Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How does diabetes accelerate Alzheimer disease pathology?

Abstract

Diabetes and Alzheimer disease (AD)—two age-related diseases—are both increasing in prevalence, and numerous studies have demonstrated that patients with diabetes have an increased risk of developing AD compared with healthy individuals. The underlying biological mechanisms that link the development of diabetes with AD are not fully understood. Abnormal protein processing, abnormalities in insulin signaling, dysregulated glucose metabolism, oxidative stress, the formation of advanced glycation end products, and the activation of inflammatory pathways are features common to both diseases. Hypercholesterolemia is another factor that has received attention, owing to its potential association with diabetes and AD. This Review summarizes the mechanistic pathways that might link diabetes and AD. An understanding of this complex interaction is necessary for the development of novel drug therapies and lifestyle guidelines aimed at the treatment and/or prevention of these diseases.

Key Points

  • Alzheimer disease (AD) and diabetes are both associated with enormous and increasing socioeconomic effects

  • Diabetes affects the processing of amyloid-β and tau, and might increase the rate of formation of senile plaques and neurofibrillary tangles, the main neuropathological hallmarks of AD

  • Hyperinsulinemia is associated with amyloid-β accumulation and regulates tau phosphorylation

  • Oxidative stress activates inflammatory pathways and, hence, might exacerbate AD neuropathology

  • Mitochondrial dysfunction is associated with both diabetes and AD, and leads to intracellular calcium dysregulation and abnormal processing of the amyloid precursor protein

  • Induction of diabetes exacerbates AD neuropathology in mouse models of this neurodegenerative disease

Figure 1: Altered insulin signaling in diabetes might contribute to Alzheimer disease pathophysiology.
Figure 2: Pathological mechanisms associated with diabetes might cause AD.

References

  1. 1

    Brands, A. M., Biessels, G. J., de Haan, E. H., Kappelle, L. J. & Kessels, R. P. The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28, 726–735 (2005).

    PubMed  PubMed Central  Google Scholar 

  2. 2

    Biessels, G. J., Staekenborg, S., Brunner, E., Brayne, C. & Scheltens, P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 5, 64–74 (2006).

    Google Scholar 

  3. 3

    Janson, J. et al. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53, 474–481 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Li, L. & Holscher, C. Common pathological processes in Alzheimer disease and type 2 diabetes: a review. Brain Res. Rev. 56, 384–402 (2007).

    CAS  PubMed  Google Scholar 

  5. 5

    Awad, N., Gagnon, M. & Messier, C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J. Clin. Exp. Neuropsychol. 26, 1044–1080 (2004).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Strachan, M. W., Deary, I. J., Ewing, F. M. & Frier, B. M. Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care 20, 438–445 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Gilman, S. Alzheimer's disease. Perspect. Biol. Med. 40, 230–245 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Gotz, J., Schild, A., Hoerndli, F. & Pennanen, L. Amyloid-induced neurofibrillary tangle formation in Alzheimer's disease: insight from transgenic mouse and tissue-culture models. Int. J. Dev. Neurosci. 22, 453–465 (2004).

    PubMed  PubMed Central  Google Scholar 

  9. 9

    Rocchi, A., Pellegrini, S., Siciliano, G. & Murri, L. Causative and susceptibility genes for Alzheimer's disease: a review. Brain Res. Bull. 61, 1–24 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Haan, M. N. Therapy Insight: type 2 diabetes mellitus and the risk of late-onset Alzheimer's disease. Nat. Clin. Pract. Neurol. 2, 159–166 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Reddy, V. P., Zhu, X., Perry, G. & Smith, M. A. Oxidative stress in diabetes and Alzheimer's disease. J. Alzheimers Dis. 16, 763–774 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Hoyer, S. Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J. Neural Transm. 105, 415–422 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Nelson, T. J. & Alkon, D. L. Insulin and cholesterol pathways in neuronal function, memory and neurodegeneration. Biochem. Soc. Trans. 33, 1033–1036 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Zhao, W. Q. & Townsend, M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim. Biophys. Acta 1792, 482–496 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Martins, I. J. et al. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Mol. Psychiatry 11, 721–736 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Moreira, P. I., Santos, M. S., Seica, R. & Oliveira, C. R. Brain mitochondrial dysfunction as a link between Alzheimer's disease and diabetes. J. Neurol. Sci. 257, 206–214 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Nielson, K. A. et al. Apolipoprotein-E genotyping of diabetic dementia patients: is diabetes rare in Alzheimer's disease? J. Am. Geriatr. Soc. 44, 897–904 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Akomolafe, A. et al. Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham Study. Arch. Neurol. 63, 1551–1555 (2006).

    PubMed  PubMed Central  Google Scholar 

  19. 19

    MacKnight, C., Rockwood, K., Awalt, E. & McDowell, I. Diabetes mellitus and the risk of dementia, Alzheimer's disease and vascular cognitive impairment in the Canadian Study of Health and Aging. Dement. Geriatr. Cogn. Disord. 14, 77–83 (2002).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Hardy, J. A. & Higgins, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    CAS  PubMed  Google Scholar 

  21. 21

    Vetrivel, K. S. & Thinakaran, G. Amyloidogenic processing of β-amyloid precursor protein in intracellular compartments. Neurology 66, S69–S73 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Selkoe, D. J. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

    CAS  Google Scholar 

  23. 23

    Small, D. H., Mok, S. S. & Bornstein, J. C. Alzheimer's disease and Aβ toxicity: from top to bottom. Nat. Rev. Neurosci. 2, 595–598 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Naslund, J. et al. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA 283, 1571–1577 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Hsia, A. Y. et al. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc. Natl Acad. Sci. USA 96, 3228–3233 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Catalano, S. M. et al. The role of amyloid-β derived diffusible ligands (ADDLs) in Alzheimer's disease. Curr. Top. Med. Chem. 6, 597–608 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Johnson, G. V. & Stoothoff, W. H. Tau phosphorylation in neuronal cell function and dysfunction. J. Cell Sci. 117, 5721–5729 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Cotman, C. W., Poon, W. W., Rissman, R. A. & Blurton-Jones, M. The role of caspase cleavage of tau in Alzheimer disease neuropathology. J. Neuropathol. Exp. Neurol. 64, 104–112 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Rohn, T. T. et al. Caspase-9 activation and caspase cleavage of tau in the Alzheimer's disease brain. Neurobiol. Dis. 11, 341–354 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Chung, C. W. et al. Proapoptotic effects of tau cleavage product generated by caspase-3. Neurobiol. Dis. 8, 162–172 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Gamblin, T. C., Berry, R. W. & Binder, L. I. Tau polymerization: role of the amino terminus. Biochemistry 42, 2252–2257 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Hrnkova, M., Zilka, N., Minichova, Z., Koson, P. & Novak, M. Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats. Brain Res. 1130, 206–213 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Chun, W. & Johnson, G. V. The role of tau phosphorylation and cleavage in neuronal cell death. Front. Biosci. 12, 733–756 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Kim, B., Backus, C., Oh, S., Hayes, J. M. & Feldman, E. L. Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150, 5294–5301 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Li, Z. G., Zhang, W. & Sima, A. A. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 56, 1817–1824 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Clodfelder-Miller, B. J., Zmijewska, A. A., Johnson, G. V. & Jope, R. S. Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55, 3320–3325 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Planel, E. et al. Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J. Neurosci. 27, 13635–13648 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Jolivalt, C. G. et al. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin. J. Neurosci. Res. 86, 3265–3274 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Liu, Y., Liu, F., Grundke-Iqbal, I., Iqbal, K. & Gong, C.-X. Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer disease. J. Neurochem. 111, 242–249 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Dias, W. B. & Hart, G. W. O-GlcNAc modification in diabetes and Alzheimer's disease. Mol. Biosyst. 3, 766–772 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Biessels, G. J. et al. Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res. 800, 125–135 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Stolk, R. P. et al. Insulin and cognitive function in an elderly population. The Rotterdam Study. Diabetes Care 20, 792–795 (1997).

    CAS  PubMed  Google Scholar 

  43. 43

    Zhao, W. Q. & Alkon, D. L. Role of insulin and insulin receptor in learning and memory. Mol. Cell. Endocrinol. 177, 125–134 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    de la Monte, S. M. & Wands, J. R. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer's disease. J. Alzheimers Dis. 7, 45–61 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Frolich, L. et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease. J. Neural Transm. 105, 423–438 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Zhao, W. Q. et al. Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric Aβ. J. Biol. Chem. 284, 18742–18753 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Gasparini, L. & Xu, H. Potential roles of insulin and IGF-1 in Alzheimer's disease. Trends Neurosci. 26, 404–406 (2003).

    CAS  PubMed  Google Scholar 

  48. 48

    Pedersen, W. A. et al. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp. Neurol. 199, 265–273 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Watson, G. S. et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am. J. Geriatr. Psychiatry 13, 950–958 (2005).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Hong, M. & Lee, V. M. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J. Biol. Chem. 272, 19547–19553 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Lesort, M. & Johnson, G. V. Insulin-like growth factor-1 and insulin mediate transient site-selective increases in tau phosphorylation in primary cortical neurons. Neuroscience 99, 305–316 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Cheng, C. M. et al. Tau is hyperphosphorylated in the insulin-like growth factor-I null brain. Endocrinology 146, 5086–5091 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Schubert, M. et al. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J. Neurosci. 23, 7084–7092 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Freude, S. et al. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes 54, 3343–3348 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Pearson, L. L., Castle, B. E. & Kehry, M. R. CD40-mediated signaling in monocytic cells: up-regulation of tumor necrosis factor receptor-associated factor mRNAs and activation of mitogen-activated protein kinase signaling pathways. Int. Immunol. 13, 273–283 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Brazil, D. P. & Hemmings, B. A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem. Sci. 26, 657–664 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Tremblay, M. L. & Giguere, V. Phosphatases at the heart of FoxO metabolic control. Cell Metab. 7, 101–103 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Hensley, K. et al. p38 kinase is activated in the Alzheimer's disease brain. J. Neurochem. 72, 2053–2058 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Munoz, L. & Ammit, A. J. Targeting p38 MAPK pathway for the treatment of Alzheimer's disease. Neuropharmacology 58, 561–568 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Kelleher, I., Garwood, C., Hanger, D. P., Anderton, B. H. & Noble, W. Kinase activities increase during the development of tauopathy in htau mice. J. Neurochem. 103, 2256–2267 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Balaraman, Y., Limaye, A. R., Levey, A. I. & Srinivasan, S. Glycogen synthase kinase 3β and Alzheimer's disease: pathophysiological and therapeutic significance. Cell. Mol. Life Sci. 63, 1226–1235 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Lee, J. & Kim, M. S. The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res. Clin. Pract. 77 (Suppl. 1), S49–S57 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Clodfelder-Miller, B., De Sarno, P., Zmijewska, A. A., Song, L. & Jope, R. S. Physiological and pathological changes in glucose regulate brain Akt and glycogen synthase kinase-3. J. Biol. Chem. 280, 39723–39731 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Phiel, C. J., Wilson, C. A., Lee, V. M. & Klein, P. S. GSK-3α regulates production of Alzheimer's disease amyloid-β peptides. Nature 423, 435–439 (2003).

    CAS  PubMed  Google Scholar 

  65. 65

    Noble, W. et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl Acad. Sci. USA 102, 6990–6995 (2005).

    CAS  PubMed  Google Scholar 

  66. 66

    Small, G. W. et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proc. Natl Acad. Sci. USA 97, 6037–6042 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Garrido, G. E. et al. Relation between medial temporal atrophy and functional brain activity during memory processing in Alzheimer's disease: a combined MRI and SPECT study. J. Neurol. Neurosurg. Psychiatry 73, 508–516 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Watson, G. S. & Craft, S. Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer's disease. Eur. J. Pharmacol. 490, 97–113 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Biessels, G. J., van der Heide, L. P., Kamal, A., Bleys, R. L. & Gispen, W. H. Ageing and diabetes: implications for brain function. Eur. J. Pharmacol. 441, 1–14 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Hunt, J. V., Dean, R. T. & Wolff, S. P. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem. J. 256, 205–212 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Singh, R., Barden, A., Mori, T. & Beilin, L. Advanced glycation end-products: a review. Diabetologia 44, 129–146 (2001).

    CAS  PubMed  Google Scholar 

  72. 72

    Brownlee, M. Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med. 46, 223–234 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Sasaki, N. et al. Advanced glycation end products in Alzheimer's disease and other neurodegenerative diseases. Am. J. Pathol. 153, 1149–1155 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Sasaki, N. et al. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer's disease. Brain Res. 888, 256–262 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Ledesma, M. D., Bonay, P., Colaco, C. & Avila, J. Analysis of microtubule-associated protein tau glycation in paired helical filaments. J. Biol. Chem. 269, 21614–21619 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Toth, C. et al. Diabetes, leukoencephalopathy and rage. Neurobiol. Dis. 23, 445–461 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Girones, X. et al. N epsilon-carboxymethyllysine in brain aging, diabetes mellitus, and Alzheimer's disease. Free Radic. Biol. Med. 36, 1241–1247 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Heitner, J. & Dickson, D. Diabetics do not have increased Alzheimer-type pathology compared with age-matched control subjects. A retrospective postmortem immunocytochemical and histofluorescent study. Neurology 49, 1306–1311 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Russell, J. W. et al. Oxidative injury and neuropathy in diabetes and impaired glucose tolerance. Neurobiol. Dis. 30, 420–429 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Vincent, A. M., Russell, J. W., Low, P. & Feldman, E. L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev. 25, 612–628 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Giugliano, D., Ceriello, A. & Paolisso, G. Oxidative stress and diabetic vascular complications. Diabetes Care 19, 257–267 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Pratico, D. & Sung, S. Lipid peroxidation and oxidative imbalance: early functional events in Alzheimer's disease. J. Alzheimers Dis. 6, 171–175 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Butterfield, D. A. et al. Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer's disease. Brain Res. 1148, 243–248 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Pratico, D., Uryu, K., Leight, S., Trojanoswki, J. Q. & Lee, V. M. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci. 21, 4183–4187 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Apelt, J., Bigl, M., Wunderlich, P. & Schliebs, R. Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology. Int. J. Dev. Neurosci. 22, 475–484 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Matsuoka, Y., Picciano, M., La Francois, J. & Duff, K. Fibrillar β-amyloid evokes oxidative damage in a transgenic mouse model of Alzheimer's disease. Neuroscience 104, 609–613 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Resende, R. et al. Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic. Biol. Med. 44, 2051–2057 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Reddy, P. H. & Beal, M. F. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends Mol. Med. 14, 45–53 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Tan, J. et al. Microglial activation resulting from CD40-CD40L interaction after β-amyloid stimulation. Science 286, 2352–2355 (1999).

    CAS  PubMed  Google Scholar 

  90. 90

    van de Ree, M. A., Huisman, M. V., Princen, H. M., Meinders, A. E. & Kluft, C. Strong decrease of high sensitivity C-reactive protein with high-dose atorvastatin in patients with type 2 diabetes mellitus. Atherosclerosis 166, 129–135 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Akiyama, H. et al. Inflammation and Alzheimer's disease. Neurobiol. Aging 21, 383–421 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Sly, L. M. et al. Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer's disease. Brain Res. Bull. 56, 581–588 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Szekely, C. A. et al. Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer's disease: a systematic review. Neuroepidemiology 23, 159–169 (2004).

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Aisen, P. S. et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289, 2819–2826 (2003).

    CAS  PubMed  Google Scholar 

  95. 95

    Reines, S. A. et al. Rofecoxib: no effect on Alzheimer's disease in a 1-year, randomized, blinded, controlled study. Neurology 62, 66–71 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Schaefer, E. J. et al. Familial apolipoprotein E deficiency. J. Clin. Invest. 78, 1206–1219 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Ishibashi, S. et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Peila, R., Rodriguez, B. L. & Launer, L. J. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu–Asia Aging Study. Diabetes 51, 1256–1262 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Kuusisto, J. et al. Association between features of the insulin resistance syndrome and Alzheimer's disease independently of apolipoprotein E4 phenotype: cross sectional population based study. BMJ 315, 1045–1049 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Profenno, L. A. & Faraone, S. V. Diabetes and overweight associate with non-APOE4 genotype in an Alzheimer's disease population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B, 822–829 (2008).

    PubMed  PubMed Central  Google Scholar 

  101. 101

    LaDu, M. J. et al. Isoform-specific binding of apolipoprotein E to β-amyloid. J. Biol. Chem. 269, 23403–23406 (1994).

    CAS  PubMed  Google Scholar 

  102. 102

    Belinson, H., Lev, D., Masliah, E. & Michaelson, D. M. Activation of the amyloid cascade in apolipoprotein E4 transgenic mice induces lysosomal activation and neurodegeneration resulting in marked cognitive deficits. J. Neurosci. 28, 4690–4701 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Brecht, W. J. et al. Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J. Neurosci. 24, 2527–2534 (2004).

    CAS  PubMed  Google Scholar 

  104. 104

    Ulery, P. G. et al. Modulation of β-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). Evidence that LRP contributes to the pathogenesis of Alzheimer's disease. J. Biol. Chem. 275, 7410–7415 (2000).

    CAS  PubMed  Google Scholar 

  105. 105

    Yaffe, K. Metabolic syndrome and cognitive decline. Curr. Alzheimer Res. 4, 123–126 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Harris, M. I. Hypercholesterolemia in diabetes and glucose intolerance in the U. S. population. Diabetes Care 14, 366–374 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Ishikawa, M. et al. Cholesterol accumulation and diabetes in pancreatic β-cell-specific SREBP-2 transgenic mice: a new model for lipotoxicity. J. Lipid Res. 49, 2524–2534 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Sharma, S., Prasanthi, R. P. J., Schommer, E., Feist, G. & Ghribi, O. Hypercholesterolemia-induced Aβ accumulation in rabbit brain is associated with alteration in IGF-1 signaling. Neurobiol. Dis. 32, 426–432 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Burns, M. P. et al. Co-localization of cholesterol, apolipoprotein E and fibrillar Aβ in amyloid plaques. Brain Res. Mol. Brain Res. 110, 119–125 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Mori, T. et al. Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J. Neuropathol. Exp. Neurol. 60, 778–785 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Bjorkhem, I., Heverin, M., Leoni, V., Meaney, S. & Diczfalusy, U. Oxysterols and Alzheimer's disease. Acta Neurol. Scand. Suppl. 185, 43–49 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Prasanthi, J. R. et al. Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on β-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Mol. Neurodegener. 4, 1 (2009).

    PubMed  PubMed Central  Google Scholar 

  113. 113

    Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S. & Drachman, D. A. Statins and the risk of dementia. Lancet 356, 1627–1631 (2000).

    CAS  PubMed  Google Scholar 

  114. 114

    Distl, R., Meske, V. & Ohm, T. G. Tangle-bearing neurons contain more free cholesterol than adjacent tangle-free neurons. Acta Neuropathol. 101, 547–554 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Refolo, L. M. et al. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7, 321–331 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Rizzuto, R. et al. Mitochondria as biosensors of calcium microdomains. Cell Calcium 26, 193–199 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Khachaturian, Z. S. Calcium hypothesis of Alzheimer's disease and brain aging. Ann. NY Acad. Sci. 747, 1–11 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Kostyuk, E. et al. Diabetes-induced changes in calcium homeostasis and the effects of calcium channel blockers in rat and mice nociceptive neurons. Diabetologia 44, 1302–1309 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Brustovetsky, N., Brustovetsky, T., Jemmerson, R. & Dubinsky, J. M. Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J. Neurochem. 80, 207–218 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Anandatheerthavarada, H. K., Biswas, G., Robin, M. A. & Avadhani, N. G. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J. Cell Biol. 161, 41–54 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Crouch, P. J. et al. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-β1–42 . J. Neurosci. 25, 672–679 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Blass, J. P. & Gibson, G. E. The role of oxidative abnormalities in the pathophysiology of Alzheimer's disease. Rev. Neurol. (Paris) 147, 513–525 (1991).

    CAS  Google Scholar 

  123. 123

    Hirai, K. et al. Mitochondrial abnormalities in Alzheimer's disease. J. Neurosci. 21, 3017–3023 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Murray, F. E., Landsberg, J. P., Williams, R. J., Esiri, M. M. & Watt, F. Elemental analysis of neurofibrillary tangles in Alzheimer's disease using proton-induced X-ray analysis. Ciba Found. Symp. 169, 201–210 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Nixon, R. A. et al. Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease. Ann. NY Acad. Sci. 747, 77–91 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    McKee, A. C., Kosik, K. S., Kennedy, M. B. & Kowall, N. W. Hippocampal neurons predisposed to neurofibrillary tangle formation are enriched in type II calcium/calmodulin-dependent protein kinase. J. Neuropathol. Exp. Neurol. 49, 49–63 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Johnson, G. V. et al. Transglutaminase activity is increased in Alzheimer's disease brain. Brain Res. 751, 323–329 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Querfurth, H. W. & Selkoe, D. J. Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 33, 4550–4561 (1994).

    CAS  PubMed  Google Scholar 

  129. 129

    Levy, J., Gavin, J. R. 3rd & Sowers, J. R. Diabetes mellitus: a disease of abnormal cellular calcium metabolism? Am. J. Med. 96, 260–273 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Levy, J., Zemel, M. B. & Sowers, J. R. Role of cellular calcium metabolism in abnormal glucose metabolism and diabetic hypertension. Am. J. Med. 87, 7S–16S (1989).

  131. 131

    Studer, R. K. & Ganas, L. Effect of diabetes on hormone-stimulated and basal hepatocyte calcium metabolism. Endocrinology 125, 2421–2433 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Moreira, P. I., Santos, M. S., Sena, C., Seica, R. & Oliveira, C. R. Insulin protects against amyloid β-peptide toxicity in brain mitochondria of diabetic rats. Neurobiol. Dis. 18, 628–637 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944–2950 (2002).

    CAS  PubMed  Google Scholar 

  134. 134

    Ke, Y. D., Delerue, F., Gladbach, A., Gotz, J. & Ittner, L. M. Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer's disease. PLoS ONE 4, e7917 (2009).

    PubMed  PubMed Central  Google Scholar 

  135. 135

    Jolivalt, C. G. et al. Type 1 diabetes exaggerates features of Alzheimer's disease in APP transgenic mice. Exp. Neurol. 223, 422–431 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Takeda, S. et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an Alzheimer mouse model with diabetes. Proc. Natl Acad. Sci. USA 107, 7036–7041 (2010).

    CAS  PubMed  Google Scholar 

  137. 137

    Morrison, C. D. Leptin signaling in brain: A link between nutrition and cognition? Biochim. Biophys. Acta 1792, 401–408 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Ott, A. et al. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 53, 1937–1942 (1999).

    CAS  Google Scholar 

  139. 139

    Brayne, C. et al. Vascular risks and incident dementia: results from a cohort study of the very old. Dement. Geriatr. Cogn. Disord. 9, 175–180 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Yoshitake, T. et al. Incidence and risk factors of vascular dementia and Alzheimer's disease in a defined elderly Japanese population: the Hisayama Study. Neurology 45, 1161–1168 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Xu, W. L., Qiu, C. X., Wahlin, A., Winblad, B. & Fratiglioni, L. Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology 63, 1181–1186 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Leibson, C. L. et al. Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am. J. Epidemiol. 145, 301–308 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Luchsinger, J. A. et al. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology 65, 545–551 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Arvanitakis, Z., Wilson, R. S., Bienias, J. L., Evans, D. A. & Bennett, D. A. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch. Neurol. 61, 661–666 (2004).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the helpful discussion with Dr. K. A. Sullivan (University of Michigan, Ann Arbor, MI, USA). This work was supported by an Aging Training Grant (NIA T32-AG000114), and grants from the Animal Models of Diabetic Complications Consortium (NIH U01-DK076160), the Taubman Institute and the Program for Neurology Research and Discovery.

Author information

Affiliations

Authors

Contributions

C. Sims-Robinson researched the data for the article, provided substantial contributions to discussions of the content, and contributed to the writing, reviewing and editing of the manuscript. B. Kim researched the data for the article and contributed to the writing, reviewing and editing of the manuscript. A. Rosko researched the data for the article and contributed to the writing of the manuscript. E. L. Feldman provided substantial contributions to discussions of the content and contributed to the reviewing and editing of the manuscript.

Corresponding author

Correspondence to Eva L. Feldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sims-Robinson, C., Kim, B., Rosko, A. et al. How does diabetes accelerate Alzheimer disease pathology?. Nat Rev Neurol 6, 551–559 (2010). https://doi.org/10.1038/nrneurol.2010.130

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing