Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cholesterol metabolism in Huntington disease

Abstract

The CNS is rich in cholesterol, which is essential for neuronal development and survival, synapse maturation, and optimal synaptic activity. Alterations in brain cholesterol homeostasis are linked to neurodegeneration. Studies have demonstrated that Huntington disease (HD), a progressive and fatal neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin protein, is associated with changes in cellular cholesterol metabolism. Emerging evidence from human and animal studies indicates that attenuated brain sterol synthesis and accumulation of cholesterol in neuronal membranes represent two distinct mechanisms occurring in the presence of mutant huntingtin that influence neuronal survival. Increased knowledge of how changes in intraneuronal cholesterol metabolism influence the pathogenesis of HD will provide insights into the potential application of brain cholesterol regulation as a therapeutic strategy for this devastating disease.

Key Points

  • The brain is a cholesterol-rich organ, and cholesterol has a critical role in brain development, synaptogenesis, and neuronal activity and survival

  • Disturbances in brain cholesterol homeostasis are implicated in neurodegeneration

  • Attenuated plasma cholesterol levels, reduced brain cholesterol synthesis and cholesterol accumulation in neuronal plasma membranes are observed in patients with Huntington disease (HD) and in animal models of the disease

  • Multiple mechanisms are proposed to underlie cholesterol dysregulation in HD, including impaired activation of sterol regulatory element-binding protein, which regulates cholesterogenic gene expression, and reduced brain-derived neurotrophic factor signaling

  • Disturbances in cholesterol homeostasis may influence neuronal survival and susceptibility to excitotoxicity

  • Targeting of cholesterol metabolism represents a potential avenue for treatment to alleviate some neuronal impairments in HD

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cholesterol metabolism and transport in the CNS.
Figure 2: Influence of mutant huntingtin on the cholesterol biosynthesis pathway.
Figure 3: Influence of mHtt on SREBP-dependent cellular cholesterol synthesis.
Figure 4: Neuronal cholesterol accumulation in the presence of mHtt.
Figure 5: Huntingtin, BDNF trafficking and neuronal cholesterol synthesis.
Figure 6: Potential cholesterol-dependent pathways influencing neuropathology in Huntington disease.

Similar content being viewed by others

References

  1. [No authors listed] A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  2. Zeron, M. M. et al. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 33, 849–860 (2002).

    CAS  PubMed  Google Scholar 

  3. Levine, M. S. et al. Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington's disease. J. Neurosci. Res. 58, 515–532 (1999).

    CAS  PubMed  Google Scholar 

  4. Trushina, E. et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell Biol. 24, 8195–8209 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gauthier, L. R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127–138 (2004).

    CAS  PubMed  Google Scholar 

  6. Graham, R. K. et al. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125, 1179–1191 (2006).

    CAS  PubMed  Google Scholar 

  7. Bjorkhem, I. & Meaney, S. Brain cholesterol: long secret life behind a barrier. Arterioscler. Thromb. Vasc. Biol. 24, 806–815 (2004).

    PubMed  Google Scholar 

  8. Dietschy, J. M. & Turley, S. D. Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J. Lipid Res. 45, 1375–1397 (2004).

    CAS  PubMed  Google Scholar 

  9. Porter, F. D. & Herman, G. E. Malformation syndromes caused by disorders of cholesterol synthesis. J. Lipid Res. 52, 6–34 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vance, J. E. Lipid imbalance in the neurological disorder, Niemann–Pick C disease. FEBS Lett. 580, 5518–5524 (2006).

    CAS  PubMed  Google Scholar 

  11. Puglielli, L., Tanzi, R. E. & Kovacs, D. M. Alzheimer's disease: the cholesterol connection. Nat. Neurosci. 6, 345–351 (2003).

    CAS  PubMed  Google Scholar 

  12. Wolozin, B. Cholesterol and the biology of Alzheimer's disease. Neuron 41, 7–10 (2004).

    CAS  PubMed  Google Scholar 

  13. Ikonen, E. Mechanisms for cellular cholesterol transport: defects and human disease. Physiol. Rev. 86, 1237–1261 (2006).

    CAS  PubMed  Google Scholar 

  14. Clee, S. M. et al. Age and residual cholesterol efflux affect HDL cholesterol levels and coronary artery disease in ABCA1 heterozygotes. J. Clin. Invest. 106, 1263–1270 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet. 37, 161–165 (2005).

    CAS  PubMed  Google Scholar 

  16. Brunham, L. R. et al. β-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat. Med. 13, 340–347 (2007).

    CAS  PubMed  Google Scholar 

  17. Glass, C. K. & Witztum, J. L. Atherosclerosis: the road ahead. Cell 104, 503–516 (2001).

    CAS  PubMed  Google Scholar 

  18. Zlokovic, B. V. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    CAS  PubMed  Google Scholar 

  19. Wilson, J. D. The measurement of the exchangeable pools of cholesterol in the baboon. J. Clin. Invest. 49, 655–665 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dehouck, B. et al. A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J. Cell Biol. 138, 877–889 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Goti, D. et al. Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. J. Neurochem. 76, 498–508 (2001).

    CAS  PubMed  Google Scholar 

  22. Panzenboeck, U. et al. ABCA1 and scavenger receptor class B, type I, are modulators of reverse sterol transport at an in vitro blood–brain barrier constituted of porcine brain capillary endothelial cells. J. Biol. Chem. 277, 42781–42789 (2002).

    CAS  PubMed  Google Scholar 

  23. Panzenboeck, U. et al. Regulatory effects of synthetic liver X receptor- and peroxisome-proliferator activated receptor agonists on sterol transport pathways in polarized cerebrovascular endothelial cells. Int. J. Biochem. Cell Biol. 38, 1314–1329 (2006).

    CAS  PubMed  Google Scholar 

  24. Do, T. M. et al. Direct evidence of abca1-mediated efflux of cholesterol at the mouse blood–brain barrier. Mol. Cell Biochem. doi:10.1007/s11010-011-0910-6.

    CAS  PubMed  Google Scholar 

  25. Karasinska, J. M. et al. Specific loss of brain ABCA1 increases brain cholesterol uptake and influences neuronal structure and function. J. Neurosci. 29, 3579–3589 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Saito, K. et al. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis. Proc. Natl Acad. Sci. USA 106, 8350–8355 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pfrieger, F. W. Role of cholesterol in synapse formation and function. Biochim. Biophys. Acta 1610, 271–280 (2003).

    CAS  PubMed  Google Scholar 

  28. Fünfschilling, U., Saher, G., Xiao, L., Mobius, W. & Nave, K. A. Survival of adult neurons lacking cholesterol synthesis in vivo. BMC Neurosci. 8, 1 (2007).

    PubMed  PubMed Central  Google Scholar 

  29. Barres, B. A. & Smith, S. J. Neurobiology. Cholesterol—making or breaking the synapse. Science 294, 1296–1297 (2001).

    CAS  PubMed  Google Scholar 

  30. Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294, 1354–1357 (2001).

    CAS  PubMed  Google Scholar 

  31. LaDu, M. J. et al. Nascent astrocyte particles differ from lipoproteins in CSF. J. Neurochem. 70, 2070–2081 (1998).

    CAS  PubMed  Google Scholar 

  32. Vance, J. E., Hayashi, H. & Karten, B. Cholesterol homeostasis in neurons and glial cells. Semin. Cell Dev. Biol. 16, 193–212 (2005).

    CAS  PubMed  Google Scholar 

  33. Handelmann, G. E., Boyles, J. K., Weisgraber, K. H., Mahley, R. W. & Pitas, R. E. Effects of apolipoprotein E, β-very low density lipoproteins, and cholesterol on the extension of neurites by rabbit dorsal root ganglion neurons in vitro. J. Lipid Res. 33, 1677–1688 (1992).

    CAS  PubMed  Google Scholar 

  34. de Chaves, E. I., Rusinol, A. E., Vance, D. E., Campenot, R. B. & Vance, J. E. Role of lipoproteins in the delivery of lipids to axons during axonal regeneration. J. Biol. Chem. 272, 30766–30773 (1997).

    CAS  PubMed  Google Scholar 

  35. Ignatius, M. J., Shooter, E. M., Pitas, R. E. & Mahley, R. W. Lipoprotein uptake by neuronal growth cones in vitro. Science 236, 959–962 (1987).

    CAS  PubMed  Google Scholar 

  36. Snipes, G. J., McGuire, C. B., Norden, J. J. & Freeman, J. A. Nerve injury stimulates the secretion of apolipoprotein E by nonneuronal cells. Proc. Natl Acad. Sci. USA 83, 1130–1134 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cartagena, C. M. et al. Cortical injury increases cholesterol 24S hydroxylase (Cyp46) levels in the rat brain. J. Neurotrauma 25, 1087–1098 (2008).

    PubMed  PubMed Central  Google Scholar 

  38. Fukumoto, H., Deng, A., Irizarry, M. C., Fitzgerald, M. L. & Rebeck, G. W. Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver X receptor agonists increases secreted Aβ levels. J. Biol. Chem. 277, 48508–48513 (2002).

    CAS  PubMed  Google Scholar 

  39. Lund, E. G., Guileyardo, J. M. & Russell, D. W. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc. Natl Acad. Sci. USA 96, 7238–7243 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bjorkhem, I., Lutjohann, D., Breuer, O., Sakinis, A. & Wennmalm, A. Importance of a novel oxidative mechanism for elimination of brain cholesterol. Turnover of cholesterol and 24(S)-hydroxycholesterol in rat brain as measured with 18O2 techniques in vivo and in vitro. J. Biol. Chem. 272, 30178–30184 (1997).

    CAS  PubMed  Google Scholar 

  41. Lund, E. G. et al. Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J. Biol. Chem. 278, 22980–22988 (2003).

    CAS  PubMed  Google Scholar 

  42. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

    CAS  PubMed  Google Scholar 

  43. Jiang, Q. et al. ApoE promotes the proteolytic degradation of Aβ. Neuron 58, 681–693 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chu, L. W. et al. A novel intronic polymorphism of ABCA1 gene reveals risk for sporadic Alzheimer's disease in Chinese. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B, 1007–1013 (2007).

    CAS  PubMed  Google Scholar 

  45. Rodriguez-Rodriguez, E. et al. Association of genetic variants of ABCA1 with Alzheimer's disease risk. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B, 964–968 (2007).

    CAS  PubMed  Google Scholar 

  46. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43, 429–435 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat. Genet. 43, 436–444 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Reitz, C. et al. Association of higher levels of high-density lipoprotein cholesterol in elderly individuals and lower risk of late-onset Alzheimer disease. Arch. Neurol. 67, 1491–1497 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Hooghwinkel, G. J., Borri, P. F. & Bruyn, G. W. Biochemical studies in Huntington's chorea. II. Composition of blood lipids. Acta Neurol. Scand. 42, 213–220 (1966).

    CAS  PubMed  Google Scholar 

  50. Maltese, W. A. Cholesterol synthesis in cultured skin fibroblasts from patients with Huntington's disease. Biochem. Med. 32, 144–150 (1984).

    CAS  PubMed  Google Scholar 

  51. Leoni, V. et al. Whole body cholesterol metabolism is impaired in Huntington's disease. Neurosci. Lett. 494, 245–249 (2011).

    CAS  PubMed  Google Scholar 

  52. Sipione, S. et al. Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. Hum. Mol. Genet. 11, 1953–1965 (2002).

    CAS  PubMed  Google Scholar 

  53. Valenza, M. et al. Dysfunction of the cholesterol biosynthetic pathway in Huntington's disease. J. Neurosci. 25, 9932–9939 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. del Toro, D. et al. Altered cholesterol homeostasis contributes to enhanced excitotoxicity in Huntington's disease. J. Neurochem. 115, 153–167 (2010).

    CAS  PubMed  Google Scholar 

  55. Leoni, V. et al. Changes in human plasma levels of the brain specific oxysterol 24S-hydroxycholesterol during progression of multiple sclerosis. Neurosci. Lett. 331, 163–166 (2002).

    CAS  PubMed  Google Scholar 

  56. Lutjohann, D. et al. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J. Lipid Res. 41, 195–198 (2000).

    CAS  PubMed  Google Scholar 

  57. Papassotiropoulos, A. et al. 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J. Psychiatr. Res. 36, 27–32 (2002).

    CAS  PubMed  Google Scholar 

  58. Schonknecht, P. et al. Cerebrospinal fluid 24S-hydroxycholesterol is increased in patients with Alzheimer's disease compared to healthy controls. Neurosci. Lett. 324, 83–85 (2002).

    CAS  PubMed  Google Scholar 

  59. Leoni, V. et al. Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington's disease. Brain 131, 2851–2859 (2008).

    PubMed  Google Scholar 

  60. Valenza, M. et al. Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin mutation. Hum. Mol. Genet. 16, 2187–2198 (2007).

    CAS  PubMed  Google Scholar 

  61. Valenza, M. et al. Progressive dysfunction of the cholesterol biosynthesis pathway in the R6/2 mouse model of Huntington's disease. Neurobiol. Dis. 28, 133–142 (2007).

    CAS  PubMed  Google Scholar 

  62. Valenza, M. et al. Cholesterol defect is marked across multiple rodent models of Huntington's disease and is manifest in astrocytes. J. Neurosci. 30, 10844–10850 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    CAS  PubMed  Google Scholar 

  64. Van Raamsdonk, J. M. et al. Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 14, 1379–1392 (2005).

    CAS  PubMed  Google Scholar 

  65. Van Raamsdonk, J. M., Warby, S. C. & Hayden, M. R. Selective degeneration in YAC mouse models of Huntington disease. Brain Res. Bull. 72, 124–131 (2007).

    CAS  PubMed  Google Scholar 

  66. Trushina, E. et al. Mutant huntingtin inhibits clathrin-independent endocytosis and causes accumulation of cholesterol in vitro and in vivo. Hum. Mol. Genet. 15, 3578–3591 (2006).

    CAS  PubMed  Google Scholar 

  67. Luthi-Carter, R. et al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc. Natl Acad. Sci. USA 107, 7927–7932 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Reid, P. C. et al. A novel cholesterol stain reveals early neuronal cholesterol accumulation in the Niemann–Pick type C1 mouse brain. J. Lipid Res. 45, 582–591 (2004).

    CAS  PubMed  Google Scholar 

  69. Csallany, A. S., Kindom, S. E., Addis, P. B. & Lee, J. H. HPLC method for quantitation of cholesterol and four of its major oxidation products in muscle and liver tissues. Lipids 24, 645–651 (1989).

    CAS  PubMed  Google Scholar 

  70. Carr, T. P., Andresen, C. J. & Rudel, L. L. Enzymatic determination of triglyceride, free cholesterol, and total cholesterol in tissue lipid extracts. Clin. Biochem. 26, 39–42 (1993).

    CAS  PubMed  Google Scholar 

  71. Carlson, S. E. & Goldfarb, S. A sensitive enzymatic method for determination of free and esterified tissue cholesterol. Clin. Chim. Acta 79, 575–582 (1977).

    CAS  PubMed  Google Scholar 

  72. Cattaneo, E., Zuccato, C. & Tartari, M. Normal huntingtin function: an alternative approach to Huntington's disease. Nat. Rev. Neurosci. 6, 919–930 (2005).

    CAS  PubMed  Google Scholar 

  73. Li, S. H. & Li, X. J. Huntingtin–protein interactions and the pathogenesis of Huntington's disease. Trends Genet. 20, 146–154 (2004).

    PubMed  Google Scholar 

  74. Harjes, P. & Wanker, E. E. The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem. Sci. 28, 425–433 (2003).

    CAS  PubMed  Google Scholar 

  75. Sanchez, H. B., Yieh, L. & Osborne, T. F. Cooperation by sterol regulatory element-binding protein and Sp1 in sterol regulation of low density lipoprotein receptor gene. J. Biol. Chem. 270, 1161–1169 (1995).

    CAS  PubMed  Google Scholar 

  76. Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

    CAS  PubMed  Google Scholar 

  77. Rawson, R. B. The SREBP pathway—insights from Insigs and insects. Nat. Rev. Mol. Cell Biol. 4, 631–640 (2003).

    CAS  PubMed  Google Scholar 

  78. Goldstein, J. L. & Brown, M. S. Regulation of the mevalonate pathway. Nature 343, 425–430 (1990).

    CAS  PubMed  Google Scholar 

  79. Suzuki, S. et al. Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development. J. Neurosci. 27, 6417–6427 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zuccato, C. & Cattaneo, E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat. Rev. Neurol. 5, 311–322 (2009).

    CAS  PubMed  Google Scholar 

  81. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000).

    CAS  PubMed  Google Scholar 

  82. Parton, R. G. & Richards, A. A. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4, 724–738 (2003).

    CAS  PubMed  Google Scholar 

  83. Murata, M. et al. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl Acad. Sci. USA 92, 10339–10343 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Thiele, C., Hannah, M. J., Fahrenholz, F. & Huttner, W. B. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat. Cell Biol. 2, 42–49 (2000).

    CAS  PubMed  Google Scholar 

  85. Fu, Y. et al. Expression of caveolin-1 enhances cholesterol efflux in hepatic cells. J. Biol. Chem. 279, 14140–14146 (2004).

    CAS  PubMed  Google Scholar 

  86. Usdin, M. T., Shelbourne, P. F., Myers, R. M. & Madison, D. V. Impaired synaptic plasticity in mice carrying the Huntington's disease mutation. Hum. Mol. Genet. 8, 839–846 (1999).

    CAS  PubMed  Google Scholar 

  87. Klapstein, G. J. et al. Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington's disease transgenic mice. J. Neurophysiol. 86, 2667–2677 (2001).

    CAS  PubMed  Google Scholar 

  88. Ortiz, A. N., Kurth, B. J., Osterhaus, G. L. & Johnson, M. A. Dysregulation of intracellular dopamine stores revealed in the R6/2 mouse striatum. J. Neurochem. 112, 755–761 (2010).

    CAS  PubMed  Google Scholar 

  89. Johnson, M. A. et al. Catecholamine exocytosis is diminished in R6/2 Huntington's disease model mice. J. Neurochem. 103, 2102–2110 (2007).

    CAS  PubMed  Google Scholar 

  90. Chamberlain, L. H., Burgoyne, R. D. & Gould, G. W. SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc. Natl Acad. Sci. USA 98, 5619–5624 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wojcicka, G., Jamroz-Wisniewska, A., Horoszewicz, K. & Beltowski, J. Liver X receptors (LXRs). Part I: structure, function, regulation of activity, and role in lipid metabolism. Postepy Hig. Med. Dosw. (Online) 61, 736–759 (2007).

    Google Scholar 

  92. Joseph, S. B., Castrillo, A., Laffitte, B. A., Mangelsdorf, D. J. & Tontonoz, P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9, 213–219 (2003).

    CAS  PubMed  Google Scholar 

  93. Zelcer, N. & Tontonoz, P. Liver X receptors as integrators of metabolic and inflammatory signaling. J. Clin. Invest. 116, 607–614 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hindinger, C. et al. Liver X receptor activation decreases the severity of experimental autoimmune encephalomyelitis. J. Neurosci. Res. 84, 1225–1234 (2006).

    CAS  PubMed  Google Scholar 

  95. Lefterov, I. et al. Expression profiling in APP23 mouse brain: inhibition of Aβ amyloidosis and inflammation in response to LXR agonist treatment. Mol. Neurodegener. 2, 20 (2007).

    PubMed  PubMed Central  Google Scholar 

  96. Morales, J. R. et al. Activation of liver X receptors promotes neuroprotection and reduces brain inflammation in experimental stroke. Circulation 118, 1450–1459 (2008).

    CAS  PubMed  Google Scholar 

  97. Repa, J. J. et al. Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J. Neurosci. 27, 14470–14480 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sironi, L. et al. Treatment with LXR agonists after focal cerebral ischemia prevents brain damage. FEBS Lett. 582, 3396–3400 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zelcer, N. et al. Attenuation of neuroinflammation and Alzheimer's disease pathology by liver x receptors. Proc. Natl Acad. Sci. USA 104, 10601–10606 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Futter, M. et al. Wild-type but not mutant huntingtin modulates the transcriptional activity of liver X receptors. J. Med. Genet. 46, 438–446 (2009).

    CAS  PubMed  Google Scholar 

  101. Sapp, E. et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J. Neuropathol. Exp. Neurol. 60, 161–172 (2001).

    CAS  PubMed  Google Scholar 

  102. Moller, T. Neuroinflammation in Huntington's disease. J. Neural Transm. 117, 1001–1008 (2010).

    PubMed  Google Scholar 

  103. Allen, J. A., Halverson-Tamboli, R. A. & Rasenick, M. M. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 8, 128–140 (2007).

    CAS  PubMed  Google Scholar 

  104. Li, L., Murphy, T. H., Hayden, M. R. & Raymond, L. A. Enhanced striatal NR2B-containing N-methyl-D-aspartate receptor-mediated synaptic currents in a mouse model of Huntington disease. J. Neurophysiol. 92, 2738–2746 (2004).

    CAS  PubMed  Google Scholar 

  105. Milnerwood, A. J. & Raymond, L. A. Corticostriatal synaptic function in mouse models of Huntington's disease: early effects of huntingtin repeat length and protein load. J. Physiol. 585, 817–831 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zeron, M. M. et al. Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington's disease. Mol. Cell Neurosci. 25, 469–479 (2004).

    CAS  PubMed  Google Scholar 

  107. Valencia, A. et al. Mutant huntingtin and glycogen synthase kinase 3-β accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington's disease. J. Neurosci. Res. 88, 179–190 (2010).

    CAS  PubMed  Google Scholar 

  108. Reynolds, C. H., Betts, J. C., Blackstock, W. P., Nebreda, A. R. & Anderton, B. H. Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3β. J. Neurochem. 74, 1587–1595 (2000).

    CAS  PubMed  Google Scholar 

  109. Sui, Z., Kovacs, A. D. & Maggirwar, S. B. Recruitment of active glycogen synthase kinase-3 into neuronal lipid rafts. Biochem. Biophys. Res. Commun. 345, 1643–1648 (2006).

    CAS  PubMed  Google Scholar 

  110. Hetman, M., Cavanaugh, J. E., Kimelman, D. & Xia, Z. Role of glycogen synthase kinase-3β in neuronal apoptosis induced by trophic withdrawal. J. Neurosci. 20, 2567–2574 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Linseman, D. A. et al. Glycogen synthase kinase-3β phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J. Neurosci. 24, 9993–10002 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ross, C. A. & Tabrizi, S. J. Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 83–98 (2011).

    CAS  PubMed  Google Scholar 

  113. Okamoto, S. et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat. Med. 15, 1407–1413 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. McGuinness, B. et al. Statins for the treatment of dementia. Cochrane Database of Systematic Reviews, Issue 8. Art. No.: CD007514. doi:10.1002/14651858.CD007514.pub2 (2010).

  115. Ponce, J. et al. Simvastatin reduces the association of NMDA receptors to lipid rafts: a cholesterol-mediated effect in neuroprotection. Stroke 39, 1269–1275 (2008).

    CAS  PubMed  Google Scholar 

  116. Butterfield, D. A., Barone, E. & Mancuso, C. Cholesterol-independent neuroprotective and neurotoxic activities of statins: perspectives for statin use in Alzheimer disease and other age-related neurodegenerative disorders. Pharmacol. Res. 64, 180–186 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Oosterveer, M. H., Grefhorst, A., Groen, A. K. & Kuipers, F. The liver X receptor: control of cellular lipid homeostasis and beyond Implications for drug design. Prog. Lipid Res. 49, 343–352 (2010).

    CAS  PubMed  Google Scholar 

  118. Lund, E. G. et al. Different roles of liver X receptor α and β in lipid metabolism: effects of an α-selective and a dual agonist in mice deficient in each subtype. Biochem. Pharmacol. 71, 453–463 (2006).

    CAS  PubMed  Google Scholar 

  119. Madathil, S. K., Nelson, P. T., Saatman, K. E. & Wilfred, B. R. MicroRNAs in CNS injury: potential roles and therapeutic implications. Bioessays 33, 21–26 (2010).

    Google Scholar 

  120. Rayner, K. J. et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 1570–1573 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Najafi-Shoushtari, S. H. et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328, 1566–1569 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Canadian Institutes of Health Research (CIHR MOP-106684 and MOP-84438).

Author information

Authors and Affiliations

Authors

Contributions

J. M. Karasinska researched data for the article and wrote the text. J. M. Karasinska and M. R. Hayden contributed equally to discussions of content, and review and editing of the manuscript before submission.

Corresponding author

Correspondence to Michael R. Hayden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karasinska, J., Hayden, M. Cholesterol metabolism in Huntington disease. Nat Rev Neurol 7, 561–572 (2011). https://doi.org/10.1038/nrneurol.2011.132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing