Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem cell transplantation in multiple sclerosis: current status and future prospects

Abstract

This article provides an overview of the current knowledge relating to the potential use of transplanted stem cells in the treatment of patients with multiple sclerosis (MS). Two types of stem cells, CNS-derived neural stem/precursor cells (NPCs) and bone marrow-derived mesenchymal stem cells (MSCs) are considered to provide reproducible and robust therapeutic effects when intravenously or intrathecally injected into both rodents and primates with experimental autoimmune encephalomyelitis. Furthermore, preliminary safety data concerning the use of intrathecally injected autologous MSCs in patients with progressive MS are available. We discuss how the data gathered to date challenge the narrow view that the therapeutic effects of NPCs and MSCs observed in the treatment of MS are accomplished solely by cell replacement. Both types of stem cell, when transplanted systemically, might instead influence disease outcome by releasing a plethora of factors that are immunomodulatory or neuroprotective, thereby directly or indirectly influencing the regenerative properties of intrinsic CNS stem/precursor cells.

Key Points

  • Therapies based on neural stem/precursor cells (NPCs) or mesenchymal stem cells (MSCs) might limit neuronal damage in patients with multiple sclerosis (MS) by directly or indirectly promoting neuroprotection via remyelination and immunomodulation

  • Intravenously or intrathecally delivered NPCs have immunomodulatory effects in both the CNS and the periphery; NPCs probably contribute directly to remyelination when delivered into areas of demyelination

  • Intravenously delivered MSCs have peripheral immunomodulatory effects and might indirectly influence remyelination

  • Exploratory trials using MSCs and NPCs to treat early secondary progressive MS that is refractory to conventional therapy should now be considered

  • The International Society for Stem Cell Research guidelines should be strictly followed, and patients should be discouraged from approaching non-regulated 'stem cell clinics'

  • All trials should be prospectively registered, and sharing of methodologies and data should be encouraged

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Therapeutic plasticity of stem cells.

Similar content being viewed by others

References

  1. Saccardi, R. et al. Autologous stem cell transplantation for progressive multiple sclerosis: update of the European Group for Blood and Marrow Transplantation autoimmune diseases working party database. Mult. Scler. 12, 814–823 (2006).

    CAS  PubMed  Google Scholar 

  2. Gratwohl, A. et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transplant. 35, 869–879 (2005).

    CAS  PubMed  Google Scholar 

  3. Burt, R. K. et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing–remitting multiple sclerosis: a phase I/II study. Lancet Neurol. 8, 244–253 (2009).

    CAS  PubMed  Google Scholar 

  4. Mancardi, G. & Saccardi, R. Autologous haematopoietic stem-cell transplantation in multiple sclerosis. Lancet Neurol. 7, 626–636 (2008).

    PubMed  Google Scholar 

  5. Fox, R. J. & Ransohoff, R. M. New directions in MS therapeutics: vehicles of hope. Trends Immunol. 25, 632–636 (2004).

    CAS  PubMed  Google Scholar 

  6. Compston, A. & Coles, A. Multiple sclerosis. Lancet 372, 1502–1517 (2008).

    CAS  PubMed  Google Scholar 

  7. Giacomini, P. S., Darlington, P. J. & Bar-Or, A. Emerging multiple sclerosis disease-modifying therapies. Curr. Opin. Neurol. 22, 226–232 (2009).

    CAS  PubMed  Google Scholar 

  8. Centonze, D. et al. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J. Neurosci. 29, 3442–3452 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Palace, J. Neuroprotection and repair. J. Neurol. Sci. 265, 21–25 (2008).

    CAS  PubMed  Google Scholar 

  10. Patrikios, P. et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129, 3165–3172 (2006).

    PubMed  Google Scholar 

  11. Patani, R., Balaratnam, M., Vora, A. & Reynolds, R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol. 33, 277–287 (2007).

    CAS  PubMed  Google Scholar 

  12. Franklin, R. J. & Ffrench-Constant, C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839–855 (2008).

    CAS  PubMed  Google Scholar 

  13. Pluchino, S. et al. Persistent inflammation alters the function of the endogenous brain stem cell compartment. Brain 131, 2564–2578 (2008).

    PubMed  PubMed Central  Google Scholar 

  14. Mi, S. et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann. Neurol. 65, 304–315 (2009).

    CAS  PubMed  Google Scholar 

  15. Fancy, S. P. et al. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev. 23, 1571–1585 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dubois-Dalcq, M. et al. From fish to man: understanding endogenous remyelination in central nervous system demyelinating diseases. Brain 131, 1686–1700 (2008).

    PubMed  Google Scholar 

  17. Uccelli, A., Zappia, E., Benvenuto, F., Frassoni, F. & Mancardi, G. Stem cells in inflammatory demyelinating disorders: a dual role for immunosuppression and neuroprotection. Expert Opin. Biol. Ther. 6, 17–22 (2006).

    CAS  PubMed  Google Scholar 

  18. Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8, 726–736 (2008).

    CAS  PubMed  Google Scholar 

  19. Zappia, E. et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106, 1755–1761 (2005).

    CAS  PubMed  Google Scholar 

  20. Gerdoni, E. et al. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann. Neurol. 61, 219–227 (2007).

    CAS  PubMed  Google Scholar 

  21. Kassis, I. et al. Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch. Neurol. 65, 753–761 (2008).

    PubMed  Google Scholar 

  22. Pluchino, S. et al. Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS One 4, e5959 (2009).

    PubMed  PubMed Central  Google Scholar 

  23. Pluchino, S. et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436, 266–271 (2005).

    CAS  PubMed  Google Scholar 

  24. Pluchino, S. et al. Human neural stem cells ameliorate autoimmune encephalomyelitis in non human primates. Ann. Neurol. 66, 343–354 (2009).

    CAS  PubMed  Google Scholar 

  25. Einstein, O. et al. Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol. Cell Neurosci. 24, 1074–1082 (2003).

    CAS  PubMed  Google Scholar 

  26. Einstein, O. et al. Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis. Exp. Neurol. 198, 275–284 (2006).

    CAS  PubMed  Google Scholar 

  27. Aharonowiz, M. et al. Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS ONE 3, e3145 (2008).

    PubMed  PubMed Central  Google Scholar 

  28. Yang, J. et al. Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J. Clin. Invest. 119, 3678–3691 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fainstein, N. et al. Neural precursor cells inhibit multiple inflammatory signals. Mol. Cell Neurosci. 39, 335–341 (2008).

    CAS  PubMed  Google Scholar 

  30. Einstein, O. et al. Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann. Neurol. 61, 209–218 (2007).

    CAS  PubMed  Google Scholar 

  31. Ben-Hur, T. et al. Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41, 73–80 (2003).

    PubMed  Google Scholar 

  32. Pluchino, S. et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422, 688–694 (2003).

    CAS  PubMed  Google Scholar 

  33. Li, L. & Xie, T. Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol. 21, 605–631 (2005).

    CAS  PubMed  Google Scholar 

  34. Martino, G. & Pluchino, S. The therapeutic potential of neural stem cells. Nat. Rev. Neurosci. 7, 395–406 (2006).

    CAS  PubMed  Google Scholar 

  35. Gregory, C. A., Prockop, D. J. & Spees, J. L. Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation. Exp. Cell Res. 306, 330–335 (2005).

    CAS  PubMed  Google Scholar 

  36. Le Blanc, K. et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371, 1579–1586 (2008).

    CAS  PubMed  Google Scholar 

  37. Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W. & Dazzi, F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105, 2821–2827 (2005).

    CAS  PubMed  Google Scholar 

  38. Corcione, A. et al. Human mesenchymal stem cells modulate B-cell functions. Blood 107, 367–372 (2006).

    CAS  PubMed  Google Scholar 

  39. Pereira, R. F. et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl Acad. Sci. USA 92, 4857–4861 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Caplan, A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213, 341–347 (2007).

    CAS  PubMed  Google Scholar 

  41. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    CAS  PubMed  Google Scholar 

  42. Anghileri, E. et al. Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev. 17, 909–916 (2008).

    CAS  PubMed  Google Scholar 

  43. Kopen, G. C., Prockop, D. J. & Phinney, D. G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl Acad. Sci. USA 96, 10711–10716 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Phinney, D. G. & Prockop, D. J. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25, 2896–2902 (2007).

    PubMed  Google Scholar 

  45. Hunt, D. P. et al. Effects of direct transplantation of multipotent mesenchymal stromal/stem cells into the demyelinated spinal cord. Cell Transplant. 17, 865–873 (2008).

    CAS  PubMed  Google Scholar 

  46. Bai, L. et al. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57, 1192–1203 (2009).

    PubMed  PubMed Central  Google Scholar 

  47. Sessarego, N. et al. Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica 93, 339–346 (2008).

    PubMed  Google Scholar 

  48. Horwitz, E. M. et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc. Natl Acad. Sci. USA 99, 8932–8937 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lazarus, H. M. Bone marrow transplantation in low-grade non-Hodgkin's lymphoma. Leuk. Lymphoma 17, 199–210 (1995).

    CAS  PubMed  Google Scholar 

  50. Lazarus, H. M. et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol. Blood Marrow Transplant. 11, 389–398 (2005).

    PubMed  Google Scholar 

  51. Karussis, D. & Kassis, I. The potential use of stem cells in multiple sclerosis: an overview of the preclinical experience. Clin. Neurol. Neurosurg. 110, 889–896 (2008).

    PubMed  Google Scholar 

  52. Mohyeddin Bonab, M. et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J. Immunol. 4, 50–57 (2007).

    PubMed  Google Scholar 

  53. Freedman, M. S. et al. The Therapeutic Potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: Consensus report of the International MSCT Study Group. Mult. Scler. doi:10.1177/1352458509359727.

    PubMed  Google Scholar 

  54. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    CAS  PubMed  Google Scholar 

  55. Politi, L. S. et al. Magnetic resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis. Stem Cells 25, 2583–2592 (2007).

    PubMed  Google Scholar 

  56. Ben-Hur, T. et al. Serial in vivo MR tracking of magnetically labeled neural spheres transplanted in chronic EAE mice. Magn. Reson. Med. 57, 164–171 (2007).

    PubMed  Google Scholar 

  57. Lachapelle, F. et al. Transplantation of CNS fragments into the brain of shiverer mutant mice: extensive myelination by implanted oligodendrocytes. I. Immunohistochemical studies. Dev. Neurosci. 6, 325–334 (1983).

    PubMed  Google Scholar 

  58. Groves, A. K. et al. Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature 362, 453–455 (1993).

    CAS  PubMed  Google Scholar 

  59. Zhang, S. C., Ge, B. & Duncan, I. D. Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc. Natl Acad. Sci. USA 96, 4089–4094 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Windrem, M. S. et al. Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2, 553–565 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Archer, D. R., Cuddon, P. A., Lipsitz, D. & Duncan, I. D. Myelination of the canine central nervous system by glial cell transplantation: a model for repair of human myelin disease. Nat. Med. 3, 54–59 (1997).

    CAS  PubMed  Google Scholar 

  62. Smith, E. J., Blakemore, W. F. & McDonald, W. I. Central remyelination restores secure conduction. Nature 280, 395–396 (1979).

    CAS  PubMed  Google Scholar 

  63. Utzschneider, D. A., Archer, D. R., Kocsis, J. D., Waxman, S. G. & Duncan, I. D. Transplantation of glial cells enhances action potential conduction of amyelinated spinal cord axons in the myelin-deficient rat. Proc. Natl Acad. Sci. USA 91, 53–57 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jeffery, N. D. & Blakemore, W. F. Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain 120, 27–37 (1997).

    PubMed  Google Scholar 

  65. Franklin, R. J. & Blakemore, W. F. To what extent is oligodendrocyte progenitor migration a limiting factor in the remyelination of multiple sclerosis lesions? Mult. Scler. 3, 84–87 (1997).

    CAS  PubMed  Google Scholar 

  66. Nistor, G. I., Totoiu, M. O., Haque, N., Carpenter, M. K. & Keirstead, H. S. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49, 385–396 (2005).

    PubMed  Google Scholar 

  67. Hu, B. Y., Du, Z. W., Li, X. J., Ayala, M. & Zhang, S. C. Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development 136, 1443–1452 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Keirstead, H. S. et al. Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation. J. Neurosci. 19, 7529–7536 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hammang, J. P., Archer, D. R. & Duncan, I. D. Myelination following transplantation of EGF-responsive neural stem cells into a myelin-deficient environment. Exp. Neurol. 147, 84–95 (1997).

    CAS  PubMed  Google Scholar 

  70. Kerschensteiner, M., Stadelmann, C., Dechant, G., Wekerle, H. & Hohlfeld, R. Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann. Neurol. 53, 292–304 (2003).

    CAS  PubMed  Google Scholar 

  71. Hayden, E. C. California institute to help stem-cell biotechs. Nature 455, 436–437 (2008).

    CAS  PubMed  Google Scholar 

  72. Muller, F. J., Snyder, E. Y. & Loring, J. F. Gene therapy: can neural stem cells deliver? Nat. Rev. Neurosci. 7, 75–84 (2006).

    PubMed  Google Scholar 

  73. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  74. Franklin, R. J. & Barnett, S. C. Olfactory ensheathing cells and CNS regeneration: the sweet smell of success? Neuron 28, 15–18 (2000).

    CAS  PubMed  Google Scholar 

  75. Vincent, A. J., West, A. K. & Chuah, M. I. Morphological and functional plasticity of olfactory ensheathing cells. J. Neurocytol. 34, 65–80 (2005).

    PubMed  Google Scholar 

  76. Franklin, R. J., Gilson, J. M., Franceschini, I. A. & Barnett, S. C. Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia 17, 217–224 (1996).

    CAS  PubMed  Google Scholar 

  77. Barnett, S. C. et al. Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain 123, 1581–1588 (2000).

    PubMed  Google Scholar 

  78. Imaizumi, T., Lankford, K. L., Waxman, S. G., Greer, C. A. & Kocsis, J. D. Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. J. Neurosci. 18, 6176–6185 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kato, T., Honmou, O., Uede, T., Hashi, K. & Kocsis, J. D. Transplantation of human olfactory ensheathing cells elicits remyelination of demyelinated rat spinal cord. Glia 30, 209–218 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Smith, P. M., Lakatos, A., Barnett, S. C., Jeffery, N. D. & Franklin, R. J. Cryopreserved cells isolated from the adult canine olfactory bulb are capable of extensive remyelination following transplantation into the adult rat CNS. Exp. Neurol. 176, 402–406 (2002).

    CAS  PubMed  Google Scholar 

  81. Deng, C. et al. Survival and migration of human and rat olfactory ensheathing cells in intact and injured spinal cord. J. Neurosci. Res. 83, 1201–1212 (2006).

    CAS  PubMed  Google Scholar 

  82. Lakatos, A., Barnett, S. C. & Franklin, R. J. Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than Schwann cells following transplantation into adult CNS white matter. Exp. Neurol. 184, 237–246 (2003).

    CAS  PubMed  Google Scholar 

  83. Jeffery, N. D., Lakatos, A. & Franklin, R. J. Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. J. Neurotrauma 22, 1282–1293 (2005).

    PubMed  Google Scholar 

  84. Feron, F. et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128, 2951–2960 (2005).

    CAS  PubMed  Google Scholar 

  85. Blakemore, W. F. Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature 266, 68–69 (1977).

    CAS  PubMed  Google Scholar 

  86. Pluchino, S., Furlan, R. & Martino, G. Cell-based remyelinating therapies in multiple sclerosis: evidence from experimental studies. Curr. Opin. Neurol. 17, 247–255 (2004).

    PubMed  Google Scholar 

  87. Zujovic, V. et al. Boundary cap cells are highly competitive for CNS remyelination: fast migration and efficient differentiation in PNS and CNS myelin-forming cells. Stem Cells doi: 10.1002/stem.290.

  88. Woodhoo, A. et al. Schwann cell precursors: a favourable cell for myelin repair in the central nervous system. Brain 130, 2175–2185 (2007).

    CAS  PubMed  Google Scholar 

  89. McKenzie, I. A., Biernaskie, J., Toma, J. G., Midha, R. & Miller, F. D. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J. Neurosci. 26, 6651–6660 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hunt, D. P. et al. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin. Stem Cells 26, 163–172 (2008).

    CAS  PubMed  Google Scholar 

  91. Lee, G. et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat. Biotechnol. 25, 1468–1475 (2007).

    CAS  PubMed  Google Scholar 

  92. Mathews, D. J. et al. Cell-based interventions for neurologic conditions: ethical challenges for early human trials. Neurology 71, 288–293 (2008).

    CAS  PubMed  Google Scholar 

  93. Hyun, I. et al. New ISSCR guidelines underscore major principles for responsible translational stem cell research. Cell Stem Cell 3, 607–609 (2008).

    CAS  PubMed  Google Scholar 

  94. Trapp, B. D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).

    CAS  PubMed  Google Scholar 

  95. Compston, A. & Coles, A. Multiple sclerosis. Lancet 359, 1221–1231 (2002).

    PubMed  Google Scholar 

  96. Noseworthy, J. H., Lucchinetti, C., Rodriguez, M. & Weinshenker, B. G. Multiple sclerosis. N. Engl. J. Med. 343, 938–952 (2000).

    CAS  PubMed  Google Scholar 

  97. Sadovnick, A. D., Ebers, G. C., Dyment, D. A. & Risch, N. J. Evidence for genetic basis of multiple sclerosis. The Canadian Collaborative Study Group. Lancet 347, 1728–1730 (1996).

    CAS  PubMed  Google Scholar 

  98. Ebers, G. C. & Sadovnick, A. D. The role of genetic factors in multiple sclerosis susceptibility. J. Neuroimmunol. 54, 1–17 (1994).

    CAS  PubMed  Google Scholar 

  99. Sadovnick, A. D. & Ebers, G. C. Epidemiology of multiple sclerosis: a critical overview. Can. J. Neurol. Sci. 20, 17–29 (1993).

    CAS  PubMed  Google Scholar 

  100. Hochedlinger, K. & Plath, K. Epigenetic reprogramming and induced pluripotency. Development 136, 509–523 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Doug Brown and Lee Dunster from the UK MS Society, John Richert and Patricia O'Looney from the National MS Society (USA), Tim Coetzee from Fast Forward, Mario Battaglia from the Italian MS Society and Emanuelle Plassart-Schiess from the French MS Society for calling the Stem Cells in Multiple Sclerosis (STEMS) Consensus Meeting and supporting its organization. G. Martino and R. J. M. Franklin contributed equally to this article.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Gianvito Martino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martino, G., Franklin, R., Van Evercooren, A. et al. Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat Rev Neurol 6, 247–255 (2010). https://doi.org/10.1038/nrneurol.2010.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.35

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing