Abstract
This article provides an overview of the current knowledge relating to the potential use of transplanted stem cells in the treatment of patients with multiple sclerosis (MS). Two types of stem cells, CNS-derived neural stem/precursor cells (NPCs) and bone marrow-derived mesenchymal stem cells (MSCs) are considered to provide reproducible and robust therapeutic effects when intravenously or intrathecally injected into both rodents and primates with experimental autoimmune encephalomyelitis. Furthermore, preliminary safety data concerning the use of intrathecally injected autologous MSCs in patients with progressive MS are available. We discuss how the data gathered to date challenge the narrow view that the therapeutic effects of NPCs and MSCs observed in the treatment of MS are accomplished solely by cell replacement. Both types of stem cell, when transplanted systemically, might instead influence disease outcome by releasing a plethora of factors that are immunomodulatory or neuroprotective, thereby directly or indirectly influencing the regenerative properties of intrinsic CNS stem/precursor cells.
Key Points
-
Therapies based on neural stem/precursor cells (NPCs) or mesenchymal stem cells (MSCs) might limit neuronal damage in patients with multiple sclerosis (MS) by directly or indirectly promoting neuroprotection via remyelination and immunomodulation
-
Intravenously or intrathecally delivered NPCs have immunomodulatory effects in both the CNS and the periphery; NPCs probably contribute directly to remyelination when delivered into areas of demyelination
-
Intravenously delivered MSCs have peripheral immunomodulatory effects and might indirectly influence remyelination
-
Exploratory trials using MSCs and NPCs to treat early secondary progressive MS that is refractory to conventional therapy should now be considered
-
The International Society for Stem Cell Research guidelines should be strictly followed, and patients should be discouraged from approaching non-regulated 'stem cell clinics'
-
All trials should be prospectively registered, and sharing of methodologies and data should be encouraged
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Saccardi, R. et al. Autologous stem cell transplantation for progressive multiple sclerosis: update of the European Group for Blood and Marrow Transplantation autoimmune diseases working party database. Mult. Scler. 12, 814–823 (2006).
Gratwohl, A. et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transplant. 35, 869–879 (2005).
Burt, R. K. et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing–remitting multiple sclerosis: a phase I/II study. Lancet Neurol. 8, 244–253 (2009).
Mancardi, G. & Saccardi, R. Autologous haematopoietic stem-cell transplantation in multiple sclerosis. Lancet Neurol. 7, 626–636 (2008).
Fox, R. J. & Ransohoff, R. M. New directions in MS therapeutics: vehicles of hope. Trends Immunol. 25, 632–636 (2004).
Compston, A. & Coles, A. Multiple sclerosis. Lancet 372, 1502–1517 (2008).
Giacomini, P. S., Darlington, P. J. & Bar-Or, A. Emerging multiple sclerosis disease-modifying therapies. Curr. Opin. Neurol. 22, 226–232 (2009).
Centonze, D. et al. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J. Neurosci. 29, 3442–3452 (2009).
Palace, J. Neuroprotection and repair. J. Neurol. Sci. 265, 21–25 (2008).
Patrikios, P. et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129, 3165–3172 (2006).
Patani, R., Balaratnam, M., Vora, A. & Reynolds, R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol. 33, 277–287 (2007).
Franklin, R. J. & Ffrench-Constant, C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839–855 (2008).
Pluchino, S. et al. Persistent inflammation alters the function of the endogenous brain stem cell compartment. Brain 131, 2564–2578 (2008).
Mi, S. et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann. Neurol. 65, 304–315 (2009).
Fancy, S. P. et al. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev. 23, 1571–1585 (2009).
Dubois-Dalcq, M. et al. From fish to man: understanding endogenous remyelination in central nervous system demyelinating diseases. Brain 131, 1686–1700 (2008).
Uccelli, A., Zappia, E., Benvenuto, F., Frassoni, F. & Mancardi, G. Stem cells in inflammatory demyelinating disorders: a dual role for immunosuppression and neuroprotection. Expert Opin. Biol. Ther. 6, 17–22 (2006).
Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8, 726–736 (2008).
Zappia, E. et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106, 1755–1761 (2005).
Gerdoni, E. et al. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann. Neurol. 61, 219–227 (2007).
Kassis, I. et al. Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch. Neurol. 65, 753–761 (2008).
Pluchino, S. et al. Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS One 4, e5959 (2009).
Pluchino, S. et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436, 266–271 (2005).
Pluchino, S. et al. Human neural stem cells ameliorate autoimmune encephalomyelitis in non human primates. Ann. Neurol. 66, 343–354 (2009).
Einstein, O. et al. Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol. Cell Neurosci. 24, 1074–1082 (2003).
Einstein, O. et al. Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis. Exp. Neurol. 198, 275–284 (2006).
Aharonowiz, M. et al. Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS ONE 3, e3145 (2008).
Yang, J. et al. Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J. Clin. Invest. 119, 3678–3691 (2009).
Fainstein, N. et al. Neural precursor cells inhibit multiple inflammatory signals. Mol. Cell Neurosci. 39, 335–341 (2008).
Einstein, O. et al. Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann. Neurol. 61, 209–218 (2007).
Ben-Hur, T. et al. Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41, 73–80 (2003).
Pluchino, S. et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422, 688–694 (2003).
Li, L. & Xie, T. Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol. 21, 605–631 (2005).
Martino, G. & Pluchino, S. The therapeutic potential of neural stem cells. Nat. Rev. Neurosci. 7, 395–406 (2006).
Gregory, C. A., Prockop, D. J. & Spees, J. L. Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation. Exp. Cell Res. 306, 330–335 (2005).
Le Blanc, K. et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371, 1579–1586 (2008).
Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W. & Dazzi, F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105, 2821–2827 (2005).
Corcione, A. et al. Human mesenchymal stem cells modulate B-cell functions. Blood 107, 367–372 (2006).
Pereira, R. F. et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl Acad. Sci. USA 92, 4857–4861 (1995).
Caplan, A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213, 341–347 (2007).
Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).
Anghileri, E. et al. Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev. 17, 909–916 (2008).
Kopen, G. C., Prockop, D. J. & Phinney, D. G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl Acad. Sci. USA 96, 10711–10716 (1999).
Phinney, D. G. & Prockop, D. J. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25, 2896–2902 (2007).
Hunt, D. P. et al. Effects of direct transplantation of multipotent mesenchymal stromal/stem cells into the demyelinated spinal cord. Cell Transplant. 17, 865–873 (2008).
Bai, L. et al. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57, 1192–1203 (2009).
Sessarego, N. et al. Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica 93, 339–346 (2008).
Horwitz, E. M. et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc. Natl Acad. Sci. USA 99, 8932–8937 (2002).
Lazarus, H. M. Bone marrow transplantation in low-grade non-Hodgkin's lymphoma. Leuk. Lymphoma 17, 199–210 (1995).
Lazarus, H. M. et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol. Blood Marrow Transplant. 11, 389–398 (2005).
Karussis, D. & Kassis, I. The potential use of stem cells in multiple sclerosis: an overview of the preclinical experience. Clin. Neurol. Neurosurg. 110, 889–896 (2008).
Mohyeddin Bonab, M. et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J. Immunol. 4, 50–57 (2007).
Freedman, M. S. et al. The Therapeutic Potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: Consensus report of the International MSCT Study Group. Mult. Scler. doi:10.1177/1352458509359727.
Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).
Politi, L. S. et al. Magnetic resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis. Stem Cells 25, 2583–2592 (2007).
Ben-Hur, T. et al. Serial in vivo MR tracking of magnetically labeled neural spheres transplanted in chronic EAE mice. Magn. Reson. Med. 57, 164–171 (2007).
Lachapelle, F. et al. Transplantation of CNS fragments into the brain of shiverer mutant mice: extensive myelination by implanted oligodendrocytes. I. Immunohistochemical studies. Dev. Neurosci. 6, 325–334 (1983).
Groves, A. K. et al. Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature 362, 453–455 (1993).
Zhang, S. C., Ge, B. & Duncan, I. D. Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc. Natl Acad. Sci. USA 96, 4089–4094 (1999).
Windrem, M. S. et al. Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2, 553–565 (2008).
Archer, D. R., Cuddon, P. A., Lipsitz, D. & Duncan, I. D. Myelination of the canine central nervous system by glial cell transplantation: a model for repair of human myelin disease. Nat. Med. 3, 54–59 (1997).
Smith, E. J., Blakemore, W. F. & McDonald, W. I. Central remyelination restores secure conduction. Nature 280, 395–396 (1979).
Utzschneider, D. A., Archer, D. R., Kocsis, J. D., Waxman, S. G. & Duncan, I. D. Transplantation of glial cells enhances action potential conduction of amyelinated spinal cord axons in the myelin-deficient rat. Proc. Natl Acad. Sci. USA 91, 53–57 (1994).
Jeffery, N. D. & Blakemore, W. F. Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain 120, 27–37 (1997).
Franklin, R. J. & Blakemore, W. F. To what extent is oligodendrocyte progenitor migration a limiting factor in the remyelination of multiple sclerosis lesions? Mult. Scler. 3, 84–87 (1997).
Nistor, G. I., Totoiu, M. O., Haque, N., Carpenter, M. K. & Keirstead, H. S. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49, 385–396 (2005).
Hu, B. Y., Du, Z. W., Li, X. J., Ayala, M. & Zhang, S. C. Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development 136, 1443–1452 (2009).
Keirstead, H. S. et al. Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation. J. Neurosci. 19, 7529–7536 (1999).
Hammang, J. P., Archer, D. R. & Duncan, I. D. Myelination following transplantation of EGF-responsive neural stem cells into a myelin-deficient environment. Exp. Neurol. 147, 84–95 (1997).
Kerschensteiner, M., Stadelmann, C., Dechant, G., Wekerle, H. & Hohlfeld, R. Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann. Neurol. 53, 292–304 (2003).
Hayden, E. C. California institute to help stem-cell biotechs. Nature 455, 436–437 (2008).
Muller, F. J., Snyder, E. Y. & Loring, J. F. Gene therapy: can neural stem cells deliver? Nat. Rev. Neurosci. 7, 75–84 (2006).
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
Franklin, R. J. & Barnett, S. C. Olfactory ensheathing cells and CNS regeneration: the sweet smell of success? Neuron 28, 15–18 (2000).
Vincent, A. J., West, A. K. & Chuah, M. I. Morphological and functional plasticity of olfactory ensheathing cells. J. Neurocytol. 34, 65–80 (2005).
Franklin, R. J., Gilson, J. M., Franceschini, I. A. & Barnett, S. C. Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia 17, 217–224 (1996).
Barnett, S. C. et al. Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain 123, 1581–1588 (2000).
Imaizumi, T., Lankford, K. L., Waxman, S. G., Greer, C. A. & Kocsis, J. D. Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. J. Neurosci. 18, 6176–6185 (1998).
Kato, T., Honmou, O., Uede, T., Hashi, K. & Kocsis, J. D. Transplantation of human olfactory ensheathing cells elicits remyelination of demyelinated rat spinal cord. Glia 30, 209–218 (2000).
Smith, P. M., Lakatos, A., Barnett, S. C., Jeffery, N. D. & Franklin, R. J. Cryopreserved cells isolated from the adult canine olfactory bulb are capable of extensive remyelination following transplantation into the adult rat CNS. Exp. Neurol. 176, 402–406 (2002).
Deng, C. et al. Survival and migration of human and rat olfactory ensheathing cells in intact and injured spinal cord. J. Neurosci. Res. 83, 1201–1212 (2006).
Lakatos, A., Barnett, S. C. & Franklin, R. J. Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than Schwann cells following transplantation into adult CNS white matter. Exp. Neurol. 184, 237–246 (2003).
Jeffery, N. D., Lakatos, A. & Franklin, R. J. Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. J. Neurotrauma 22, 1282–1293 (2005).
Feron, F. et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128, 2951–2960 (2005).
Blakemore, W. F. Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature 266, 68–69 (1977).
Pluchino, S., Furlan, R. & Martino, G. Cell-based remyelinating therapies in multiple sclerosis: evidence from experimental studies. Curr. Opin. Neurol. 17, 247–255 (2004).
Zujovic, V. et al. Boundary cap cells are highly competitive for CNS remyelination: fast migration and efficient differentiation in PNS and CNS myelin-forming cells. Stem Cells doi: 10.1002/stem.290.
Woodhoo, A. et al. Schwann cell precursors: a favourable cell for myelin repair in the central nervous system. Brain 130, 2175–2185 (2007).
McKenzie, I. A., Biernaskie, J., Toma, J. G., Midha, R. & Miller, F. D. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J. Neurosci. 26, 6651–6660 (2006).
Hunt, D. P. et al. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin. Stem Cells 26, 163–172 (2008).
Lee, G. et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat. Biotechnol. 25, 1468–1475 (2007).
Mathews, D. J. et al. Cell-based interventions for neurologic conditions: ethical challenges for early human trials. Neurology 71, 288–293 (2008).
Hyun, I. et al. New ISSCR guidelines underscore major principles for responsible translational stem cell research. Cell Stem Cell 3, 607–609 (2008).
Trapp, B. D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).
Compston, A. & Coles, A. Multiple sclerosis. Lancet 359, 1221–1231 (2002).
Noseworthy, J. H., Lucchinetti, C., Rodriguez, M. & Weinshenker, B. G. Multiple sclerosis. N. Engl. J. Med. 343, 938–952 (2000).
Sadovnick, A. D., Ebers, G. C., Dyment, D. A. & Risch, N. J. Evidence for genetic basis of multiple sclerosis. The Canadian Collaborative Study Group. Lancet 347, 1728–1730 (1996).
Ebers, G. C. & Sadovnick, A. D. The role of genetic factors in multiple sclerosis susceptibility. J. Neuroimmunol. 54, 1–17 (1994).
Sadovnick, A. D. & Ebers, G. C. Epidemiology of multiple sclerosis: a critical overview. Can. J. Neurol. Sci. 20, 17–29 (1993).
Hochedlinger, K. & Plath, K. Epigenetic reprogramming and induced pluripotency. Development 136, 509–523 (2009).
Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).
Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).
Acknowledgements
We wish to thank Doug Brown and Lee Dunster from the UK MS Society, John Richert and Patricia O'Looney from the National MS Society (USA), Tim Coetzee from Fast Forward, Mario Battaglia from the Italian MS Society and Emanuelle Plassart-Schiess from the French MS Society for calling the Stem Cells in Multiple Sclerosis (STEMS) Consensus Meeting and supporting its organization. G. Martino and R. J. M. Franklin contributed equally to this article.
Author information
Authors and Affiliations
Consortia
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Martino, G., Franklin, R., Van Evercooren, A. et al. Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat Rev Neurol 6, 247–255 (2010). https://doi.org/10.1038/nrneurol.2010.35
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrneurol.2010.35
This article is cited by
-
Potential of Nano-Engineered Stem Cells in the Treatment of Multiple Sclerosis: A Comprehensive Review
Cellular and Molecular Neurobiology (2024)
-
Neural stem cell transplantation in patients with progressive multiple sclerosis: an open-label, phase 1 study
Nature Medicine (2023)
-
Potential application of hydrogel to the diagnosis and treatment of multiple sclerosis
Journal of Biological Engineering (2022)
-
Endometrium Derived Stem Cells as Potential Candidates in Nervous System Repair
Annals of Biomedical Engineering (2022)
-
Clinical application of stem cell therapy in neurogenic bladder: a systematic review and meta-analysis
International Urogynecology Journal (2022)