMed  Google Scholar 

  20. Urbano, F. L. Signs of hypocalcemia: Chvostek's and Trousseau's signs. Hosp. Physician 4, 43–45 (2000).

    Google Scholar 

  21. Jain, S., Ashok, P. P. & Maheshwari, M. C. Local tetanus: a case report with electrophysiological studies. J. Neurol. 228, 289–293 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Roper, M. & Vandelaer, J. Maternal and neonatal tetanus. Lancet 370, 1947–1959 (2007).

    Article  PubMed  Google Scholar 

  23. Afshar, M., Raju, M., Ansell, D. & Bleck, T. P. Narrative review: tetanus—a health threat after natural disasters in developing countries. Ann. Intern. Med. 154, 329–335 (2011).

    Article  PubMed  Google Scholar 

  24. Yeh, F. L. et al. SV2 mediates entry of tetanus neurotoxin into central neurons. PLoS Pathog. 6, e1001207 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schiavo, G., Matteoli, M. & Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 80, 717–766 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Ataro, P., Mushatt, D. & Ahsan, S. Tetanus: a review. South. Med. J. 104, 613–617 (2011).

    Article  PubMed  Google Scholar 

  27. Schiavo, G. et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832–835 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Holick, M. F. Resurrection of vitamin D deficiency and rickets. J. Clin. Invest. 116, 2062–2072 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mune, T., Yasuda, K., Ishii, M., Matsunaga, T. & Miura, K. Tetany due to hypomagnesemia induced by cisplatin and doxorubicin treatment for synovial sarcoma. Intern. Med. 32, 434–437 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Bandyopadhyay, S. K., Datt, S., Pal, S. K. & Saha, A. K. Gitelman's syndrome: a differential diagnosis of normocalcemic tetany. J. Assoc. Physicians India 58, 395 (2010).

    PubMed  Google Scholar 

  31. Riveira-Munoz, E., Chang, Q., Bindels, R. J. & Devuyst, O. Gitelman's syndrome: towards genotype–phenotype correlations? Pediatr. Nephrol. 22, 326–332 (2007).

    Article  PubMed  Google Scholar 

  32. Bartter, F. C., Pronove, P., Gill, J. R. & MacCardle, R. C. Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. J. Am. Soc. Nephrol. 9, 516–528 (1962).

    Google Scholar 

  33. Rodríguez-Soriano, J., Vallo, A. & García-Fuentes, M. Hypomagnesaemia of hereditary renal origin. Pediatr. Nephrol. 1, 465–472 (1987).

    Article  PubMed  Google Scholar 

  34. Hart, I. K., Maddison, P., Newsom-Davis, J., Vincent, A. & Mills, K. R. Phenotypic variants of autoimmune peripheral nerve hyperexcitability. Brain 125, 1887–1895 (2002).

    Article  PubMed  Google Scholar 

  35. Vernino, S. & Lennon, V. A. Ion channel and striational antibodies define a continuum of autoimmune neuromuscular hyperexcitability. Muscle Nerve 26, 702–707 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Arimura, K. et al. Isaacs' syndrome as a potassium channelopathy of the nerve. Muscle Nerve Suppl. 11, S55–S58 (2002).

    Article  PubMed  Google Scholar 

  37. Gutmann, L. & Gutmann, L. Myokymia and neuromyotonia. J. Neurol. 251, 138–142 (2004).

    Article  PubMed  Google Scholar 

  38. Gutmann, L., Libell, D. & Gutmann, L. When is myokymia neuromyotonia? Muscle Nerve 24, 151–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Maddison, P. Neuromyotonia. Clin. Neurophysiol. 117, 2118–2127 (2006).

    Article  PubMed  Google Scholar 

  40. Liguori, R. et al. Morvan's syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain 124, 2417–2426 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Hart, I. K. Acquired neuromyotonia: a new autoantibody-mediated neuronal potassium channelopathy. Am. J. Med. Sci. 319, 209–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Browne, D. L. et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat. Genet. 8, 136–140 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Echaniz-Laguna, A. et al. Electrophysiological studies in a mouse model of Schwartz–Jampel syndrome demonstrate muscle fiber hyperactivity of peripheral nerve origin. Muscle Nerve 40, 55–61 (2009).

    Article  PubMed  Google Scholar 

  44. Giedion, A. et al. Heterogeneity in Schwartz–Jampel chondrodystrophic myotonia. Eur. J. Pediatr. 156, 214–223 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Arikawa-Hirasawa, E., Le, A. & Nishino, I. Structural and functional mutations of the perlecan gene cause Schwartz–Jampel syndrome, with myotonic myopathy and chondrodysplasia. Am. J. Hum. Genet. 70, 1368–1375 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iozzo, R. V. Basement membrane proteoglycans: from cellar to ceiling. Nat. Rev. Mol. Cell Biol. 6, 646–656 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Stum, M. et al. Evidence of a dosage effect and a physiological endplate acetylcholinesterase deficiency in the first mouse models mimicking Schwartz–Jampel syndrome neuromyotonia. Hum. Mol. Genet. 17, 3166–3179 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. [No authors listed] American Association of Electrodiagnostic Medicine glossary of terms in electrodiagnostic medicine. Muscle Nerve Suppl. 10, S1–S50 (2001).

  49. Desai, J. & Swash, M. Fasciculations: what do we know of their significance? J. Neurol. Sci. 152 (Suppl. 1), S43–S48 (1997).

    Article  PubMed  Google Scholar 

  50. de Carvalho, M. & Swash, M. Cramps, muscle pain, and fasciculations. Neurology 63, 721–723 (2004).

    Article  PubMed  Google Scholar 

  51. Trojaborg, W. & Buchthal, F. Malignant and benign fasciculations. Acta Neurol. Scand. 41, 251–254 (1965).

    Article  Google Scholar 

  52. Van der Heijden, A., Spaans, F. & Reulen, J. Fasciculation potentials in foot and leg muscles of healthy young adults. Electroencephalogr. Clin. Neurophysiol. 93, 163–168 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Mills, K. R. Characteristics of fasciculations in amyotrophic lateral sclerosis and the benign fasciculation syndrome. Brain 133, 3458–3469 (2010).

    Article  PubMed  Google Scholar 

  54. de Carvalho, M. et al. Electrodiagnostic criteria for diagnosis of ALS. Clin. Neurophysiol. 119, 497–503 (2008).

    Article  PubMed  Google Scholar 

  55. Janko, M. & Trontelj, J. Fasciculations in motor neuron disease: discharge rate reflects extent and recency of collateral sprouting. J. Neurol. Neurosurg. Psychiatry 52, 1375–1381 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Roth, G. Fasciculations and their F-response. Localisation of their axonal origin. J. Neurol. Sci. 63, 299–306 (1984).

    Article  CAS  PubMed  Google Scholar 

  57. de Carvalho, M., Miranda, P. C., Lourdes Sales Luís, M. & Ducla-Soares, E. Neurophysiological features of fasciculation potentials evoked by transcranial magnetic stimulation in amyotrophic lateral sclerosis. J. Neurol. 247, 189–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Mills, K. R. & Nithi, K. A. Corticomotor threshold is reduced in early sporadic amyotrophic lateral sclerosis. Muscle Nerve 20, 1137–1141 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Vucic, S. Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain 129, 2436–2446 (2006).

    Article  PubMed  Google Scholar 

  60. Hirota, N., Eisen, A. & Weber, M. Complex fasciculations and their origin in amyotrophic lateral sclerosis and Kennedy's disease. Muscle Nerve 23, 1872–1875 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Drost, G., Kleine, B. U., Stegeman, D. F., van Engelen, B. G. & Zwarts, M. J. Fasciculation potentials in high-density surface EMG. J. Clin. Neurophysiol. 24, 301–307 (2007).

    Article  PubMed  Google Scholar 

  62. Kleine, B. U., Stegeman, D. F., Schelhaas, H. J. & Zwarts, M. J. Firing pattern of fasciculations in ALS: evidence for axonal and neuronal origin. Neurology 70, 353–359 (2008).

    Article  PubMed  Google Scholar 

  63. Misawa, S. et al. Ultrasonographic detection of fasciculations markedly increases diagnostic sensitivity of ALS. Neurology 77, 1532–1537 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Rowland, L. P. Cramps, spasms and muscle stiffness. Rev. Neurol. (Paris) 141, 261–273 (1985).

    CAS  Google Scholar 

  65. Miller, T. M. & Layzer, R. B. Muscle cramps. Muscle Nerve 32, 431–442 (2005).

    Article  PubMed  Google Scholar 

  66. Jansen, P. H., Gabreëls, F. J. & van Engelen, B. G. Diagnosis and differential diagnosis of muscle cramps: a clinical approach. J. Clin. Neuromuscul. Dis. 4, 89–94 (2002).

    Article  PubMed  Google Scholar 

  67. Odermatt, A. et al. Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nat. Genet. 14, 191–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Katzberg, H. D., Khan, A. H. & So, Y. T. Assessment: symptomatic treatment for muscle cramps (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 74, 691–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Jansen, P. H., van Dijck, J. A., Verbeek, A. L., Durian, F. W. & Joosten, E. M. Estimation of the frequency of the muscular pain-fasciculation syndrome and the muscular cramp-fasciculation syndrome in the adult population. Eur. Arch. Psychiatry Clin. Neurosci. 241, 102–104 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. Sekowski, I. & Samuel, P. Clofibrate-induced acute muscular syndrome. Am. J. Cardiol. 30, 572–574 (1972).

    Article  CAS  PubMed  Google Scholar 

  71. Balfour, J. A., McTavish, D. & Heel, R. C. Fenofibrate. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in dyslipidaemia. Drugs 40, 260–290 (1990).

    Article  CAS  PubMed  Google Scholar 

  72. Zimlichman, R., Krauss, S. & Paran, E. Muscle cramps induced by beta-blockers with intrinsic sympathomimetic activity properties: a hint of a possible mechanism. Arch. Intern. Med. 151, 1021 (1991).

    Article  CAS  PubMed  Google Scholar 

  73. Cook, B. Angiotensin converting enzyme inhibitors and diuretics. Br. Med. J. 295, 1351–1352 (1987).

    Article  CAS  Google Scholar 

  74. Keidar, S., Binenboim, C. & Palant, A. Muscle cramps during treatment with nifedipine. Br. Med. J. 285, 1241–1242 (1982).

    Article  CAS  Google Scholar 

  75. Palmer, K. N. Muscle cramp and oral salbutamol. Br. Med. J. 2, 833 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Reeback, J., Benton, S. & Swash, M. Penicillamine-induced neuromyotonia. Br. Med. J. 1, 1464–1465 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Knochel, J. Neuromuscular manifestations of electrolyte disorders. Am. J. Med. 72, 521–535 (1982).

    Article  CAS  PubMed  Google Scholar 

  78. Mujais, S. Muscle cramps during hemodialysis. Int. J. Artif. Organs 17, 570–572 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Kiernan, M. C. et al. Amyotrophic lateral sclerosis. Lancet 377, 942–955 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Gonzalez, H., Olsson, T. & Borg, K. Management of postpolio syndrome. Lancet Neurol. 9, 634–642 (2010).

    Article  PubMed  Google Scholar 

  81. Albers, J. & Bromberg, M. X-linked bulbospinomuscular atrophy (Kennedy's disease) masquerading as lead neuropathy. Muscle Nerve 17, 419–429 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. [No authors listed] AAEE glossary of terms in clinical electromyography. Muscle Nerve 10, G1–G60 (1987).

  83. Eulenburg, A. Ueber eine familiare, durch 6 generationen verfolgbare Form congenitaler Paramyotonie [German]. Neurologisches Centralblatt 5, 265–272 (1886).

    Google Scholar 

  84. Trip, J. et al. Redefining the clinical phenotypes of non-dystrophic myotonic syndromes. J. Neurol. Neurosurg. Psychiatry 80, 647–652 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Fournier, E. et al. Electromyography guides toward subgroups of mutations in muscle channelopathies. Ann. Neurol. 56, 650–661 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Logigian, E. L. et al. Severity, type, and distribution of myotonic discharges are different in type 1 and type 2 myotonic dystrophy. Muscle Nerve 35, 479–485 (2007).

    Article  PubMed  Google Scholar 

  87. Young, N. P., Daube, J. R., Sorenson, E. J. & Milone, M. Absent, unrecognized, and minimal myotonic discharges in myotonic dystrophy type 2. Muscle Nerve 41, 758–762 (2010).

    Article  PubMed  Google Scholar 

  88. Mankodi, A. Myotonic disorders. Neurol. India 56, 298–304 (2008).

    Article  PubMed  Google Scholar 

  89. Hobson-Webb, L. D., Dearmey, S. & Kishnani, P. S. The clinical and electrodiagnostic characteristics of Pompe disease with post-enzyme replacement therapy findings. Clin. Neurophysiol. 122, 2312–2317 (2011).

    Article  PubMed  Google Scholar 

  90. Miller, T. M. Differential diagnosis of myotonic disorders. Muscle Nerve 37, 293–299 (2008).

    Article  PubMed  Google Scholar 

  91. Venables, G. S., Bates, D. & Shaw, D. A. Hypothyroidism with true myotonia. J. Neurol. Neurosurg. Psychiatry 41, 1013–1015 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dromgoole, S. H., Campion, D. S. & Peter, J. B. Myotonia induced by clofibrate and sodium chlorophenoxy isobutyrate. Biochem. Med. 14, 238–240 (1975).

    Article  CAS  PubMed  Google Scholar 

  93. Rosenson, R. Current overview of statin-induced myopathy. Am. J. Med. 116, 408–416 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Blessing, W. & Walsh, J. C. Myotonia precipitated by propanolol therapy. Lancet 309, 73–74 (1977).

    Article  Google Scholar 

  95. Rutkove, S. B. et al. Myotonia in colchicine myoneuropathy. Muscle Nerve 19, 870–875 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Dalakas, M. C. & Hohlfeld, R. Polymyositis and dermatomyositis. Lancet 362, 971–982 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Trip, J. et al. Health status in non-dystrophic myotonias: close relation with pain and fatigue. J .Neurol. 256, 939–947 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brook, J. D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Liquori, C. L. et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293, 864–867 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Mankodi, A. et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell 10, 35–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Todd, P. K. & Paulson, H. L. RNA-mediated neurodegeneration in repeat expansion disorders. Ann. Neurol. 67, 291–300 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Schoser, B. & Timchenko, L. Myotonic dystrophies 1 and 2: complex diseases with complex mechanisms. Curr. Genomics 11, 77–90 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Heatwole, C. R. & Moxley, R. T. The nondystrophic myotonias. Neurotherapeutics 4, 238–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Drost, G. et al. Propagation disturbance of motor unit action potentials during transient paresis in generalized myotonia: a high-density surface EMG study. Brain 124, 352–360 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Matthews, E. et al. The non-dystrophic myotonias: molecular pathogenesis, diagnosis and treatment. Brain 133, 9–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Jacobi, C. et al. Rippling muscle disease: variable phenotype in a family with five afflicted members. Muscle Nerve 41, 128–132 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Torbergsen, T. Rippling muscle disease: a review. Muscle Nerve Suppl. 11, S103–S107 (2002).

    Article  PubMed  Google Scholar 

  108. Betz, R. C. et al. Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease. Nat. Genet. 28, 218–219 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Gazzerro, E., Sotgia, F., Bruno, C., Lisanti, M. P. & Minetti, C. Caveolinopathies: from the biology of caveolin-3 to human diseases. Eur. J. Hum. Genet. 18, 137–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Koul, R. L. et al. Severe autosomal recessive rippling muscle disease. Muscle Nerve 24, 1542–1547 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Schulte-Mattler, W. J. et al. Immune-mediated rippling muscle disease. Neurology 64, 364–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. George, J. S., Harikrishnan, S., Ali, I., Baresi, R. & Hanemann, C. O. Acquired rippling muscle disease in association with myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 81, 125–126 (2009).

    Article  Google Scholar 

  113. Ricker, K. & Moxley, R. Rippling muscle disease. Arch. Neurol. 46, 405–408 (1989).

    Article  CAS  PubMed  Google Scholar 

  114. Lamb, G. D. Rippling muscle disease may be caused by “silent” action potentials in the tubular system of skeletal muscle fibers. Muscle Nerve 31, 652–658 (2005).

    Article  PubMed  Google Scholar 

  115. Vorgerd, M. et al. Phenotypic variability in rippling muscle disease. Neurology 52, 1453–1459 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Mizusawa, H., Takagi, A., Sugita, H. & Toyokura, Y. Mounding phenomenon: an experimental study in vitro. Neurology 33, 90–93 (1983).

    Article  CAS  PubMed  Google Scholar 

  117. Salick, A. I. & Pearson, C. M. Electrical silence of myoedema. Neurology 17, 899–901 (1967).

    Article  CAS  PubMed  Google Scholar 

  118. Taylor, G. F. & Chhuttani, P. N. Myoidema. Br. Med. J. 2, 784–787 (1949).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bhansali, A., Chandran, V., Ramesh, J., Kashyap, A. & Dash, R. J. Acute myoedema: an unusual presenting manifestation of hypothyroid myopathy. Postgrad. Med. J. 76, 99–100 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Morgan, H. G., Barry, R. & Morgan, M. H. Myoedema in anorexia nervosa: a useful clinical sign. Eur. Eat. Disord. Rev. 16, 352–354 (2008).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H. G. Kortman and G. Drost contributed to researching data for and writing of the article. All authors made substantial contributions to discussion of the article content, and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Gea Drost.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary table 1

Peripheral nerve hyperexcitability (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortman, H., Veldink, J. & Drost, G. Positive muscle phenomena—diagnosis, pathogenesis and associated disorders. Nat Rev Neurol 8, 97–107 (2012). https://doi.org/10.1038/nrneurol.2011.226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing