Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A new neurological focus in neonatal intensive care

Abstract

Advances in the care of high-risk newborn babies have contributed to reduced mortality rates for premature and term births, but the surviving neonates often have increased neurological morbidity. Therapies aimed at reducing the neurological sequelae of birth asphyxia at term have brought hypothermia treatment into the realm of standard care. However, this therapy does not provide complete protection from neurological complications and a need to develop adjunctive therapies for improved neurological outcomes remains. In addition, the care of neurologically impaired neonates, regardless of their gestational age, clearly requires a focused approach to avoid further injury to the brain and to optimize the neurodevelopmental status of the newborn baby at discharge from hospital. This focused approach includes, but is not limited to, monitoring of the patient's brain with amplitude-integrated and continuous video EEG, prevention of infection, developmentally appropriate care, and family support. Provision of dedicated neurocritical care to newborn babies requires a collaborative effort between neonatologists and neurologists, training in neonatal neurology for nurses and future generations of care providers, and the recognition that common neonatal medical problems and intensive care have an effect on the developing brain.

Key Points

  • Clinical trials in brain development and the pathophysiology of brain injury in premature and term neonates promote the development of new therapies for neurological conditions in neonates

  • Amplitude-integrated EEG and near-infrared spectroscopy enable monitoring of brain function during critical illness and improved ability to detect and treat neonatal seizures, and might provide early prognostic information

  • Hypothermia therapy is the only approach proven to decrease morbidity and mortality from neonatal hypoxic–ischemic encephalopathy in term infants; this treatment is being implemented in hospitals around the world

  • In the neonatal neurocritical care model, neonatologists and neurologists work together to care for newborn babies with primary and secondary neurological conditions

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterns of electrocortical background activity observed using aEEG.
Figure 2: MRI scans showing normal findings and examples of brain injuries in term newborn babies.
Figure 3: MRI scans of the brain in preterm newborn babies.

Similar content being viewed by others

References

  1. Hintz, S. R., Kendrick, D. E., Vohr, B. R., Poole, W. K. & Higgins, R. D. Changes in neurodevelopmental outcomes at 18 to 22 months' corrected age among infants of less than 25 weeks' gestational age born in 1993–1999. Pediatrics 115, 1645–1651 (2005).

    PubMed  Google Scholar 

  2. Clark, S. L. & Hankins, G. D. Temporal and demographic trends in cerebral palsy—fact and fiction. Am. J. Obstet. Gynecol. 188, 628–633 (2003).

    PubMed  Google Scholar 

  3. Miller, S. P. & Ferriero, D. M. From selective vulnerability to connectivity: insights from newborn brain imaging. Trends Neurosci. 32, 496–505 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Back, S. A., Riddle, A. & McClure, M. M. Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke 38, 724–730 (2007).

    PubMed  Google Scholar 

  5. Whitelaw, A. et al. Randomized clinical trial of prevention of hydrocephalus after intraventricular hemorrhage in preterm infants: brain-washing versus tapping fluid. Pediatrics 119, e1071–e1078 (2007).

    PubMed  Google Scholar 

  6. Edwards, A. D. et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 340, c363 (2010).

    PubMed Central  PubMed  Google Scholar 

  7. Perlman, J. M. et al. Part 11: Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 122, S516–S538 (2010).

    PubMed  Google Scholar 

  8. Azzopardi, D. Clinical management of the baby with hypoxic ischaemic encephalopathy. Early Hum. Dev. 86, 345–350 (2010).

    PubMed  Google Scholar 

  9. Stola, A. & Perlman, J. Post-resuscitation strategies to avoid ongoing injury following intrapartum hypoxia-ischemia. Semin. Fetal Neonatal Med. 13, 424–431 (2008).

    PubMed  Google Scholar 

  10. Gonzalez, F. F., Fang, A. & Ferriero, D. M. Is erythropoietin the answer? Pediatr. Res. 69, 2–3 (2011).

    PubMed  Google Scholar 

  11. Chang, Y. S. et al. Erythropoietin improves functional and histological outcome in neonatal stroke. Pediatr. Res. 58, 106–111 (2005).

    CAS  PubMed  Google Scholar 

  12. Gonzalez, F. F. et al. Erythropoietin sustains cognitive function and brain volume after neonatal stroke. Dev. Neurosci. 31, 403–411 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Wen, T. C. et al. Gender differences in long-term beneficial effects of erythropoietin given after neonatal stroke in postnatal day-7 rats. Neuroscience 139, 803–811 (2006).

    CAS  PubMed  Google Scholar 

  14. Sun, Y., Calvert, J. W. & Zhang, J. H. Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration. Stroke 36, 1672–1678 (2005).

    CAS  PubMed  Google Scholar 

  15. Osredkar, D., Sall, J. W., Bickler, P. E. & Ferriero, D. M. Erythropoietin promotes hippocampal neurogenesis in in-vitro models of neonatal stroke. Neurobiol. Dis. 38, 259–265 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Aher, S. & Ohlsson, A. Late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database of Systematic Reviews, Issue 3. Art. No.: CD004868. doi:10.1002/14651858.CD004868.pub2 (2006).

  17. Juul, S. E. et al. A phase I/II trial of high-dose erythropoietin in extremely low birth weight infants: pharmacokinetics and safety. Pediatrics 122, 383–391 (2008).

    PubMed  Google Scholar 

  18. Elmahdy, H. et al. Human recombinant erythropoietin in asphyxia neonatorum: pilot trial. Pediatrics 125, e1135–e1142 (2010).

    PubMed  Google Scholar 

  19. Zhu, C. et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics 124, e218–e226 (2009).

    PubMed  Google Scholar 

  20. Faulkner, S. et al. Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in perinatal asphyxia. Ann. Neurol. doi:10.1002/ana.22387.

  21. Ma, J. & Zhang, G. Y. Lithium reduced N-methyl-D-aspartate receptor subunit 2A tyrosine phosphorylation and its interactions with Src and Fyn mediated by PSD-95 in rat hippocampus following cerebral ischemia. Neurosci. Lett. 348, 185–189 (2003).

    CAS  PubMed  Google Scholar 

  22. Dinse, A. et al. Xenon reduces glutamate-, AMPA-, and kainate-induced membrane currents in cortical neurones. Br. J. Anaesth. 94, 479–485 (2005).

    CAS  PubMed  Google Scholar 

  23. Gruss, M. et al. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol. Pharmacol. 65, 443–452 (2004).

    CAS  PubMed  Google Scholar 

  24. Ma, D. et al. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann. Neurol. 58, 182–193 (2005).

    CAS  PubMed  Google Scholar 

  25. Hobbs, C. et al. Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke 39, 1307–1313 (2008).

    PubMed  Google Scholar 

  26. Neuroprotective effects of hypothermia combined with inhaled xenon following perinatal asphyxia (TOBYXe). ClinicalTrials.gov[online], (2009).

  27. Jatana, M., Singh, I., Singh, A. K. & Jenkins, D. Combination of systemic hypothermia and N-acetylcysteine attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr. Res. 59, 684–689 (2006).

    CAS  PubMed  Google Scholar 

  28. Husson, I. et al. Melatoninergic neuroprotection of the murine periventricular white matter against neonatal excitotoxic challenge. Ann. Neurol. 51, 82–92 (2002).

    CAS  PubMed  Google Scholar 

  29. Welin, A. K. et al. Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr. Res. 61, 153–158 (2007).

    CAS  PubMed  Google Scholar 

  30. Hutton, L. C., Abbass, M., Dickinson, H., Ireland, Z. & Walker, D. W. Neuroprotective properties of melatonin in a model of birth asphyxia in the spiny mouse (Acomys cahirinus). Dev. Neurosci. 31, 437–451 (2009).

    CAS  PubMed  Google Scholar 

  31. Bouslama, M. et al. Melatonin prevents learning disorders in brain-lesioned newborn mice. Neuroscience 150, 712–719 (2007).

    CAS  PubMed  Google Scholar 

  32. Olivier, P. et al. Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats. PLoS ONE 4, e7218 (2009).

    Google Scholar 

  33. Kelen, D. & Robertson, N. J. Experimental treatments for hypoxic ischaemic encephalopathy. Early Hum. Dev. 86, 369–377 (2010).

    PubMed  Google Scholar 

  34. Lynch, J. K. Epidemiology and classification of perinatal stroke. Semin. Fetal Neonatal Med. 14, 245–249 (2009).

    PubMed  Google Scholar 

  35. Kersbergen, K. J. et al. Anticoagulation therapy and imaging in neonates with a unilateral thalamic hemorrhage due to cerebral sinovenous thrombosis. Stroke 40, 2754–2760 (2009).

    CAS  PubMed  Google Scholar 

  36. Brouwer, M. J. et al. Ultrasound measurements of the lateral ventricles in neonates: why, how and when? A systematic review. Acta Paediatr. 99, 1298–1306 (2010).

    PubMed  Google Scholar 

  37. Gonzalez, F. F. & Ferriero, D. M. Neuroprotection in the newborn infant. Clin. Perinatol. 36, 859–880 (2009).

    PubMed Central  PubMed  Google Scholar 

  38. Miller, S. P. et al. Seizure-associated brain injury in term newborns with perinatal asphyxia. Neurology 58, 542–548 (2002).

    CAS  PubMed  Google Scholar 

  39. Bartha, A. I. et al. Neonatal seizures: multicenter variability in current treatment practices. Pediatr. Neurol. 37, 85–90 (2007).

    PubMed  Google Scholar 

  40. Bittigau, P. et al. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc. Natl Acad. Sci. 99, 15089–15094 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Painter, M. J. et al. Phenobarbital compared with phenytoin for the treatment of neonatal seizures. N. Engl. J. Med. 341, 485–489 (1999).

    CAS  PubMed  Google Scholar 

  42. Barks, J. D., Liu, Y. Q., Shangguan, Y. & Silverstein, F. S. Phenobarbital augments hypothermic neuroprotection. Pediatr. Res. 67, 532–537 (2010).

    PubMed Central  PubMed  Google Scholar 

  43. Meyn, D. F. Jr, Ness, J., Ambalavanan, N. & Carlo, W. A. Prophylactic phenobarbital and whole-body cooling for neonatal hypoxic-ischemic encephalopathy. J. Pediatr. 157, 334–336 (2010).

    PubMed  Google Scholar 

  44. Sarkar, S. et al. Does phenobarbital improve the effectiveness of therapeutic hypothermia in infants with hypoxic-ischemic encephalopathy? J. Perinatol. doi:jp.10.1038.2011.41.

  45. Liu, Y., Barks, J. D., Xu, G. & Silverstein, F. S. Topiramate extends the therapeutic window for hypothermia-mediated neuroprotection after stroke in neonatal rats. Stroke 35, 1460–1465 (2004).

    CAS  PubMed  Google Scholar 

  46. Herrero, A. I., Del Olmo, N., Gonzalez-Escalada, J. R. & Solis, J. M. Two new actions of topiramate: inhibition of depolarizing GABAA-mediated responses and activation of a potassium conductance. Neuropharmacology 42, 210–220 (2002).

    CAS  PubMed  Google Scholar 

  47. Filippi, L. et al. Topiramate concentrations in neonates treated with prolonged whole body hypothermia for hypoxic ischemic encephalopathy. Epilepsia 50, 2355–2361 (2009).

    CAS  PubMed  Google Scholar 

  48. Cilio, M. R. & Ferriero, D. M. Synergistic neuroprotective therapies with hypothermia. Semin. Fetal Neonatal Med. 15, 293–298 (2010).

    PubMed Central  PubMed  Google Scholar 

  49. Kim, J. S., Kondratyev, A., Tomita, Y. & Gale, K. Neurodevelopmental impact of antiepileptic drugs and seizures in the immature brain. Epilepsia 48 (Suppl. 5), 19–26 (2007).

    CAS  PubMed  Google Scholar 

  50. Maynard, D., Prior, P. F. & Scott, D. F. A continuous monitoring device for cerebral activity. Electroencephalogr. Clin. Neurophysiol. 27, 672–673 (1969).

    CAS  PubMed  Google Scholar 

  51. Bjerre, I., Hellstrom-Westas, L., Rosen, I. & Svenningsen, N. Monitoring of cerebral function after severe asphyxia in infancy. Arch. Dis. Child. 58, 997–1002 (1983).

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Hellstrom-Westas, L. & Rosen, I. Continuous brain-function monitoring: state of the art in clinical practice. Semin. Fetal Neonatal Med. 11, 503–511 (2006).

    PubMed  Google Scholar 

  53. Holmes, G. et al. Prognostic value of the electroencephalogram in neonatal asphyxia. Electroencephalogr. Clin. Neurophysiol. 53, 60–72 (1982).

    CAS  PubMed  Google Scholar 

  54. Biagioni, E. et al. Combined use of electroencephalogram and magnetic resonance imaging in full-term neonates with acute encephalopathy. Pediatrics 107, 461–468 (2001).

    CAS  PubMed  Google Scholar 

  55. Hellstrom-Westas, L., Rosen, I. & Svenningsen, N. W. Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Arch. Dis. Child. Fetal Neonatal Ed. 72, F34–F38 (1995).

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Toet, M. C., Hellstrom-Westas, L., Groenendaal, F., Eken, P. & de Vries, L. S. Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic-ischaemic encephalopathy. Arch. Dis. Child. Fetal Neonatal Ed. 81, F19–F23 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  57. van Rooij, L. G. et al. Recovery of amplitude integrated electroencephalographic background patterns within 24 hours of perinatal asphyxia. Arch. Dis. Child. Fetal Neonatal Ed. 90, F245–F251 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Osredkar, D. et al. Sleep-wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic-ischemic encephalopathy. Pediatrics 115, 327–332 (2005).

    PubMed  Google Scholar 

  59. Thoresen, M., Hellstrom-Westas, L., Liu, X. & de Vries, L. S. Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics 126, e131–e139 (2010).

    PubMed  Google Scholar 

  60. Nash, K. B. et al. Video-EEG monitoring in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neurology 76, 556–562 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Gunn, A. J. et al. Therapeutic hypothermia changes the prognostic value of clinical evaluation of neonatal encephalopathy. J. Pediatr. 152, 55–58, 58 e51 (2008).

    PubMed  Google Scholar 

  62. Toet, M. C., Lemmers, P. M., van Schelven, L. J. & van Bel, F. Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome. Pediatrics 117, 333–339 (2006).

    PubMed  Google Scholar 

  63. Malone, A. et al. Interobserver agreement in neonatal seizure identification. Epilepsia 50, 2097–2101 (2009).

    PubMed  Google Scholar 

  64. Jensen, F. E. Neonatal seizures: an update on mechanisms and management. Clin. Perinatol 36, 881–900, vii (2009).

    PubMed Central  PubMed  Google Scholar 

  65. Holmes, G. L. & Ben-Ari, Y. Seizures in the developing brain: perhaps not so benign after all. Neuron 21, 1231–1234 (1998).

    CAS  PubMed  Google Scholar 

  66. Holmes, G. L. & Ben-Ari, Y. The neurobiology and consequences of epilepsy in the developing brain. Pediatr. Res. 49, 320–325 (2001).

    CAS  PubMed  Google Scholar 

  67. van Rooij, L. G. et al. Effect of treatment of subclinical neonatal seizures detected with aEEG: randomized, controlled trial. Pediatrics 125, e358–e366 (2010).

    PubMed  Google Scholar 

  68. Garfinkle, J. & Shevell, M. I. Cerebral palsy, developmental delay, and epilepsy after neonatal seizures. Pediatr. Neurol. 44, 88–96 (2011).

    PubMed  Google Scholar 

  69. Bjorkman, S. T., Miller, S. M., Rose, S. E., Burke, C. & Colditz, P. B. Seizures are associated with brain injury severity in a neonatal model of hypoxia-ischemia. Neuroscience 166, 157–167 (2010).

    CAS  PubMed  Google Scholar 

  70. Glass, H. C. et al. Clinical neonatal seizures are independently associated with outcome in infants at risk for hypoxic-ischemic brain injury. J. Pediatr. 155, 318–323 (2009).

    PubMed Central  PubMed  Google Scholar 

  71. van Wezel-Meijler, G., Steggerda, S. J. & Leijser, L. M. Cranial ultrasonography in neonates: role and limitations. Semin. Perinatol 34, 28–38 (2010).

    PubMed  Google Scholar 

  72. El-Dib, M., Massaro, A. N., Bulas, D. & Aly, H. Neuroimaging and neurodevelopmental outcome of premature infants. Am. J. Perinatol 27, 803–818 (2010).

    PubMed  Google Scholar 

  73. van Wezel-Meijler, G. et al. Magnetic resonance imaging of the brain in newborn infants: practical aspects. Early Hum. Dev. 85, 85–92 (2009).

    PubMed  Google Scholar 

  74. Dumoulin, C. L. et al. Magnetic resonance imaging compatible neonate incubator. Magn. Reson. Engineering 15, 117–128 (2002).

    Google Scholar 

  75. Mathur, A. M., Neil, J. J., McKinstry, R. C. & Inder, T. E. Transport, monitoring, and successful brain MR imaging in unsedated neonates. Pediatr. Radiol. 38, 260–264 (2008).

    PubMed  Google Scholar 

  76. Rutherford, M. A. et al. Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology 52, 505–521 (2010).

    PubMed  Google Scholar 

  77. Shah, D. K. et al. Adverse neurodevelopment in preterm infants with postnatal sepsis or necrotizing enterocolitis is mediated by white matter abnormalities on magnetic resonance imaging at term. J. Pediatr. 153, 170–175 (2008).

    PubMed  Google Scholar 

  78. Glass, H. C. et al. Recurrent postnatal infections are associated with progressive white matter injury in premature infants. Pediatrics 122, 299–305 (2008).

    PubMed  Google Scholar 

  79. Anjari, M. et al. The association of lung disease with cerebral white matter abnormalities in preterm infants. Pediatrics 124, 268–276 (2009).

    PubMed  Google Scholar 

  80. Bonifacio, S. L. et al. Extreme premature birth is not associated with impaired development of brain microstructure. J. Pediatr. 157, 726–732.e1 (2010).

    PubMed Central  PubMed  Google Scholar 

  81. Schmidt, B. et al. Long-term effects of caffeine therapy for apnea of prematurity. N. Engl. J. Med. 357, 1893–1902 (2007).

    CAS  PubMed  Google Scholar 

  82. Doyle, L. W. et al. Caffeine and brain development in very preterm infants. Ann. Neurol. 68, 734–742 (2010).

    CAS  PubMed  Google Scholar 

  83. Thayyil, S. et al. Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics 125, e382–e395 (2010).

    PubMed  Google Scholar 

  84. Azzopardi, D. & Edwards, A. D. Magnetic resonance biomarkers of neuroprotective effects in infants with hypoxic ischemic encephalopathy. Semin. Fetal Neonatal Med. 15, 261–269 (2010).

    PubMed  Google Scholar 

  85. Wartenberg, K. E. et al. Impact of medical complications on outcome after subarachnoid hemorrhage. Crit. Care Med. 34, 617–623 (2006).

    PubMed  Google Scholar 

  86. Diez-Tejedor, E. & Fuentes, B. Acute care in stroke: the importance of early intervention to achieve better brain protection. Cerebrovascular Diseases 17 (Suppl. 1), 130–137 (2004).

    CAS  PubMed  Google Scholar 

  87. Mirski, M. A., Chang, C. W. & Cowan, R. Impact of a neuroscience intensive care unit on neurosurgical patient outcomes and cost of care: evidence-based support for an intensivist-directed specialty ICU model of care. J. Neurosurg. Anesthesiol. 13, 83–92 (2001).

    CAS  PubMed  Google Scholar 

  88. Suarez, J. I. Outcome in neurocritical care: advances in monitoring and treatment and effect of a specialized neurocritical care team. Crit. Care Med. 34, S232–S238 (2006).

    PubMed  Google Scholar 

  89. Varelas, P. N. et al. Impact of a neurointensivist on outcomes in patients with head trauma treated in a neurosciences intensive care unit. J. Neurosurg. 104, 713–719 (2006).

    PubMed  Google Scholar 

  90. Diringer, M. N. & Edwards, D. F. Admission to a neurologic/neurosurgical intensive care unit is associated with reduced mortality rate after intracerebral hemorrhage. Crit. Care Med. 29, 635–640 (2001).

    CAS  PubMed  Google Scholar 

  91. Solomon, R. A., Mayer, S. A. & Tarmey, J. J. Relationship between the volume of craniotomies for cerebral aneurysm performed at New York state hospitals and in-hospital mortality. Stroke 27, 13–17 (1996).

    CAS  PubMed  Google Scholar 

  92. Berman, M. F., Solomon, R. A., Mayer, S. A., Johnston, S. C. & Yung, P. P. Impact of hospital-related factors on outcome after treatment of cerebral aneurysms. Stroke 34, 2200–2207 (2003).

    PubMed  Google Scholar 

  93. Patel, H. C. et al. Specialist neurocritical care and outcome from head injury. Intensive Care Med. 28, 547–553 (2002).

    PubMed  Google Scholar 

  94. Elf, K., Nilsson, P. & Enblad, P. Outcome after traumatic brain injury improved by an organized secondary insult program and standardized neurointensive care. Crit. Care Med. 30, 2129–2134 (2002).

    PubMed  Google Scholar 

  95. Clayton, T. J., Nelson, R. J. & Manara, A. R. Reduction in mortality from severe head injury following introduction of a protocol for intensive care management. Br. J. Anaesth. 93, 761–767 (2004).

    CAS  PubMed  Google Scholar 

  96. Organised inpatient (stroke unit) care for stroke. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD000197. doi:10.1002/14651858.CD000197.pub2 (2007).

  97. Glass, H. C. et al. Neurocritical care for neonates. Neurocrit. Care 12, 421–429 (2010).

    PubMed Central  PubMed  Google Scholar 

  98. McQuillen, P. S. & Miller, S. P. Congenital heart disease and brain development. Ann. NY Acad. Sci. 1184, 68–86 (2010).

    CAS  PubMed  Google Scholar 

  99. Lester, B. M. et al. Infant neurobehavioral development. Semin. Perinatol. 35, 8–19 (2011).

    PubMed Central  PubMed  Google Scholar 

  100. Bustani, P. C. Developmental care: does it make a difference? Arch. Dis. Child. Fetal Neonatal Ed. 93, F317–F321 (2008).

    CAS  PubMed  Google Scholar 

  101. Conde-Agudelo, A., Belizan, J. M. & Diaz-Rossello, J. Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. Cochrane Database of Systematic Reviews, Issue 3. Art. No.: CD002771. doi:10.1002/14651858.CD002771.pub2 (2011).

  102. Maguire, C. M. et al. Effects of individualized developmental care in a randomized trial of preterm infants <32 weeks. Pediatrics 124, 1021–1030 (2009).

    PubMed  Google Scholar 

  103. Peters, K. L. et al. Improvement of short- and long-term outcomes for very low birth weight infants: Edmonton NIDCAP trial. Pediatrics 124, 1009–1020 (2009).

    PubMed  Google Scholar 

  104. McAnulty, G. B. et al. Effects of the Newborn Individualized Developmental Care and Assessment Program (NIDCAP) at age 8 years: preliminary data. Clin. Pediatr. (Phila.) 49, 258–270 (2009).

    Google Scholar 

  105. Als, H. et al. Early experience alters brain function and structure. Pediatrics 113, 846–857 (2004).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D. M. Ferriero, H. C. Glass, S. Peloquin and S. L. Bonifacio contributed equally to researching data for the article, writing the article, and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Sonia L. Bonifacio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonifacio, S., Glass, H., Peloquin, S. et al. A new neurological focus in neonatal intensive care. Nat Rev Neurol 7, 485–494 (2011). https://doi.org/10.1038/nrneurol.2011.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing