Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in the management of intracerebral hemorrhage

Abstract

Intracerebral hemorrhage (ICH) is a major public-health problem worldwide. No proven treatments are available for this condition, which is associated with high rates of morbidity and mortality. Only 20% of individuals who survive ICH are independent at 6 months. Hypertension, cerebral amyloid angiopathy (CAA) and anticoagulation are known to be associated with such hemorrhages. No effective preventive therapies exist specifically for CAA-related ICH. The incidence of hypertension-related ICH might be decreasing in some populations with improvements in the treatment of hypertension; however, the incidence of anticoagulant-related ICH is increasing, as the use of anticoagulants rises. Many questions remain unanswered regarding the clinical management of ICH, although in the past 10 years completed medical and surgical clinical trials—examining hemostatic therapy, blood pressure control and/or hematoma evacuation—have refined our understanding of the goals of such management. Ongoing clinical trials, which have built on the lessons of past studies, hold promise for the development of effective, scientifically proven treatments for ICH. In this Review, we discuss clinical trials for ICH that have been completed in the past 10 years, the contributions of these studies to the clinical management of ICH, and the ongoing trials that might further improve clinical care.

Key Points

  • Globally, ≈2 million people every year develop intracerebral hemorrhage (ICH), which is associated with high morbidity and mortality rates and has no effective treatment

  • Medical trials conducted for acute ICH in the past decade have included trials of hemostasis with recombinant factor VIIa and trials of blood pressure control

  • Surgical trials for ICH of the past 10 years have included studies of craniotomy with clot evacuation, and minimally invasive clot aspiration with or without thrombolysis

  • Data generated from medical and surgical trials have led to improvements in our understanding of the strategies to undertake for effective clinical management of ICH

  • Ongoing trials show promise for the development of a therapy that improves ICH outcomes

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hematoma expansion revealed by CT.

Similar content being viewed by others

Evdokia Dimitriadis, Daniel L. Rolnik, … Ellen Menkhorst

References

  1. Qureshi, A. I., Mendelow, A. D. & Hanley, D. F. Intracerebral haemorrhage. Lancet 373, 1632–1644 (2009).

    Article  Google Scholar 

  2. Broderick, J. et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Circulation 116, e391–e413 (2007).

    Article  Google Scholar 

  3. Lloyd-Jones, D. et al. Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119, e21–e181 (2009).

    PubMed  Google Scholar 

  4. Sudlow, C. L. & Warlow, C. P. Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration. International Stroke Incidence Collaboration. Stroke 28, 491–499 (1997).

    Article  CAS  Google Scholar 

  5. Flaherty, M. L. et al. Long-term mortality after intracerebral hemorrhage. Neurology 66, 1182–1186 (2006).

    Article  CAS  Google Scholar 

  6. Fogelholm, R., Murros, K., Rissanen, A. & Avikainen, S. Long term survival after primary intracerebral haemorrhage: a retrospective population based study. J. Neurol. Neurosurg. Psychiatry 76, 1534–1538 (2005).

    Article  CAS  Google Scholar 

  7. Cheung, R. T. Update on medical and surgical management of intracerebral hemorrhage. Rev. Recent Clin. Trials. 2, 174–181 (2007).

    Article  Google Scholar 

  8. Lloyd-Jones, D. et al. Heart disease and stroke statistics—2010 update. A report from the American Heart Association. Circulation 121, e46–e215 (2010).

    PubMed  Google Scholar 

  9. Earnshaw, S. R., Joshi, A. V., Wilson, M. R. & Rosand, J. Cost-effectiveness of recombinant activated factor VII in the treatment of intracerebral hemorrhage. Stroke 37, 2751–2758 (2006).

    Article  Google Scholar 

  10. Ariesen, M. J., Claus, S. P., Rinkel, G. J. & Algra, A. Risk factors for intracerebral hemorrhage in the general population. A systematic review. Stroke 34, 2060–2066 (2003).

    Article  CAS  Google Scholar 

  11. Flaherty, M. L., Woo, D. & Broderick, J. The incidence of deep and lobar intracerebral hemorrhage in whites, blacks and hispanics. Neurology 66, 956–957 (2006).

    Article  Google Scholar 

  12. Jackson, C. A. & Sudlow, C. L. Is hypertension a more frequent risk factor for deep than for lobar supratentorial intracerebral haemorrhage? J. Neurol. Neurosurg. Psychiatry 77, 1244–1252 (2006).

    Article  CAS  Google Scholar 

  13. Kubo, M. et al. Trends in the incidence, mortality, and survival rate of cardiovascular disease in a Japanese community: the Hisayama study. Stroke 34, 2349–2354 (2003).

    Article  Google Scholar 

  14. Jiang, B. et al. Incidence and trends of stroke and its subtypes in China: results from three large cities. Stroke 37, 63–68 (2006).

    Article  Google Scholar 

  15. Flaherty, M. L. et al. Location and outcome of anticoagulant-associated intracerebral hemorrhage. Neurocrit. Care 5, 197–201 (2006).

    Article  Google Scholar 

  16. Flaherty, M. L. et al. Warfarin use leads to larger intracerebral hematomas. Neurology 71, 1084–1089 (2008).

    Article  CAS  Google Scholar 

  17. Flibotte, J. J., Hagan, N., O'Donnell, J., Greenberg, S. M. & Rosand, J. Warfarin, hematoma expansion, and outcome of intracerebral hemorrhage. Neurology 63, 1059–1064 (2004).

    Article  CAS  Google Scholar 

  18. Flaherty, M. L. et al. The increasing incidence of anticoagulant-associated intracerebral hemorrhage. Neurology 68, 116–121 (2007).

    Article  CAS  Google Scholar 

  19. McCarron, M. O. & Nicoll, J. A. Apolipoprotein E genotype and cerebral amyloid angiopathy-related hemorrhage. Ann. NY Acad. Sci. 903, 176–179 (2000).

    Article  CAS  Google Scholar 

  20. Arima, H. et al. Effects of perindopril-based lowering of blood pressure on intracerebral hemorrhage related to amyloid angiopathy: the PROGRESS trial. Stroke 41, 394–396 (2010).

    Article  CAS  Google Scholar 

  21. Ropper, A. H. Lateral displacement of the brain and level of consciousness in patients with an acute hemispheral mass. N. Engl. J. Med. 314, 953–958 (1986).

    Article  CAS  Google Scholar 

  22. Brott, T. et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke 28, 1–5 (1997).

    Article  CAS  Google Scholar 

  23. Anderson, C. S. et al. Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): a randomised pilot trial. Lancet Neurol. 7, 391–399 (2008).

    Article  Google Scholar 

  24. Mayer, S. A. et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N. Engl. J. Med. 358, 2127–2137 (2008).

    Article  CAS  Google Scholar 

  25. Mayer, S. A. et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N. Engl. J. Med. 352, 777–785 (2005).

    Article  CAS  Google Scholar 

  26. Hallevi, H. et al. Intraventricular hemorrhage: Anatomic relationships and clinical implications. Neurology 70, 848–852 (2008).

    Article  CAS  Google Scholar 

  27. Bhattathiri, P. S., Gregson, B., Prasad, K. S. & Mendelow, A. D. Intraventricular hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage: results from the STICH trial. Acta Neurochir. Suppl. 96, 65–68 (2006).

    Article  CAS  Google Scholar 

  28. Steiner, T. et al. Dynamics of intraventricular hemorrhage in patients with spontaneous intracerebral hemorrhage: risk factors, clinical impact, and effect of hemostatic therapy with recombinant activated factor VII. Neurosurgery 59, 767–773 (2006).

    Article  Google Scholar 

  29. Gebel, J. M. Jr et al. Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 33, 2636–2641 (2002).

    Article  Google Scholar 

  30. Arima, H. et al. Significance of perihematomal edema in acute intracerebral hemorrhage: the INTERACT trial. Neurology 73, 1963–1968 (2009).

    Article  CAS  Google Scholar 

  31. Zazulia, A. R., Diringer, M. N., Derdeyn, C. P. & Powers, W. J. Progression of mass effect after intracerebral hemorrhage. Stroke 30, 1167–1173 (1999).

    Article  CAS  Google Scholar 

  32. Sansing, L. H. et al. Edema after intracerebral hemorrhage: correlations with coagulation parameters and treatment. J. Neurosurg. 98, 985–992 (2003).

    Article  Google Scholar 

  33. Xi, G., Keep, R. F. & Hoff, J. T. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 5, 53–63 (2006).

    Article  Google Scholar 

  34. Mendelow, A. D. et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet 365, 387–397 (2005).

    Article  Google Scholar 

  35. Lyden, P. D. et al. Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: the CHANT Trial. Stroke 38, 2262–2269 (2007).

    Article  CAS  Google Scholar 

  36. Haley, E. C. Jr et al. Gavestinel does not improve outcome after acute intracerebral hemorrhage: an analysis from the GAIN International and GAIN Americas studies. Stroke 36, 1006–1010 (2005).

    Article  CAS  Google Scholar 

  37. Mayer, S. A. et al. Can a subset of intracerebral hemorrhage patients benefit from hemostatic therapy with recombinant activated factor VII? Stroke 40, 833–840 (2009).

    Article  CAS  Google Scholar 

  38. Diringer, M. N. et al. Thromboembolic events with recombinant activated factor VII in spontaneous intracerebral hemorrhage: results from the Factor Seven for Acute Hemorrhagic Stroke (FAST) trial. Stroke 41, 48–53 (2010).

    Article  CAS  Google Scholar 

  39. Goldstein, J. N. et al. Contrast extravasation on CT angiography predicts hematoma expansion in intracerebral hemorrhage. Neurology 68, 889–894 (2007).

    Article  CAS  Google Scholar 

  40. Wada, R. et al. CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke 38, 1257–1262 (2007).

    Article  Google Scholar 

  41. Gazzola, S. et al. Vascular and nonvascular mimics of the CT angiography “spot sign” in patients with secondary intracerebral hemorrhage. Stroke 39, 1177–1183 (2008).

    Article  Google Scholar 

  42. Perez, E. S. et al. Transcranial duplex sonography for monitoring hyperacute intracerebral hemorrhage. Stroke 40, 987–990 (2009).

    Article  Google Scholar 

  43. Silva, Y. et al. Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke 36, 86–91 (2005).

    Article  Google Scholar 

  44. Foerch, C. et al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J. Neurol. Neurosurg. Psychiatry 77, 181–184 (2006).

    Article  CAS  Google Scholar 

  45. Laskowitz, D. T., Kasner, S. E., Saver, J., Remmel, K. S. & Jauch, E. C. Clinical usefulness of a biomarker-based diagnostic test for acute stroke: the Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study. Stroke 40, 77–85 (2009).

    Article  Google Scholar 

  46. Unden, J. et al. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation. J. Neurol. 256, 72–77 (2009).

    Article  CAS  Google Scholar 

  47. Goldstein, J. N. et al. Timing of fresh frozen plasma administration and rapid correction of coagulopathy in warfarin-related intracerebral hemorrhage. Stroke 37, 151–155 (2006).

    Article  Google Scholar 

  48. Lankiewicz, M. W., Hays, J., Friedman, K. D., Tinkoff, G. & Blatt, P. M. Urgent reversal of warfarin with prothrombin complex concentrate. J. Thromb. Haemost. 4, 967–970 (2006).

    Article  CAS  Google Scholar 

  49. Baker, R. I. et al. Warfarin reversal: consensus guidelines, on behalf of the Australasian Society of Thrombosis and Haemostasis. Med. J. Aust. 181, 492–497 (2004).

    PubMed  Google Scholar 

  50. Steiner, T. et al. INR normalization in patients with coumadin related intracranial hemorrhages—the INCH trial: a randomized controlled trial to compare safety and preliminary efficacy of fresh frozen plasma versus prothrombin complex [abstract 13]. Cerebrovasc. Dis. 27 (Suppl. 6), 185 (2009).

    Google Scholar 

  51. Freeman, W. D. et al. Recombinant factor VIIa for rapid reversal of warfarin anticoagulation in acute intracranial hemorrhage. Mayo Clin. Proc. 79, 1495–1500 (2004).

    Article  CAS  Google Scholar 

  52. Brody, D. L., Aiyagari, V., Shackleford, A. M. & Diringer, M. N. Use of recombinant factor VIIa in patients with warfarin-associated intracranial hemorrhage. Neurocrit. Care 2, 263–267 (2005).

    Article  Google Scholar 

  53. Leonardi-Bee, J., Bath, P. M., Phillips, S. J. & Sandercock, P. A. Blood pressure and clinical outcomes in the International Stroke Trial. Stroke 33, 1315–1320 (2002).

    Article  Google Scholar 

  54. Vemmos, K. N. et al. U-shaped relationship between mortality and admission blood pressure in patients with acute stroke. J. Intern. Med. 255, 257–265 (2004).

    Article  CAS  Google Scholar 

  55. Qureshi, A. I. et al. Rate of 24-hour blood pressure decline and mortality after spontaneous intracerebral hemorrhage: a retrospective analysis with a random effects regression model. Crit. Care Med. 27, 480–485 (1999).

    Article  CAS  Google Scholar 

  56. Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH) investigators. Antihypertensive treatment of acute cerebral hemorrhage. Crit. Care Med. 38, 637–648 (2010).

  57. Iranmanesh, F. & Vakilian, A. Efficiency of citicoline in increasing muscular strength of patients with nontraumatic cerebral hemorrhage: a double-blind randomized clinical trial. J. Stroke Cerebrovasc. Dis. 17, 153–155 (2008).

    Article  Google Scholar 

  58. Secades, J. J. et al. Citicoline in intracerebral haemorrhage: a double-blind, randomized, placebo-controlled, multi-centre pilot study. Cerebrovasc. Dis. 21, 380–385 (2006).

    Article  CAS  Google Scholar 

  59. Adeoye, O. et al. Surgical management and case-fatality rates of intracerebral hemorrhage in 1988 and 2005. Neurosurgery 63, 1113–1117 (2008).

    Article  Google Scholar 

  60. Broderick, J. et al. Management of intracerebral hemorrhage in a large metropolitan population. Neurosurgery 34, 882–887 (1994).

    CAS  PubMed  Google Scholar 

  61. Inagawa, T., Ohbayashi, N., Takechi, A., Shibukawa, M. & Yahara, K. Primary intracerebral hemorrhage in Izumo City, Japan: incidence rates and outcome in relation to the site of hemorrhage. Neurosurgery 53, 1283–1297 (2003).

    Article  Google Scholar 

  62. Morioka, J. et al. Surgery for spontaneous intracerebral hemorrhage has greater remedial value than conservative therapy. Surg. Neurol. 65, 67–72 (2006).

    Article  Google Scholar 

  63. Steiner, T. et al. Recommendations for the management of intracranial haemorrhage—part I: spontaneous intracerebral haemorrhage. The European Stroke Initiative Writing Committee and the Writing Committee for the EUSI Executive Committee. Cerebrovasc. Dis. 22, 294–316 (2006).

    Article  Google Scholar 

  64. Wang, W. Z. et al. Minimally invasive craniopuncture therapy vs. conservative treatment for spontaneous intracerebral hemorrhage: results from a randomized clinical trial in China. Int. J. Stroke 4, 11–16 (2009).

    Article  Google Scholar 

  65. Auer, L. M. et al. Endoscopic surgery versus medical treatment for spontaneous intracerebral hematoma: a randomized study. J. Neurosurg. 70, 530–535 (1989).

    Article  CAS  Google Scholar 

  66. Teernstra, O. P. et al. Stereotactic treatment of intracerebral hematoma by means of a plasminogen activator: a multicenter randomized controlled trial (SICHPA). Stroke 34, 968–974 (2003).

    Article  CAS  Google Scholar 

  67. Vespa, P. et al. Frameless stereotactic aspiration and thrombolysis of deep intracerebral hemorrhage is associated with reduction of hemorrhage volume and neurological improvement. Neurocrit. Care 2, 274–281 (2005).

    Article  Google Scholar 

  68. Morgan, T. et al. Preliminary findings of the minimally-invasive surgery plus rtPA for intracerebral hemorrhage evacuation (MISTIE) clinical trial. Acta Neurochir. Suppl. 105, 147–151 (2008).

    Article  CAS  Google Scholar 

  69. Morgan, T., Awad, I., Keyl, P., Lane, K. & Hanley, D. Preliminary report of the clot lysis evaluating accelerated resolution of intraventricular hemorrhage (CLEAR-IVH) clinical trial. Acta Neurochir. Suppl. 105, 217–220 (2008).

    Article  CAS  Google Scholar 

  70. Naff, N. J. et al. Intraventricular thrombolysis speeds blood clot resolution: results of a pilot, prospective, randomized, double-blind, controlled trial. Neurosurgery 54, 577–583 (2004).

    Article  Google Scholar 

  71. Morgenstern, L. B., Demchuk, A. M., Kim, D. H., Frankowski, R. F. & Grotta, J. C. Rebleeding leads to poor outcome in ultra-early craniotomy for intracerebral hemorrhage. Neurology 56, 1294–1299 (2001).

    Article  CAS  Google Scholar 

  72. Zuccarello, M. et al. Early surgical treatment for supratentorial intracerebral hemorrhage: a randomized feasibility study. Stroke 30, 1833–1839 (1999).

    Article  CAS  Google Scholar 

  73. Leira, R. et al. Early neurologic deterioration in intracerebral hemorrhage: predictors and associated factors. Neurology 63, 461–467 (2004).

    Article  CAS  Google Scholar 

  74. Miller, C. M. et al. Image-guided endoscopic evacuation of spontaneous intracerebral hemorrhage. Surg. Neurol. 69, 441–446 (2008).

    Article  Google Scholar 

  75. Mayer, S. A. et al. Recombinant activated factor VII for acute intracerebral hemorrhage: US phase IIA trial. Neurocrit. Care 4, 206–214 (2006).

    Article  CAS  Google Scholar 

  76. Misra, U. K., Kalita, J., Ranjan, P. & Mandal, S. K. Mannitol in intracerebral hemorrhage: a randomized controlled study. J. Neurol. Sci. 234, 41–45 (2005).

    Article  CAS  Google Scholar 

  77. US NIH ClinicalTrials.gov [online], (2010).

Download references

Acknowledgements

Laurie Barclay, freelance writer and reviewer, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

O. Adeoye and J. P. Broderick researched the data for the article, provided substantial contributions to discussions of the content, and contributed equally to writing the article and to reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Opeolu Adeoye.

Ethics declarations

Competing interests

O. Adeoye has received honoraria for speaking from EKR Therapeutics, while J. P. Broderick declares research support from Novo Nordisk (this company supplies factor VIIa for the NIH–National Institute of Neurological Disorders and Stroke-funded STOP-IT study).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adeoye, O., Broderick, J. Advances in the management of intracerebral hemorrhage. Nat Rev Neurol 6, 593–601 (2010). https://doi.org/10.1038/nrneurol.2010.146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing