Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How does diabetes accelerate Alzheimer disease pathology?

Abstract

Diabetes and Alzheimer disease (AD)—two age-related diseases—are both increasing in prevalence, and numerous studies have demonstrated that patients with diabetes have an increased risk of developing AD compared with healthy individuals. The underlying biological mechanisms that link the development of diabetes with AD are not fully understood. Abnormal protein processing, abnormalities in insulin signaling, dysregulated glucose metabolism, oxidative stress, the formation of advanced glycation end products, and the activation of inflammatory pathways are features common to both diseases. Hypercholesterolemia is another factor that has received attention, owing to its potential association with diabetes and AD. This Review summarizes the mechanistic pathways that might link diabetes and AD. An understanding of this complex interaction is necessary for the development of novel drug therapies and lifestyle guidelines aimed at the treatment and/or prevention of these diseases.

Key Points

  • Alzheimer disease (AD) and diabetes are both associated with enormous and increasing socioeconomic effects

  • Diabetes affects the processing of amyloid-β and tau, and might increase the rate of formation of senile plaques and neurofibrillary tangles, the main neuropathological hallmarks of AD

  • Hyperinsulinemia is associated with amyloid-β accumulation and regulates tau phosphorylation

  • Oxidative stress activates inflammatory pathways and, hence, might exacerbate AD neuropathology

  • Mitochondrial dysfunction is associated with both diabetes and AD, and leads to intracellular calcium dysregulation and abnormal processing of the amyloid precursor protein

  • Induction of diabetes exacerbates AD neuropathology in mouse models of this neurodegenerative disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Altered insulin signaling in diabetes might contribute to Alzheimer disease pathophysiology.
Figure 2: Pathological mechanisms associated with diabetes might cause AD.

Similar content being viewed by others

David S. Knopman, Helene Amieva, … David T. Jones

References

  1. Brands, A. M., Biessels, G. J., de Haan, E. H., Kappelle, L. J. & Kessels, R. P. The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28, 726–735 (2005).

    Article  PubMed  Google Scholar 

  2. Biessels, G. J., Staekenborg, S., Brunner, E., Brayne, C. & Scheltens, P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 5, 64–74 (2006).

    Article  PubMed  Google Scholar 

  3. Janson, J. et al. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53, 474–481 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Li, L. & Holscher, C. Common pathological processes in Alzheimer disease and type 2 diabetes: a review. Brain Res. Rev. 56, 384–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Awad, N., Gagnon, M. & Messier, C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J. Clin. Exp. Neuropsychol. 26, 1044–1080 (2004).

    Article  PubMed  Google Scholar 

  6. Strachan, M. W., Deary, I. J., Ewing, F. M. & Frier, B. M. Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care 20, 438–445 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Gilman, S. Alzheimer's disease. Perspect. Biol. Med. 40, 230–245 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Gotz, J., Schild, A., Hoerndli, F. & Pennanen, L. Amyloid-induced neurofibrillary tangle formation in Alzheimer's disease: insight from transgenic mouse and tissue-culture models. Int. J. Dev. Neurosci. 22, 453–465 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Rocchi, A., Pellegrini, S., Siciliano, G. & Murri, L. Causative and susceptibility genes for Alzheimer's disease: a review. Brain Res. Bull. 61, 1–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Haan, M. N. Therapy Insight: type 2 diabetes mellitus and the risk of late-onset Alzheimer's disease. Nat. Clin. Pract. Neurol. 2, 159–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Reddy, V. P., Zhu, X., Perry, G. & Smith, M. A. Oxidative stress in diabetes and Alzheimer's disease. J. Alzheimers Dis. 16, 763–774 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoyer, S. Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J. Neural Transm. 105, 415–422 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Nelson, T. J. & Alkon, D. L. Insulin and cholesterol pathways in neuronal function, memory and neurodegeneration. Biochem. Soc. Trans. 33, 1033–1036 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, W. Q. & Townsend, M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim. Biophys. Acta 1792, 482–496 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Martins, I. J. et al. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Mol. Psychiatry 11, 721–736 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Moreira, P. I., Santos, M. S., Seica, R. & Oliveira, C. R. Brain mitochondrial dysfunction as a link between Alzheimer's disease and diabetes. J. Neurol. Sci. 257, 206–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Nielson, K. A. et al. Apolipoprotein-E genotyping of diabetic dementia patients: is diabetes rare in Alzheimer's disease? J. Am. Geriatr. Soc. 44, 897–904 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Akomolafe, A. et al. Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham Study. Arch. Neurol. 63, 1551–1555 (2006).

    Article  PubMed  Google Scholar 

  19. MacKnight, C., Rockwood, K., Awalt, E. & McDowell, I. Diabetes mellitus and the risk of dementia, Alzheimer's disease and vascular cognitive impairment in the Canadian Study of Health and Aging. Dement. Geriatr. Cogn. Disord. 14, 77–83 (2002).

    Article  PubMed  Google Scholar 

  20. Hardy, J. A. & Higgins, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Vetrivel, K. S. & Thinakaran, G. Amyloidogenic processing of β-amyloid precursor protein in intracellular compartments. Neurology 66, S69–S73 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Selkoe, D. J. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Small, D. H., Mok, S. S. & Bornstein, J. C. Alzheimer's disease and Aβ toxicity: from top to bottom. Nat. Rev. Neurosci. 2, 595–598 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Naslund, J. et al. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA 283, 1571–1577 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Hsia, A. Y. et al. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc. Natl Acad. Sci. USA 96, 3228–3233 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Catalano, S. M. et al. The role of amyloid-β derived diffusible ligands (ADDLs) in Alzheimer's disease. Curr. Top. Med. Chem. 6, 597–608 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Johnson, G. V. & Stoothoff, W. H. Tau phosphorylation in neuronal cell function and dysfunction. J. Cell Sci. 117, 5721–5729 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Cotman, C. W., Poon, W. W., Rissman, R. A. & Blurton-Jones, M. The role of caspase cleavage of tau in Alzheimer disease neuropathology. J. Neuropathol. Exp. Neurol. 64, 104–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Rohn, T. T. et al. Caspase-9 activation and caspase cleavage of tau in the Alzheimer's disease brain. Neurobiol. Dis. 11, 341–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Chung, C. W. et al. Proapoptotic effects of tau cleavage product generated by caspase-3. Neurobiol. Dis. 8, 162–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Gamblin, T. C., Berry, R. W. & Binder, L. I. Tau polymerization: role of the amino terminus. Biochemistry 42, 2252–2257 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Hrnkova, M., Zilka, N., Minichova, Z., Koson, P. & Novak, M. Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats. Brain Res. 1130, 206–213 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Chun, W. & Johnson, G. V. The role of tau phosphorylation and cleavage in neuronal cell death. Front. Biosci. 12, 733–756 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Kim, B., Backus, C., Oh, S., Hayes, J. M. & Feldman, E. L. Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150, 5294–5301 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, Z. G., Zhang, W. & Sima, A. A. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 56, 1817–1824 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Clodfelder-Miller, B. J., Zmijewska, A. A., Johnson, G. V. & Jope, R. S. Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55, 3320–3325 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Planel, E. et al. Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J. Neurosci. 27, 13635–13648 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jolivalt, C. G. et al. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin. J. Neurosci. Res. 86, 3265–3274 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, Y., Liu, F., Grundke-Iqbal, I., Iqbal, K. & Gong, C.-X. Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer disease. J. Neurochem. 111, 242–249 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dias, W. B. & Hart, G. W. O-GlcNAc modification in diabetes and Alzheimer's disease. Mol. Biosyst. 3, 766–772 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Biessels, G. J. et al. Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res. 800, 125–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Stolk, R. P. et al. Insulin and cognitive function in an elderly population. The Rotterdam Study. Diabetes Care 20, 792–795 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, W. Q. & Alkon, D. L. Role of insulin and insulin receptor in learning and memory. Mol. Cell. Endocrinol. 177, 125–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. de la Monte, S. M. & Wands, J. R. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer's disease. J. Alzheimers Dis. 7, 45–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Frolich, L. et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease. J. Neural Transm. 105, 423–438 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Zhao, W. Q. et al. Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric Aβ. J. Biol. Chem. 284, 18742–18753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gasparini, L. & Xu, H. Potential roles of insulin and IGF-1 in Alzheimer's disease. Trends Neurosci. 26, 404–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Pedersen, W. A. et al. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp. Neurol. 199, 265–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Watson, G. S. et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am. J. Geriatr. Psychiatry 13, 950–958 (2005).

    PubMed  Google Scholar 

  50. Hong, M. & Lee, V. M. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J. Biol. Chem. 272, 19547–19553 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Lesort, M. & Johnson, G. V. Insulin-like growth factor-1 and insulin mediate transient site-selective increases in tau phosphorylation in primary cortical neurons. Neuroscience 99, 305–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Cheng, C. M. et al. Tau is hyperphosphorylated in the insulin-like growth factor-I null brain. Endocrinology 146, 5086–5091 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Schubert, M. et al. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J. Neurosci. 23, 7084–7092 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Freude, S. et al. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes 54, 3343–3348 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Pearson, L. L., Castle, B. E. & Kehry, M. R. CD40-mediated signaling in monocytic cells: up-regulation of tumor necrosis factor receptor-associated factor mRNAs and activation of mitogen-activated protein kinase signaling pathways. Int. Immunol. 13, 273–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Brazil, D. P. & Hemmings, B. A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem. Sci. 26, 657–664 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Tremblay, M. L. & Giguere, V. Phosphatases at the heart of FoxO metabolic control. Cell Metab. 7, 101–103 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Hensley, K. et al. p38 kinase is activated in the Alzheimer's disease brain. J. Neurochem. 72, 2053–2058 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Munoz, L. & Ammit, A. J. Targeting p38 MAPK pathway for the treatment of Alzheimer's disease. Neuropharmacology 58, 561–568 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Kelleher, I., Garwood, C., Hanger, D. P., Anderton, B. H. & Noble, W. Kinase activities increase during the development of tauopathy in htau mice. J. Neurochem. 103, 2256–2267 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Balaraman, Y., Limaye, A. R., Levey, A. I. & Srinivasan, S. Glycogen synthase kinase 3β and Alzheimer's disease: pathophysiological and therapeutic significance. Cell. Mol. Life Sci. 63, 1226–1235 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Lee, J. & Kim, M. S. The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res. Clin. Pract. 77 (Suppl. 1), S49–S57 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Clodfelder-Miller, B., De Sarno, P., Zmijewska, A. A., Song, L. & Jope, R. S. Physiological and pathological changes in glucose regulate brain Akt and glycogen synthase kinase-3. J. Biol. Chem. 280, 39723–39731 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Phiel, C. J., Wilson, C. A., Lee, V. M. & Klein, P. S. GSK-3α regulates production of Alzheimer's disease amyloid-β peptides. Nature 423, 435–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Noble, W. et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl Acad. Sci. USA 102, 6990–6995 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Small, G. W. et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proc. Natl Acad. Sci. USA 97, 6037–6042 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Garrido, G. E. et al. Relation between medial temporal atrophy and functional brain activity during memory processing in Alzheimer's disease: a combined MRI and SPECT study. J. Neurol. Neurosurg. Psychiatry 73, 508–516 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Watson, G. S. & Craft, S. Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer's disease. Eur. J. Pharmacol. 490, 97–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Biessels, G. J., van der Heide, L. P., Kamal, A., Bleys, R. L. & Gispen, W. H. Ageing and diabetes: implications for brain function. Eur. J. Pharmacol. 441, 1–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Hunt, J. V., Dean, R. T. & Wolff, S. P. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem. J. 256, 205–212 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singh, R., Barden, A., Mori, T. & Beilin, L. Advanced glycation end-products: a review. Diabetologia 44, 129–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Brownlee, M. Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med. 46, 223–234 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Sasaki, N. et al. Advanced glycation end products in Alzheimer's disease and other neurodegenerative diseases. Am. J. Pathol. 153, 1149–1155 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sasaki, N. et al. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer's disease. Brain Res. 888, 256–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Ledesma, M. D., Bonay, P., Colaco, C. & Avila, J. Analysis of microtubule-associated protein tau glycation in paired helical filaments. J. Biol. Chem. 269, 21614–21619 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Toth, C. et al. Diabetes, leukoencephalopathy and rage. Neurobiol. Dis. 23, 445–461 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Girones, X. et al. N epsilon-carboxymethyllysine in brain aging, diabetes mellitus, and Alzheimer's disease. Free Radic. Biol. Med. 36, 1241–1247 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Heitner, J. & Dickson, D. Diabetics do not have increased Alzheimer-type pathology compared with age-matched control subjects. A retrospective postmortem immunocytochemical and histofluorescent study. Neurology 49, 1306–1311 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Russell, J. W. et al. Oxidative injury and neuropathy in diabetes and impaired glucose tolerance. Neurobiol. Dis. 30, 420–429 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vincent, A. M., Russell, J. W., Low, P. & Feldman, E. L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev. 25, 612–628 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Giugliano, D., Ceriello, A. & Paolisso, G. Oxidative stress and diabetic vascular complications. Diabetes Care 19, 257–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Pratico, D. & Sung, S. Lipid peroxidation and oxidative imbalance: early functional events in Alzheimer's disease. J. Alzheimers Dis. 6, 171–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Butterfield, D. A. et al. Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer's disease. Brain Res. 1148, 243–248 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pratico, D., Uryu, K., Leight, S., Trojanoswki, J. Q. & Lee, V. M. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci. 21, 4183–4187 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Apelt, J., Bigl, M., Wunderlich, P. & Schliebs, R. Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology. Int. J. Dev. Neurosci. 22, 475–484 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Matsuoka, Y., Picciano, M., La Francois, J. & Duff, K. Fibrillar β-amyloid evokes oxidative damage in a transgenic mouse model of Alzheimer's disease. Neuroscience 104, 609–613 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Resende, R. et al. Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic. Biol. Med. 44, 2051–2057 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Reddy, P. H. & Beal, M. F. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends Mol. Med. 14, 45–53 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tan, J. et al. Microglial activation resulting from CD40-CD40L interaction after β-amyloid stimulation. Science 286, 2352–2355 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. van de Ree, M. A., Huisman, M. V., Princen, H. M., Meinders, A. E. & Kluft, C. Strong decrease of high sensitivity C-reactive protein with high-dose atorvastatin in patients with type 2 diabetes mellitus. Atherosclerosis 166, 129–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Akiyama, H. et al. Inflammation and Alzheimer's disease. Neurobiol. Aging 21, 383–421 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sly, L. M. et al. Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer's disease. Brain Res. Bull. 56, 581–588 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Szekely, C. A. et al. Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer's disease: a systematic review. Neuroepidemiology 23, 159–169 (2004).

    Article  PubMed  Google Scholar 

  94. Aisen, P. S. et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289, 2819–2826 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Reines, S. A. et al. Rofecoxib: no effect on Alzheimer's disease in a 1-year, randomized, blinded, controlled study. Neurology 62, 66–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Schaefer, E. J. et al. Familial apolipoprotein E deficiency. J. Clin. Invest. 78, 1206–1219 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ishibashi, S. et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Peila, R., Rodriguez, B. L. & Launer, L. J. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu–Asia Aging Study. Diabetes 51, 1256–1262 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Kuusisto, J. et al. Association between features of the insulin resistance syndrome and Alzheimer's disease independently of apolipoprotein E4 phenotype: cross sectional population based study. BMJ 315, 1045–1049 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Profenno, L. A. & Faraone, S. V. Diabetes and overweight associate with non-APOE4 genotype in an Alzheimer's disease population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B, 822–829 (2008).

    Article  PubMed  Google Scholar 

  101. LaDu, M. J. et al. Isoform-specific binding of apolipoprotein E to β-amyloid. J. Biol. Chem. 269, 23403–23406 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Belinson, H., Lev, D., Masliah, E. & Michaelson, D. M. Activation of the amyloid cascade in apolipoprotein E4 transgenic mice induces lysosomal activation and neurodegeneration resulting in marked cognitive deficits. J. Neurosci. 28, 4690–4701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brecht, W. J. et al. Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J. Neurosci. 24, 2527–2534 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ulery, P. G. et al. Modulation of β-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). Evidence that LRP contributes to the pathogenesis of Alzheimer's disease. J. Biol. Chem. 275, 7410–7415 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Yaffe, K. Metabolic syndrome and cognitive decline. Curr. Alzheimer Res. 4, 123–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Harris, M. I. Hypercholesterolemia in diabetes and glucose intolerance in the U. S. population. Diabetes Care 14, 366–374 (1991).

    Article  CAS  PubMed  Google Scholar 

  107. Ishikawa, M. et al. Cholesterol accumulation and diabetes in pancreatic β-cell-specific SREBP-2 transgenic mice: a new model for lipotoxicity. J. Lipid Res. 49, 2524–2534 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Sharma, S., Prasanthi, R. P. J., Schommer, E., Feist, G. & Ghribi, O. Hypercholesterolemia-induced Aβ accumulation in rabbit brain is associated with alteration in IGF-1 signaling. Neurobiol. Dis. 32, 426–432 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Burns, M. P. et al. Co-localization of cholesterol, apolipoprotein E and fibrillar Aβ in amyloid plaques. Brain Res. Mol. Brain Res. 110, 119–125 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Mori, T. et al. Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J. Neuropathol. Exp. Neurol. 60, 778–785 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Bjorkhem, I., Heverin, M., Leoni, V., Meaney, S. & Diczfalusy, U. Oxysterols and Alzheimer's disease. Acta Neurol. Scand. Suppl. 185, 43–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Prasanthi, J. R. et al. Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on β-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Mol. Neurodegener. 4, 1 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S. & Drachman, D. A. Statins and the risk of dementia. Lancet 356, 1627–1631 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Distl, R., Meske, V. & Ohm, T. G. Tangle-bearing neurons contain more free cholesterol than adjacent tangle-free neurons. Acta Neuropathol. 101, 547–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Refolo, L. M. et al. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7, 321–331 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Rizzuto, R. et al. Mitochondria as biosensors of calcium microdomains. Cell Calcium 26, 193–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Khachaturian, Z. S. Calcium hypothesis of Alzheimer's disease and brain aging. Ann. NY Acad. Sci. 747, 1–11 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Kostyuk, E. et al. Diabetes-induced changes in calcium homeostasis and the effects of calcium channel blockers in rat and mice nociceptive neurons. Diabetologia 44, 1302–1309 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Brustovetsky, N., Brustovetsky, T., Jemmerson, R. & Dubinsky, J. M. Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J. Neurochem. 80, 207–218 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Anandatheerthavarada, H. K., Biswas, G., Robin, M. A. & Avadhani, N. G. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J. Cell Biol. 161, 41–54 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Crouch, P. J. et al. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-β1–42 . J. Neurosci. 25, 672–679 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Blass, J. P. & Gibson, G. E. The role of oxidative abnormalities in the pathophysiology of Alzheimer's disease. Rev. Neurol. (Paris) 147, 513–525 (1991).

    CAS  Google Scholar 

  123. Hirai, K. et al. Mitochondrial abnormalities in Alzheimer's disease. J. Neurosci. 21, 3017–3023 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Murray, F. E., Landsberg, J. P., Williams, R. J., Esiri, M. M. & Watt, F. Elemental analysis of neurofibrillary tangles in Alzheimer's disease using proton-induced X-ray analysis. Ciba Found. Symp. 169, 201–210 (1992).

    CAS  PubMed  Google Scholar 

  125. Nixon, R. A. et al. Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease. Ann. NY Acad. Sci. 747, 77–91 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. McKee, A. C., Kosik, K. S., Kennedy, M. B. & Kowall, N. W. Hippocampal neurons predisposed to neurofibrillary tangle formation are enriched in type II calcium/calmodulin-dependent protein kinase. J. Neuropathol. Exp. Neurol. 49, 49–63 (1990).

    Article  CAS  PubMed  Google Scholar 

  127. Johnson, G. V. et al. Transglutaminase activity is increased in Alzheimer's disease brain. Brain Res. 751, 323–329 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Querfurth, H. W. & Selkoe, D. J. Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 33, 4550–4561 (1994).

    Article  CAS  PubMed  Google Scholar 

  129. Levy, J., Gavin, J. R. 3rd & Sowers, J. R. Diabetes mellitus: a disease of abnormal cellular calcium metabolism? Am. J. Med. 96, 260–273 (1994).

    Article  CAS  PubMed  Google Scholar 

  130. Levy, J., Zemel, M. B. & Sowers, J. R. Role of cellular calcium metabolism in abnormal glucose metabolism and diabetic hypertension. Am. J. Med. 87, 7S–16S (1989).

  131. Studer, R. K. & Ganas, L. Effect of diabetes on hormone-stimulated and basal hepatocyte calcium metabolism. Endocrinology 125, 2421–2433 (1989).

    Article  CAS  PubMed  Google Scholar 

  132. Moreira, P. I., Santos, M. S., Sena, C., Seica, R. & Oliveira, C. R. Insulin protects against amyloid β-peptide toxicity in brain mitochondria of diabetic rats. Neurobiol. Dis. 18, 628–637 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944–2950 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Ke, Y. D., Delerue, F., Gladbach, A., Gotz, J. & Ittner, L. M. Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer's disease. PLoS ONE 4, e7917 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Jolivalt, C. G. et al. Type 1 diabetes exaggerates features of Alzheimer's disease in APP transgenic mice. Exp. Neurol. 223, 422–431 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Takeda, S. et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an Alzheimer mouse model with diabetes. Proc. Natl Acad. Sci. USA 107, 7036–7041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Morrison, C. D. Leptin signaling in brain: A link between nutrition and cognition? Biochim. Biophys. Acta 1792, 401–408 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Ott, A. et al. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 53, 1937–1942 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Brayne, C. et al. Vascular risks and incident dementia: results from a cohort study of the very old. Dement. Geriatr. Cogn. Disord. 9, 175–180 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Yoshitake, T. et al. Incidence and risk factors of vascular dementia and Alzheimer's disease in a defined elderly Japanese population: the Hisayama Study. Neurology 45, 1161–1168 (1995).

    Article  CAS  PubMed  Google Scholar 

  141. Xu, W. L., Qiu, C. X., Wahlin, A., Winblad, B. & Fratiglioni, L. Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology 63, 1181–1186 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Leibson, C. L. et al. Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am. J. Epidemiol. 145, 301–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Luchsinger, J. A. et al. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology 65, 545–551 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Arvanitakis, Z., Wilson, R. S., Bienias, J. L., Evans, D. A. & Bennett, D. A. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch. Neurol. 61, 661–666 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the helpful discussion with Dr. K. A. Sullivan (University of Michigan, Ann Arbor, MI, USA). This work was supported by an Aging Training Grant (NIA T32-AG000114), and grants from the Animal Models of Diabetic Complications Consortium (NIH U01-DK076160), the Taubman Institute and the Program for Neurology Research and Discovery.

Author information

Authors and Affiliations

Authors

Contributions

C. Sims-Robinson researched the data for the article, provided substantial contributions to discussions of the content, and contributed to the writing, reviewing and editing of the manuscript. B. Kim researched the data for the article and contributed to the writing, reviewing and editing of the manuscript. A. Rosko researched the data for the article and contributed to the writing of the manuscript. E. L. Feldman provided substantial contributions to discussions of the content and contributed to the reviewing and editing of the manuscript.

Corresponding author

Correspondence to Eva L. Feldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sims-Robinson, C., Kim, B., Rosko, A. et al. How does diabetes accelerate Alzheimer disease pathology?. Nat Rev Neurol 6, 551–559 (2010). https://doi.org/10.1038/nrneurol.2010.130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing