Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Parkinson disease and comorbid cerebrovascular disease

Abstract

Optimal management of chronic diseases not only requires tackling of the primary disease processes, but also necessitates timely recognition and treatment of comorbid conditions. In this article, we illustrate this two-pronged approach for two common age-related disorders: Parkinson disease (PD) and cerebrovascular disease (CVD). We first discuss the pathophysiological mechanisms that could provide a link between PD and CVD. Patients with PD have a series of risk factors that could promote development of CVD, but also have several protective factors. We then review the available clinical, radiological and neuropathological evidence to support an association between these two conditions. We conclude by discussing the potential implications for clinical practice, highlighting how comorbid CVD could alter the clinical presentation of PD and reviewing the possibilities for prevention and secondary prophylaxis. Additional research will be needed to fully evaluate the prevalence and clinical relevance of comorbid CVD in PD. Pending further evidence, we recommend that cerebral neuroimaging should be considered if patients with initially uncomplicated PD develop—either acutely or chronically—prominent and/or treatment-resistant gait impairment, postural instability, depression, cognitive decline, or urinary incontinence. Finding comorbid CVD in such patients could have prognostic implications, and could necessitate treatment to arrest further progression of CVD.

Key Points

  • Patients with Parkinson disease (PD) could have an increased risk of developing comorbid cerebrovascular disease (CVD), although systematic research is lacking

  • The pathophysiology underlying the relationship between PD and CVD is complex and multifactorial, with both risk factors and protective mechanisms at play

  • Comorbid CVD usually presents not as overt acute stroke, but by producing or exacerbating symptoms such as postural instability, gait impairment, falls, depression, cognitive decline, or urinary incontinence

  • Neuroimaging should be considered when patients with PD develop any of these symptoms, particularly early in the disease process

  • If patients with PD develop a clinically manifest transient ischemic attack or ischemic stroke, they should be treated according to established protocols for these conditions

  • Additional well-designed and adequately powered studies are required to improve our understanding of the relationship between PD and CVD, as well as the possible therapeutic consequences

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathophysiological mechanisms that could underlie an association between Parkinson disease and cerebrovascular disease.

Similar content being viewed by others

References

  1. Langston, J. W. The Parkinson's complex: parkinsonism is just the tip of the iceberg. Ann. Neurol. 59, 591–596 (2006).

    PubMed  Google Scholar 

  2. Feinstein, A. The pre-therapeutic classification of comorbidity in chronic disease. J. Chron. Dis. 23, 455–468 (1970).

    CAS  Google Scholar 

  3. van Eijkeren, F. J. et al. Nordic walking improves mobility in Parkinson's disease. Mov. Disord. 23, 2239–2243 (2008).

    PubMed  Google Scholar 

  4. Kadoglou, N. P., Iliadis, F. & Liapis, C. Exercise and carotid atherosclerosis. Eur. J. Vasc Endovasc. Surg. 35, 264–272 (2008).

    CAS  PubMed  Google Scholar 

  5. Alves, G., Kurz, M., Lie, S. A. & Larsen, J. P. Cigarette smoking in Parkinson's disease: influence on disease progression. Mov. Disord. 19, 1087–1092 (2004).

    PubMed  Google Scholar 

  6. Zijlmans, J. C., Daniel, S. E., Hughes, A. J., Révész, T. & Lees, A. J. Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis. Mov. Disord. 19, 630–640 (2004).

    PubMed  Google Scholar 

  7. Gelb, D. J., Oliver, E. & Gilman, S. Diagnostic criteria for Parkinson disease. Arch. Neurol. 56, 33–39 (1999).

    CAS  PubMed  Google Scholar 

  8. Solfrizzi, V. et al. Vascular risk factors, incidence of MCI, and rates of progression to dementia. Neurology 63, 1882–1891 (2004).

    CAS  PubMed  Google Scholar 

  9. Struck, L. K., Rodnitzky, R. L. & Dobson, J. K. Stroke and its modification in Parkinson's disease. Stroke 21, 1395–1399 (1990).

    CAS  PubMed  Google Scholar 

  10. Marttila, R. J. & Rinne, U. K. Smoking and Parkinson's disease. Acta Neurol. Scand. 62, 322–325 (1980).

    CAS  PubMed  Google Scholar 

  11. Nataraj, A. & Rajput, A. H. Parkinson's disease, stroke, and related epidemiology. Mov. Disord. 20, 1476–1480 (2005).

    PubMed  Google Scholar 

  12. van Dijk, E. J. et al. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study. Stroke 39, 2712–2719 (2008).

    PubMed  Google Scholar 

  13. Longstreth, W. T. Jr, et al. Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: the Cardiovascular Health Study. Stroke 36, 56–61 (2005).

    Google Scholar 

  14. Wolf, P. A., D'Agostino, R. B., Kannel, W. B., Bonita, R. & Belanger, A. J. Cigarette smoking as a risk factor for stroke. The Framingham Study. JAMA 259, 1025–1029 (1988).

    CAS  PubMed  Google Scholar 

  15. Howard, G. et al. Cigarette smoking and other risk factors for silent cerebral infarction in the general population. Stroke 29, 913–917 (1998).

    CAS  PubMed  Google Scholar 

  16. Howard, G. et al. Cigarette smoking and progression of atherosclerosis: The Atherosclerosis Risk in Communities (ARIC) Study. JAMA 279, 119–124 (1998).

    CAS  PubMed  Google Scholar 

  17. Swan, G. E. & Lessov-Schlaggar, C. N. The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol. Rev. 17, 259–273 (2007).

    PubMed  Google Scholar 

  18. Scigliano, G., Ronchetti, G., Girotto, F. & Musicco, M. Sympathetic modulation by levodopa reduces vascular risk factors in Parkinson disease. Parkinsonism Relat. Disord. 15, 138–143 (2009).

    PubMed  Google Scholar 

  19. Laverty, R. Catecholamines: role in health and disease. Drugs 16, 418–440 (1978).

    CAS  PubMed  Google Scholar 

  20. Bouhaddi, M. et al. Impaired cardiovascular autonomic control in newly and long-term-treated patients with Parkinson's disease: involvement of L-dopa therapy. Auton. Neurosci. 116, 30–38 (2004).

    CAS  PubMed  Google Scholar 

  21. Iwasaki, S., Hamaguchi, K., Iwasaki, A., Takakusagi, M. & Narabayashi, Y. Hypotensive effect of long-term levodopa in patients with Parkinson's disease. Eur. Neurol. 30, 194–199 (1990).

    CAS  PubMed  Google Scholar 

  22. Saito, I. et al. Effect of L-dopa in young patients with hypertension. Angiology 42, 691–695 (1991).

    CAS  PubMed  Google Scholar 

  23. van Dijk, J. G. et al. Autonomic nervous system dysfunction in Parkinson's disease: relationships with age, medication, duration, and severity. J. Neurol. Neurosurg. Psychiatry 56, 1090–1095 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Durrieu, G. et al. Blood pressure and plasma catecholamines in never-treated parkinsonian patients: effect of a selective D1 agonist (CY 208–243). Neurology 40, 707–709 (1990).

    CAS  PubMed  Google Scholar 

  25. Mannelli, M. et al. In vivo evidence that endogenous dopamine modulates sympathetic activity in man. Hypertension 34, 398–402 (1999).

    CAS  PubMed  Google Scholar 

  26. Low, P. A. & Singer, W. Management of neurogenic orthostatic hypotension: an update. Lancet Neurol. 7, 451–458 (2008).

    PubMed  PubMed Central  Google Scholar 

  27. Shannon, J. R. et al. Sympathetically mediated hypertension in autonomic failure. Circulation 101, 2710–2715 (2000).

    CAS  PubMed  Google Scholar 

  28. Goldstein, D. S., Pechnik, S., Holmes, C., Eldabah, B. & Sharabi, Y. Association between supine hypertension and orthostatic hypotension in autonomic failure. Hypertension 42, 136–142 (2003).

    CAS  PubMed  Google Scholar 

  29. Schoenberger, J. A. Drug-induced orthostatic hypotension. Drug Saf. 6, 402–407 (1991).

    CAS  PubMed  Google Scholar 

  30. Senard, J. M., Brefel-Courbon, C., Rascol, O. & Montastruc, J. L. Orthostatic hypotension in patients with Parkinson's disease: pathophysiology and management. Drugs Aging 18, 495–505 (2001).

    CAS  PubMed  Google Scholar 

  31. Verhaeverbeke, I. & Mets, T. Drug-induced orthostatic hypotension in the elderly: avoiding its onset. Drug Saf. 17, 105–118 (1997).

    CAS  PubMed  Google Scholar 

  32. Lees, A. Alternatives to levodopa in the initial treatment of early Parkinson's disease. Drugs Aging 22, 731–740 (2005).

    CAS  PubMed  Google Scholar 

  33. de Leeuw, F. E. et al. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 125, 765–772 (2002).

    PubMed  Google Scholar 

  34. Eigenbrodt, M. L. et al. Orthostatic hypotension as a risk factor for stroke: the atherosclerosis risk in communities (ARIC) study, 1987–1996. Stroke 31, 2307–2313 (2000).

    CAS  PubMed  Google Scholar 

  35. Manolio, T. A., Kronmal, R. A., Burke, G. L., O'Leary, D. H. & Price, T. R. Short-term predictors of incident stroke in older adults. The Cardiovascular Health Study. Stroke 27, 1479–1486 (1996).

    CAS  PubMed  Google Scholar 

  36. Marcus, B. H. et al. Physical activity intervention studies: what we know and what we need to know: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity); Council on Cardiovascular Disease in the Young; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research. Circulation 114, 2739–2752 (2006).

    PubMed  Google Scholar 

  37. Warburton, D. E., Nicol, C. W. & Bredin, S. S. Health benefits of physical activity: the evidence. CMAJ 174, 801–809 (2006).

    PubMed  PubMed Central  Google Scholar 

  38. Fertl, E., Doppelbauer, A. & Auff, E. Physical activity and sports in patients suffering from Parkinson's disease in comparison with healthy seniors. J. Neural Transm. Park. Dis. Dement. Sect. 5, 157–161 (1993).

    CAS  PubMed  Google Scholar 

  39. Toth, M. J., Fishman, P. S. & Poehlman, E. T. Free-living daily energy expenditure in patients with Parkinson's disease. Neurology 48, 88–91 (1997).

    CAS  PubMed  Google Scholar 

  40. Wendel-Vos, G. C. et al. Physical activity and stroke. A meta-analysis of observational data. Int. J. Epidemiol. 33, 787–798 (2004).

    CAS  PubMed  Google Scholar 

  41. Haapanen, N., Miilunpalo, S., Vuori, I., Oja, P. & Pasanen, M. Association of leisure time physical activity with the risk of coronary heart disease, hypertension and diabetes in middle-aged men and women. Int. J. Epidemiol. 26, 739–747 (1997).

    CAS  PubMed  Google Scholar 

  42. Kenangil, G., Ozekmekçi, S., Koldas, L., Sahin, T. & Erginöz, E. Assessment of valvulopathy in Parkinson's disease patients on pergolide and/or cabergoline. Clin. Neurol. Neurosurg. 109, 350–353 (2007).

    PubMed  Google Scholar 

  43. Kim, J. Y., Chung, E. J., Park, S. W. & Lee, W. Y. Valvular heart disease in Parkinson's disease treated with ergot derivative dopamine agonists. Mov. Disord. 21, 1261–1264 (2006).

    PubMed  Google Scholar 

  44. Dewey, R. B. 2nd, Reimold, S. C. & O'Suilleabhain, P. E. Cardiac valve regurgitation with pergolide compared with nonergot agonists in Parkinson disease. Arch. Neurol. 64, 377–380 (2007).

    PubMed  Google Scholar 

  45. Van Camp, G. et al. Treatment of Parkinson's disease with pergolide and relation to restrictive valvular heart disease. Lancet 363, 1179–1183 (2004).

    CAS  PubMed  Google Scholar 

  46. Schade, R., Andersohn, F., Suissa, S., Haverkamp, W. & Garbe, E. Dopamine agonists and the risk of cardiac-valve regurgitation. N. Engl. J. Med. 356, 29–38 (2007).

    CAS  PubMed  Google Scholar 

  47. Zanettini, R. et al. Valvular heart disease and the use of dopamine agonists for Parkinson's disease. N. Engl. J. Med. 356, 39–46 (2007).

    CAS  PubMed  Google Scholar 

  48. Antonini, A. & Poewe, W. Fibrotic heart-valve reactions to dopamine-agonist treatment in Parkinson's disease. Lancet Neurol. 6, 826–829 (2007).

    CAS  PubMed  Google Scholar 

  49. Rothman, R. B. et al. Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102, 2836–2841 (2000).

    CAS  PubMed  Google Scholar 

  50. Baseman, D. G. et al. Pergolide use in Parkinson disease is associated with cardiac valve regurgitation. Neurology 63, 301–304 (2004).

    CAS  PubMed  Google Scholar 

  51. Roldan, C. A., Gelgand, E. A., Qualls, C. R. & Sibbitt, W. L. Jr . Valvular heart disease as a cause of cerebrovascular disease in patients with systemic lupus erythematosus. Am. J. Cardiol. 95, 1441–1447 (2005).

    PubMed  Google Scholar 

  52. Kuhn, W. et al. Elevated plasma levels of homocysteine in Parkinson's disease. Eur. Neurol. 40, 225–227 (1998).

    CAS  PubMed  Google Scholar 

  53. Kuhn, W., Roebroek, R., Blom, H., van Oppenraaij, D. & Müller, T. Hyperhomocysteinaemia in Parkinson's disease. J. Neurol. 245, 811–812 (1998).

    CAS  PubMed  Google Scholar 

  54. Lamberti, P. et al. Effects of levodopa and COMT inhibitors on plasma homocysteine in Parkinson's disease patients. Mov. Disord. 20, 69–72 (2005).

    PubMed  Google Scholar 

  55. Lamberti, P. et al. Hyperhomocysteinemia in L-dopa treated Parkinson's disease patients: effect of cobalamin and folate administration. Eur. J. Neurol. 12, 365–368 (2005).

    CAS  PubMed  Google Scholar 

  56. Müller, T., Werne, B., Fowler, B. & Kuhn, W. Nigral endothelial dysfunction, homocysteine, and Parkinson's disease. Lancet 354, 126–127 (1999).

    PubMed  Google Scholar 

  57. Bottiglieri, T., Hyland, K. & Reynolds, E. H. The clinical potential of ademetionine (S-adenosylmethionine) in neurological disorders. Drugs 48, 137–152 (1994).

    CAS  PubMed  Google Scholar 

  58. Chambers, J. C., Obeid, O. A. & Kooner, J. S. Physiological increments in plasma homocysteine induce vascular endothelial dysfunction in normal human subjects. Arterioscler. Thromb. Vasc. Biol. 19, 2922–2927 (1999).

    CAS  PubMed  Google Scholar 

  59. Vermeer, S. E. et al. Homocysteine, silent brain infarcts, and white matter lesions: The Rotterdam Scan Study. Ann. Neurol. 51, 285–289 (2002).

    CAS  PubMed  Google Scholar 

  60. Ebbing, M. et al. Mortality and cardiovascular events in patients treated with homocysteine-lowering B vitamins after coronary angiography: a randomized controlled trial. JAMA 300, 795–804 (2008).

    CAS  PubMed  Google Scholar 

  61. Bonaa, K. H. et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N. Engl. J. Med. 354, 1578–1588 (2006).

    CAS  PubMed  Google Scholar 

  62. Toole, J. F. et al. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA 291, 565–575 (2004).

    CAS  PubMed  Google Scholar 

  63. Hughes, A. J., Daniel, S. E., Kilford, L. & Lees, A. J. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–184 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jellinger, K. Overview of morphological changes in Parkinson's disease. Adv. Neurol. 45, 1–18 (1987).

    CAS  PubMed  Google Scholar 

  65. Levine, R. L., Jones, J. C. & Bee, N. Stroke and Parkinson's disease. Stroke 23, 839–842 (1992).

    CAS  PubMed  Google Scholar 

  66. Beyer, M. K., Aarsland, D., Greve, O. J. & Larsen, J. P. Visual rating of white matter hyperintensities in Parkinson's disease. Mov. Disord. 21, 223–229 (2006).

    PubMed  Google Scholar 

  67. Jellinger, K. A. Prevalence of cerebrovascular lesions in Parkinson's disease. A postmortem study. Acta Neuropathol. 105, 415–419 (2003).

    PubMed  Google Scholar 

  68. Mastaglia, F. L., Johnsen, R. D. & Kakulas, B. A. Prevalence of stroke in Parkinson's disease: a postmortem study. Mov. Disord. 17, 772–774 (2002).

    PubMed  Google Scholar 

  69. Piccini, P. et al. White matter hyperintensities in Parkinson's disease. Clinical correlations. Arch. Neurol. 52, 191–194 (1995).

    CAS  PubMed  Google Scholar 

  70. Gattellaro, G. et al. White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study. AJNR Am. J. Neuroradiol. 30, 1222–1226 (2009).

    CAS  PubMed  Google Scholar 

  71. Ben-Shlomo, Y. & Marmot, M. G. Survival and cause of death in a cohort of patients with parkinsonism—possible clues to etiology. J. Neurol. Neurosurg. Psych. 58, 293–299 (1995).

    CAS  Google Scholar 

  72. Gorell, J. M., Johnson, C. C. & Rybicki, B. A. Parkinson's disease and its comorbid disorders: an analysis of Michigan mortality data, 1970 to 1990. Neurology 44, 1865–1868 (1994).

    CAS  PubMed  Google Scholar 

  73. Rektor, I. et al. Vascular pathology in patients with idiopathic Parkinson's disease. Parkinsonism Relat. Disord. 15, 24–29 (2009).

    PubMed  Google Scholar 

  74. Roos, R. A., Jongen, J. C. & van der Velde, E. A. Clinical course of patients with idiopathic Parkinson's disease. Mov. Disord. 11, 236–242 (1996).

    CAS  PubMed  Google Scholar 

  75. Visser, M., Marinus, J., van Hilten, J. J., Schipper, R. G. & Stiggelbout, A. M. Assessing comorbidity in patients with Parkinson's disease. Mov. Disord. 19, 824–828 (2004).

    PubMed  Google Scholar 

  76. Antonini, A. et al. How vascular disease affects parkinsonism: the VADO study. Mov. Disord. 21, S533 (2006).

    Google Scholar 

  77. Inzelberg, R., Bornstein, N. M., Reider, I. & Korczyn, A. D. Basal ganglia lacunes and parkinsonism. Neuroepidemiology 13, 108–112 (1994).

    CAS  PubMed  Google Scholar 

  78. Papapetropoulos, S. et al. The effect of vascular disease on late onset Parkinson's disease. Eur. J. Neurol. 11, 231–235 (2004).

    CAS  PubMed  Google Scholar 

  79. Bloem, B. & Bhatia, K. Basal ganglia disorders. In Clinical Disorders of Balance, Posture and Gait (Eds Bronstein, A. M. et al.) 173–206 (Arnold, London, 2004).

    Google Scholar 

  80. Aarsland, D., Tandberg, E., Larsen, J. P. & Cummings, J. L. Frequency of dementia in Parkinson disease. Arch. Neurol. 53, 538–542 (1996).

    CAS  PubMed  Google Scholar 

  81. Singer, C. Urinary dysfunction in Parkinson's disease. Clin. Neurosci. 5, 78–86 (1998).

    CAS  PubMed  Google Scholar 

  82. Rosano, C., Aizenstein, H. J., Studenski, S. & Newman, A. B. A regions-of-interest volumetric analysis of mobility limitations in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 62, 1048–1055 (2007).

    PubMed  Google Scholar 

  83. Baezner, H. et al. Association of gait and balance disorders with age-related white matter changes: the LADIS study. Neurology 70, 935–942 (2008).

    CAS  PubMed  Google Scholar 

  84. Pickering, R. M. et al. A meta-analysis of six prospective studies of falling in Parkinson's disease. Mov. Disord. 22, 1892–1900 (2007).

    PubMed  Google Scholar 

  85. Ebersbach, G. et al. Dysequilibrium in idiopathic Parkinson disease. The effect of cerebrovascular comorbidity [German]. Nervenarzt 73, 162–165 (2002).

    CAS  PubMed  Google Scholar 

  86. Selvarajah, J. et al. Potential surrogate markers of cerebral microvascular angiopathy in asymptomatic subjects at risk of stroke. Eur. Radiol. 19, 1011–1018 (2009).

    PubMed  Google Scholar 

  87. de Groot, J. C. et al. Cerebral white matter lesions and depressive symptoms in elderly adults. Arch. Gen. Psychiatry 57, 1071–1076 (2000).

    CAS  PubMed  Google Scholar 

  88. Krishnan, K. R., Hays, J. C. & Blazer, D. G. MRI-defined vascular depression. Am. J. Psychiatry 154, 497–501 (1997).

    CAS  PubMed  Google Scholar 

  89. Alexopoulos, G. S. et al. 'Vascular depression' hypothesis. Arch. Gen. Psychiatry 54, 915–922 (1997).

    CAS  PubMed  Google Scholar 

  90. Naarding, P. et al. A study on symptom profiles of late-life depression: the influence of vascular, degenerative and inflammatory risk-indicators. J. Affect. Disord. 88, 155–162 (2005).

    PubMed  Google Scholar 

  91. Tiemeier, H. Biological risk factors for late life depression. Eur. J. Epidemiol. 18, 745–750 (2003).

    PubMed  Google Scholar 

  92. Haugarvoll, K., Aarsland, D., Wentzel-Larsen, T. & Larsen, J. P. The influence of cerebrovascular risk factors on incident dementia in patients with Parkinson's disease. Acta Neurol. Scand. 112, 386–390 (2005).

    CAS  PubMed  Google Scholar 

  93. Rodriguez-Oroz, M. C. et al. Homocysteine and cognitive impairment in Parkinson's disease: A biochemical, neuroimaging, and genetic study. Mov. Disord. 24, 1437–1444 (2009).

    PubMed  Google Scholar 

  94. Slawek, J. et al. The influence of vascular risk factors and white matter hyperintensities on the degree of cognitive impairment in Parkinson's disease. Neurol. Neurochir. Pol. 42, 505–512 (2008).

    PubMed  Google Scholar 

  95. de Groot, J. C. et al. Cerebral white matter lesions and subjective cognitive dysfunction: the Rotterdam Scan Study. Neurology 56, 1539–1545 (2001).

    CAS  PubMed  Google Scholar 

  96. de Groot, J. C. et al. Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann. Neurol. 52, 335–341 (2002).

    PubMed  Google Scholar 

  97. Miranda, B. et al. Self-perceived memory impairment and cognitive performance in an elderly independent population with age-related white matter changes. J. Neurol. Neurosurg. Psychiatry 79, 869–873 (2008).

    CAS  PubMed  Google Scholar 

  98. Prins, N. D. et al. Cerebral white matter lesions and the risk of dementia. Arch. Neurol. 61, 1531–1534 (2004).

    PubMed  Google Scholar 

  99. Stewart, R. et al. Neuroimaging correlates of subjective memory deficits in a community population. Neurology 70, 1601–1607 (2008).

    CAS  PubMed  Google Scholar 

  100. de Leeuw, F. E., Korf, E., Barkhof, F. & Scheltens, P. White matter lesions are associated with progression of medial temporal lobe atrophy in Alzheimer disease. Stroke 37, 2248–2252 (2006).

    PubMed  Google Scholar 

  101. Besson, J. A., Mutch, W. J., Smith, F. W. & Corrigan, F. M. The relationship between Parkinson's disease and dementia. A study using proton NMR imaging parameters. Br. J. Psychiatry 147, 380–382 (1985).

    CAS  PubMed  Google Scholar 

  102. Hirono, N., Kitagaki, H., Kazui, H., Hashimoto, M. & Mori, E. Impact of white matter changes on clinical manifestation of Alzheimer's disease: A quantitative study. Stroke 31, 2182–2188 (2000).

    CAS  PubMed  Google Scholar 

  103. Sakakibara, R., Hattori, T., Uchiyama, T. & Yamanishi, T. Urinary function in elderly people with and without leukoaraiosis: relation to cognitive and gait function. J. Neurol. Neurosurg. Psychiatry 67, 658–660 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Tarvonen-Schröder, S. et al. Clinical features of leuko-araiosis. J. Neurol. Neurosurg. Psychiatry 60, 431–436 (1996).

    PubMed  PubMed Central  Google Scholar 

  105. Bennett, D. A., Gilley, D. W., Wilson, R. S., Huckman, M. S. & Fox, J. H. Clinical correlates of high signal lesions on magnetic resonance imaging in Alzheimer's disease. J. Neurol. 239, 186–190 (1992).

    CAS  PubMed  Google Scholar 

  106. Elbadawi, A. Functional anatomy of the organs of micturition. Urol. Clin. North Am. 23, 177–210 (1996).

    CAS  PubMed  Google Scholar 

  107. Kuo, H. K. & Lipsitz, L. A. Cerebral white matter changes and geriatric syndromes: is there a link? J. Gerontol. A Biol. Sci. Med. Sci. 59, 818–826 (2004).

    PubMed  Google Scholar 

  108. Blok, B. F., Willemsen, A. T. & Holstege, G. A PET study on brain control of micturition in humans. Brain 120, 111–121 (1997).

    PubMed  Google Scholar 

  109. Blok, B. F. & Holstege, G. The central nervous system control of micturition in cats and humans. Behav. Brain Res. 92, 119–125 (1998).

    CAS  PubMed  Google Scholar 

  110. Winge, K. & Fowler, C. J. Bladder dysfunction in Parkinsonism: mechanisms, prevalence, symptoms, and management. Mov. Disord. 21, 737–745 (2006).

    PubMed  Google Scholar 

  111. Winge, K., Skau, A. M., Stimpel, H., Nielsen, K. K. & Werdelin, L. Prevalence of bladder dysfunction in Parkinsons disease. Neurourol. Urodyn. 25, 116–122 (2006).

    PubMed  Google Scholar 

  112. Balash, Y. et al. Falls in outpatients with Parkinson's disease: frequency, impact and identifying factors. J. Neurol. 252, 1310–1315 (2005).

    CAS  PubMed  Google Scholar 

  113. Sacco, R. L. et al. Guidelines for prevention of stroke in patients with ischemic stroke or transient ischemic attack: a statement for healthcare professionals from the American Heart Association/American Stroke Association Council on Stroke: co-sponsored by the Council on Cardiovascular Radiology and Intervention: the American Academy of Neurology affirms the value of this guideline. Circulation 113, e409–e449 (2006).

    PubMed  Google Scholar 

  114. Adams, R. J. et al. Update to the AHA/ASA recommendations for the prevention of stroke in patients with stroke and transient ischemic attack. Stroke 39, 1647–1652 (2008).

    PubMed  PubMed Central  Google Scholar 

  115. Bloem, B. R. et al. Idiopathic senile gait disorders are signs of subclinical disease. J. Am. Geriatr. Soc. 48, 1098–1101 (2000).

    CAS  PubMed  Google Scholar 

  116. Roman, G. C. New insight into Binswanger disease. Arch. Neurol. 56, 1061–1062 (1999).

    CAS  PubMed  Google Scholar 

  117. Thijs, R. D., Bloem, B. R. & van Dijk, J. G. Falls, faints, fits and funny turns. J. Neurol. 256, 155–167 (2009).

    PubMed  Google Scholar 

  118. Peris, A., Martín-González, R., Valiente, E., Ruiz, A. & Vioque, J. Quality and life style as risk factors in acute cerebrovascular disease [Spanish]. Rev. Neurol. 25, 1866–1871 (1997).

    CAS  PubMed  Google Scholar 

  119. Crizzle, A. M. & Newhouse, I. J. Is physical exercise beneficial for persons with Parkinson's disease? Clin. J. Sport Med. 16, 422–425 (2006).

    PubMed  Google Scholar 

  120. de Goede, C. J., Keus, S. H., Kwakkel, G. & Wagenaar, R. C. The effects of physical therapy in Parkinson's disease: a research synthesis. Arch. Phys. Med. Rehabil. 82, 509–515 (2001).

    CAS  PubMed  Google Scholar 

  121. Keus, S. H. et al. Evidence-based analysis of physical therapy in Parkinson's disease with recommendations for practice and research. Mov. Disord. 22, 451–460 (2007).

    PubMed  Google Scholar 

  122. Baatile, J., Langbein, W. E., Weaver, F., Maloney, C. & Jost, M. B. Effect of exercise on perceived quality of life of individuals with Parkinson's disease. J. Rehabil. Res. Dev. 37, 529–534 (2000).

    CAS  PubMed  Google Scholar 

  123. Reuter, I., Leone, P., Schwed, M. & Oechsner, M. Effect of Nordic walking in Parkinson's disease. Mov. Disord. 21, S567 (2006).

    Google Scholar 

  124. Dupuy, D., Lesbre, J. P., Gérard, P., Andrejak, M. & Godefroy, O. Valvular heart disease in patients with Parkinson's disease treated with pergolide. Course following treatment modifications. J. Neurol. 255, 1045–1048 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a ZonMw VIDI research grant (number 016.076.352) to B. R. Bloem. W. Nanhoe-Mahabier was supported by the Fred Akkerman stipend. F.-E. de Leeuw received a personal fellowship from the Dutch Brain Foundation (H04-12) and a clinical fellowship from the Netherlands Organization for Scientific Research (project no. 40-00703-97-07197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastiaan R. Bloem.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanhoe-Mahabier, W., de Laat, K., Visser, J. et al. Parkinson disease and comorbid cerebrovascular disease. Nat Rev Neurol 5, 533–541 (2009). https://doi.org/10.1038/nrneurol.2009.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing