Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Animal models of monoclonal immunoglobulin-related renal diseases

Key Points

  • Numerous renal diseases occur owing to the deposition of a monoclonal immunoglobulin, including multiple myeloma and monoclonal gammopathy of renal significance

  • Understanding the molecular pathogenesis of human immunoglobulin deposition diseases and testing new therapeutic strategies requires relevant animal models, which is a challenge owing to the heterogeneity of these diseases

  • Models based on the injection of purified human immunoglobulins and on tumour grafts that produce the monoclonal immunoglobulin have revealed several early pathogenic events in immunoglobulin deposition and demonstrated the efficacy of innovative therapeutic agents

  • Advances in transgenic techniques have allowed the creation of mouse models that faithfully reproduce the human diseases and have aided in unravelling the pathogenic mechanisms of monoclonal immunoglobulin deposition

  • Animal models are invaluable tools to study the process of deposition and to explore the direct toxicity of monoclonal immunoglobulins in tissues and immunoglobulin-producing plasma cells

Abstract

The renal deposition of monoclonal immunoglobulins can cause severe renal complications in patients with B cell and plasma cell lymphoproliferative disorders. The overproduction of a structurally unique immunoglobulin can contribute to the abnormal propensity of monoclonal immunoglobulins to aggregate and deposit in specific organs. A wide range of renal diseases can occur in multiple myeloma or monoclonal gammopathy of renal significance, including tubular and glomerular disorders with organized or unorganized immunoglobulin deposits. The development of reliable experimental models is challenging owing to the inherent variability of immunoglobulins and the heterogeneity of the pathologies they produce. However, although imperfect, animal models are invaluable tools to understand the molecular pathogenesis of these diseases, and advances in creating genetically modified animals might provide novel approaches to evaluate innovative therapeutic interventions. We discuss the strategies employed to reproduce human monoclonal immunoglobulin-induced kidney lesions in animal models, and we highlight their advantages and shortcomings. We also discuss how these models have affected the management of these deposition diseases and might do so in the future. Finally, we discuss hypotheses that explain some limitations of the various models, and how these models might improve our understanding of other nephropathies without immunoglobulin involvement that have similar pathogenic mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The localization of monoclonal immunoglobulin-induced lesions in the kidneys.
Figure 2: Strategies to model immunoglobulin-induced kidney diseases in rodents.
Figure 3: Models of monoclonal immunoglobulin-induced glomerulopathies.
Figure 4: Models of monoclonal immunoglobulin-induced tubulopathies.

Similar content being viewed by others

References

  1. Bridoux, F. et al. Diagnosis of monoclonal gammopathy of renal significance. Kidney Int. 87, 698–711 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Merlini, G. & Stone, M. J. Dangerous small B-cell clones. Blood 108, 2520–2530 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Fermand, J.-P. et al. How I treat monoclonal gammopathy of renal significance (MGRS). Blood 122, 3583–3590 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Preud'homme, J. L. et al. Monoclonal immunoglobulin deposition disease: a review of immunoglobulin chain alterations. Int. J. Immunopharmacol. 16, 425–431 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Batuman, V. et al. Myeloma light chains are ligands for cubilin (gp280). Am. J. Physiol. 275, F246–254 (1998).

    CAS  PubMed  Google Scholar 

  6. Christensen, E. I., Birn, H., Storm, T., Weyer, K. & Nielsen, R. Endocytic receptors in the renal proximal tubule. Physiology 27, 223–236 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Hutchison, C. A. et al. The pathogenesis and diagnosis of acute kidney injury in multiple myeloma. Nat. Rev. Nephrol. 8, 43–51 (2012).

    Article  CAS  Google Scholar 

  8. Kyle, R. A. et al. Prevalence of monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 354, 1362–1369 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Dispenzieri, A. et al. Prevalence and risk of progression of light-chain monoclonal gammopathy of undetermined significance: a retrospective population-based cohort study. Lancet 375, 1721–1728 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Leung, N. et al. Monoclonal gammopathy of renal significance: when MGUS is no longer undetermined or insignificant. Blood 120, 4292–4295 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Sanders, P. W. Mechanisms of light chain injury along the tubular nephron. J. Am. Soc. Nephrol. 23, 1777–1781 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Maldonado, J. E. et al. Fanconi syndrome in adults. A manifestation of a latent form of myeloma. Am. J. Med. 58, 354–364 (1975).

    Article  CAS  PubMed  Google Scholar 

  13. Messiaen, T. et al. Adult Fanconi syndrome secondary to light chain gammopathy. Clinicopathologic heterogeneity and unusual features in 11 patients. Medicine 79, 135–154 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Herrera, G. A. Proximal tubulopathies associated with monoclonal light chains: the spectrum of clinicopathologic manifestations and molecular pathogenesis. Arch. Pathol. Lab. Med. 138, 1365–1380 (2014).

    Article  PubMed  Google Scholar 

  15. Pepys, M. B. Amyloidosis. Annu. Rev. Med. 57, 223–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Desport, E. et al. AL Amyloidosis. Orphanet J. Rare Dis. 7, 54 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Liao, R. et al. Infusion of light chains from patients with cardiac amyloidosis causes diastolic dysfunction in isolated mouse hearts. Circulation 104, 1594–1597 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Brenner, D. A. et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ. Res. 94, 1008–1010 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Palladini, G. et al. Circulating amyloidogenic free light chains and serum N-terminal natriuretic peptide type B decrease simultaneously in association with improvement of survival in AL. Blood 107, 3854–3858 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Buxbaum, J. & Gallo, G. Nonamyloidotic monoclonal immunoglobulin deposition disease. Light-chain, heavy-chain, and light- and heavy-chain deposition diseases. Hematol. Oncol. Clin. North Am. 13, 1235–1248 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Lin, J. et al. Renal monoclonal immunoglobulin deposition disease: the disease spectrum. J. Am. Soc. Nephrol. 12, 1482–1492 (2001).

    CAS  PubMed  Google Scholar 

  23. Cohen, C. et al. Randall-type monoclonal immunoglobulin deposition disease: from diagnosis to treatment [French]. Nephrol. Ther. 12, 131–139 (2016).

    Article  PubMed  Google Scholar 

  24. Aucouturier, P. et al. Brief report: heavy-chain deposition disease. N. Engl. J. Med. 329, 1389–1393 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Preud'homme, J. L. et al. Monoclonal immunoglobulin deposition disease (Randall type). Relationship with structural abnormalities of immunoglobulin chains. Kidney Int. 46, 965–972 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Kambham, N. et al. Heavy chain deposition disease: the disease spectrum. Am. J. Kidney Dis. Off. J. Natl Kidney Found. 33, 954–962 (1999).

    Article  CAS  Google Scholar 

  27. Bridoux, F. et al. Unravelling the immunopathological mechanisms of heavy chain deposition disease with implications for clinical management. Kidney Int. 91, 423–434 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Ying, W.-Z., Allen, C. E., Curtis, L. M., Aaron, K. J. & Sanders, P. W. Mechanism and prevention of acute kidney injury from cast nephropathy in a rodent model. J. Clin. Invest. 122, 1777–1785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stevens, F. J. & Argon, Y. Pathogenic light chains and the B-cell repertoire. Immunol. Today 20, 451–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Bellotti, V., Mangione, P. & Merlini, G. Review: immunoglobulin light chain amyloidosis — the archetype of structural and pathogenic variability. J. Struct. Biol. 130, 280–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Blancas-Mejía, L. M. & Ramirez-Alvarado, M. Systemic amyloidoses. Annu. Rev. Biochem. 82, 745–774 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Davis, D. P. et al. Both the environment and somatic mutations govern the aggregation pathway of pathogenic immunoglobulin light chain. J. Mol. Biol. 313, 1021–1034 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Wall, J. S. et al. Structural basis of light chain amyloidogenicity: comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four Vlambda6 proteins. J. Mol. Recognit. 17, 323–331 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Poshusta, T. L. et al. Mutations in specific structural regions of immunoglobulin light chains are associated with free light chain levels in patients with AL amyloidosis. PLoS ONE 4, e5169 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hernández-Santoyo, A. et al. A single mutation at the sheet switch region results in conformational changes favoring lambda6 light-chain fibrillogenesis. J. Mol. Biol. 396, 280–292 (2010).

    Article  PubMed  CAS  Google Scholar 

  36. Kobayashi, Y. et al. Decreased amyloidogenicity caused by mutational modulation of surface properties of the immunoglobulin light chain BRE variable domain. Biochemistry 53, 5162–5173 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Comenzo, R. L., Zhang, Y., Martinez, C., Osman, K. & Herrera, G. A. The tropism of organ involvement in primary systemic amyloidosis: contributions of Ig V(L) germ line gene use and clonal plasma cell burden. Blood 98, 714–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Perfetti, V. et al. Analysis of V(lambda)-J(lambda) expression in plasma cells from primary (AL) amyloidosis and normal bone marrow identifies 3r (lambdaIII) as a new amyloid-associated germline gene segment. Blood 100, 948–953 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Abraham, R. S. et al. Immunoglobulin light chain variable (V) region genes influence clinical presentation and outcome in light chain-associated amyloidosis (AL). Blood 101, 3801–3808 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Perfetti, V. et al. The repertoire of λ light chains causing predominant amyloid heart involvement and identification of a preferentially involved germline gene, IGLV1-44. Blood 119, 144–150 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Rocca, A. et al. Primary structure of a variable region of the V kappa I subgroup (ISE) in light chain deposition disease. Clin. Exp. Immunol. 91, 506–509 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Denoroy, L., Déret, S. & Aucouturier, P. Overrepresentation of the V kappa IV subgroup in light chain deposition disease. Immunol. Lett. 42, 63–66 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Decourt, C., Cogné, M. & Rocca, A. Structural peculiarities of a truncated V kappa III immunoglobulin light chain in myeloma with light chain deposition disease. Clin. Exp. Immunol. 106, 357–361 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaplan, B., Livneh, A. & Gallo, G. Charge differences between in vivo deposits in immunoglobulin light chain amyloidosis and non-amyloid light chain deposition disease. Br. J. Haematol. 136, 723–728 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Isobe, T., Kametani, F. & Shinoda, T. V-Domain deposition of lambda Bence Jones protein in the renal tubular epithelial cells in a patient with the adult Fanconi syndrome with myeloma. Amyloid 5, 117–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Bridoux, F. et al. Fanconi's syndrome induced by a monoclonal Vkappa3 light chain in Waldenstrom's macroglobulinemia. Am. J. Kidney Dis. 45, 749–757 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Aucouturier, P. et al. Monoclonal Ig L chain and L chain V domain fragment crystallization in myeloma-associated Fanconi's syndrome. J. Immunol. 150, 3561–3568 (1993).

    CAS  PubMed  Google Scholar 

  48. Leboulleux, M. et al. Protease resistance and binding of Ig light chains in myeloma-associated tubulopathies. Kidney Int. 48, 72–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Decourt, C. et al. Mutational analysis in murine models for myeloma-associated Fanconi's syndrome or cast myeloma nephropathy. Blood 94, 3559–3566 (1999).

    CAS  PubMed  Google Scholar 

  50. Luciani, A. et al. Impaired lysosomal function underlies monoclonal light chain-associated renal Fanconi syndrome. J. Am. Soc. Nephrol. 27, 2049–2061 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Nasr, S. H. et al. The diagnosis and characteristics of renal heavy-chain and heavy/light-chain amyloidosis and their comparison with renal light-chain amyloidosis. Kidney Int. 83, 463–470 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Khamlichi, A. A., Aucouturier, P., Preud'homme, J. L. & Cogné, M. Structure of abnormal heavy chains in human heavy-chain-deposition disease. Eur. J. Biochem. 229, 54–60 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Hendershot, L., Bole, D., Köhler, G. & Kearney, J. F. Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain-binding protein. J. Cell Biol. 104, 761–767 (1987).

    Article  CAS  PubMed  Google Scholar 

  54. Cogné, M., Silvain, C., Khamlichi, A. A. & Preud'homme, J. L. Structurally abnormal immunoglobulins in human immunoproliferative disorders. Blood 79, 2181–2195 (1992).

    PubMed  Google Scholar 

  55. Sanders, P. W., Herrera, G. A. & Galla, J. H. Human Bence Jones protein toxicity in rat proximal tubule epithelium in vivo. Kidney Int. 32, 851–861 (1987).

    Article  CAS  PubMed  Google Scholar 

  56. Sanders, P. W., Herrera, G. A., Chen, A., Booker, B. B. & Galla, J. H. Differential nephrotoxicity of low molecular weight proteins including Bence Jones proteins in the perfused rat nephron in vivo. J. Clin. Invest. 82, 2086–2096 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Solomon, A., Weiss, D. T. & Kattine, A. A. Nephrotoxic potential of Bence Jones proteins. N. Engl. J. Med. 324, 1845–1851 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Solomon, A., Weiss, D. T. & Pepys, M. B. Induction in mice of human light-chain-associated amyloidosis. Am. J. Pathol. 140, 629–637 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Khan, A.-M. et al. Myeloma light chain-induced renal injury in mice. Nephron Exp. Nephrol. 116, e32–e41 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Khamlichi, A. A. et al. Role of light chain variable region in myeloma with light chain deposition disease: evidence from an experimental model. Blood 86, 3655–3659 (1995).

    CAS  PubMed  Google Scholar 

  61. Rognoni, P. et al. A strategy for synthesis of pathogenic human immunoglobulin free light chains in E. coli. PLoS ONE 8, e76022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Teng, J., Turbat-Herrera, E. A. & Herrera, G. A. An animal model of glomerular light-chain-associated amyloidogenesis depicts the crucial role of lysosomes. Kidney Int. 86, 738–746 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Koss, M. N., Pirani, C. L. & Osserman, E. F. Experimental Bence Jones cast nephropathy. Lab. Invest. 34, 579–591 (1976).

    CAS  PubMed  Google Scholar 

  64. Mishra, S. et al. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish. Am. J. Physiol. Heart Circ. Physiol. 305, H95–H103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Diomede, L. et al. A Caenorhabditis elegans-based assay recognizes immunoglobulin light chains causing heart amyloidosis. Blood 123, 3543–3552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou, P., Ma, X., Iyer, L., Chaulagain, C. & Comenzo, R. L. One siRNA pool targeting the λ constant region stops λ light-chain production and causes terminal endoplasmic reticulum stress. Blood 123, 3440–3451 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Hovey, B. M. et al. Preclinical development of siRNA therapeutics for AL amyloidosis. Gene Ther. 18, 1150–1156 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chauveau, C., Decourt, C. & Cogné, M. Insertion of the IgH locus 3′ regulatory palindrome in expression vectors warrants sure and efficient expression in stable B cell transfectants. Gene 222, 279–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Nuvolone, M. et al. Regulated expression of amyloidogenic immunoglobulin light chains in mice. Amyloid 24, 52–53 (2017).

    Article  PubMed  Google Scholar 

  70. Ward, J. E. et al. Doxycycline reduces fibril formation in a transgenic mouse model of AL amyloidosis. Blood 118, 6610–6617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sirac, C. et al. Role of the monoclonal kappa chain V domain and reversibility of renal damage in a transgenic model of acquired Fanconi syndrome. Blood 108, 536–543 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Sirac, C. et al. Strategies to model AL amyloidosis in mice. Amyloid 18 (Suppl. 1), 40–42 (2011).

    Google Scholar 

  73. Bonaud, A. et al. A mouse model recapitulating human monoclonal heavy chain deposition disease evidences the relevance of proteasome inhibitor therapy. Blood 126, 757–765 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Casola, S. et al. B cell receptor signal strength determines B cell fate. Nat. Immunol. 5, 317–327 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Lechouane, F. et al. B-Cell receptor signal strength influences terminal differentiation. Eur. J. Immunol. 43, 619–628 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Hrncic, R. et al. Antibody-mediated resolution of light chain-associated amyloid deposits. Am. J. Pathol. 157, 1239–1246 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Solomon, A., Weiss, D. T. & Wall, J. S. Therapeutic potential of chimeric amyloid-reactive monoclonal antibody 11-1F4. Clin. Cancer Res. 9, 3831S–3838S (2003).

    CAS  PubMed  Google Scholar 

  78. Wall, J. S. et al. AL amyloid imaging and therapy with a monoclonal antibody to a cryptic epitope on amyloid fibrils. PLoS ONE 7, e52686 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gertz, M. A. et al. First-in-Human Phase I/II Study of NEOD001 in Patients With Light Chain Amyloidosis and Persistent Organ Dysfunction. J. Clin. Oncol. 34, 1097–1103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nightingale, C. H. & Mouravieff, M. Reliable and simple method of intravenous injection into the laboratory rat. J. Pharm. Sci. 62, 860–861 (1973).

    Article  CAS  PubMed  Google Scholar 

  81. Teng, J. et al. Different types of glomerulopathic light chains interact with mesangial cells using a common receptor but exhibit different intracellular trafficking patterns. Lab. Invest. 84, 440–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Teng, J., Turbat-Herrera, E. A. & Herrera, G. A. Extrusion of amyloid fibrils to the extracellular space in experimental mesangial AL-amyloidosis: transmission and scanning electron microscopy studies and correlation with renal biopsy observations. Ultrastruct. Pathol. 38, 104–115 (2014).

    Article  PubMed  Google Scholar 

  83. Kluve-Beckerman, B., Manaloor, J. J. & Liepnieks, J. J. A pulse-chase study tracking the conversion of macrophage-endocytosed serum amyloid A into extracellular amyloid. Arthritis Rheum. 46, 1905–1913 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Lundmark, K., Vahdat Shariatpanahi, A. & Westermark, G. T. Depletion of spleen macrophages delays AA amyloid development: a study performed in the rapid mouse model of AA amyloidosis. PLoS ONE 8, e79104 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Kennel, S. J. et al. Phagocyte depletion inhibits AA amyloid accumulation in AEF-induced huIL-6 transgenic mice. Amyloid 21, 45–53 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Arendt, B. K. et al. Biologic and genetic characterization of the novel amyloidogenic lambda light chain-secreting human cell lines, ALMC-1 and ALMC-2. Blood 112, 1931–1941 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Buxbaum, J. N. Animal models of human amyloidoses: are transgenic mice worth the time and trouble? FEBS Lett. 583, 2663–2673 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wechalekar, A. D. & Whelan, C. Encouraging impact of doxycycline on early mortality in cardiac light chain (AL) amyloidosis. Blood Cancer J. 7, e546 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rokita, H., Shirahama, T., Cohen, A. S. & Sipe, J. D. Serum amyloid A gene expression and AA amyloid formation in A/J and SJL/J mice. Br. J. Exp. Pathol. 70, 327–335 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Takeda, T. et al. A novel murine model of aging, Senescence-Accelerated Mouse (SAM). Arch. Gerontol. Geriatr. 19, 185–192 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Ge, F. et al. Amyloidosis in transgenic mice expressing murine amyloidogenic apolipoprotein A-II (Apoa2c). Lab. Invest. 87, 633–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Kohno, K. et al. Analysis of amyloid deposition in a transgenic mouse model of homozygous familial amyloidotic polyneuropathy. Am. J. Pathol. 150, 1497–1508 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Simons, J. P. et al. Pathogenetic mechanisms of amyloid A amyloidosis. Proc. Natl Acad. Sci. USA 110, 16115–16120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chesi, M. et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 13, 167–180 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Carrasco, D. R. et al. The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 11, 349–360 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hamouda, M.-A. et al. BCL-B (BCL2L10) is overexpressed in patients suffering from multiple myeloma (MM) and drives an MM-like disease in transgenic mice. J. Exp. Med. 213, 1705–1722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shi, J. et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. Proc. Natl Acad. Sci. USA 107, 4188–4193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Guan, J. et al. Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated cardiotoxicity. EMBO Mol. Med. 6, 1493–1507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shin, J. T. et al. Overexpression of human amyloidogenic light chains causes heart failure in embryonic zebrafish: a preliminary report. Amyloid 19, 191–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Diomede, L. et al. Cardiac light chain amyloidosis: the role of metal ions in oxidative stress and mitochondrial damage. Antioxid. Redox Signal. 27, 567–582 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Herrera, G. A., Turbat-Herrera, E. A. & Teng, J. Animal models of light chain deposition disease provide a better understanding of nodular glomerulosclerosis. Nephron 132, 119–136 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Ronco, P., Plaisier, E. & Aucouturier, P. Monoclonal immunoglobulin light and heavy chain deposition diseases: molecular models of common renal diseases. Contrib. Nephrol. 169, 221–231 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Zheng, F., Striker, G. E., Esposito, C., Lupia, E. & Striker, L. J. Strain differences rather than hyperglycemia determine the severity of glomerulosclerosis in mice. Kidney Int. 54, 1999–2007 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Ma, L.-J. & Fogo, A. B. Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int. 64, 350–355 (2003).

    Article  PubMed  Google Scholar 

  105. Oliva, L. et al. The amyloidogenic light chain is a stressor that sensitizes plasma cells to proteasome inhibitor toxicity. Blood 129, 2132–2142 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Meister, S. et al. Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition. Cancer Res. 67, 1783–1792 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Nasr, S. H. et al. Renal monoclonal immunoglobulin deposition disease: a report of 64 patients from a single institution. Clin. J. Am. Soc. Nephrol. 7, 231–239 (2012).

    Article  PubMed  Google Scholar 

  108. Cohen, C. et al. Bortezomib produces high hematological response rates with prolonged renal survival in monoclonal immunoglobulin deposition disease. Kidney Int. 88, 1135–1143 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Venner, C. P. et al. A matched comparison of cyclophosphamide, bortezomib and dexamethasone (CVD) versus risk-adapted cyclophosphamide, thalidomide and dexamethasone (CTD) in AL amyloidosis. Leukemia 28, 2304–2310 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Palladini, G. et al. Melphalan and dexamethasone with or without bortezomib in newly diagnosed AL amyloidosis: a matched case-control study on 174 patients. Leukemia 28, 2311–2316 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Jaccard, A. et al. Efficacy of bortezomib, cyclophosphamide and dexamethasone in treatment-naïve patients with high-risk cardiac AL amyloidosis (Mayo Clinic stage III). Haematologica 99, 1479–1485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kastritis, E. et al. Bortezomib with or without dexamethasone in primary systemic (light chain) amyloidosis. J. Clin. Oncol. 28, 1031–1037 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Batuman, V., Sastrasinh, M. & Sastrasinh, S. Light chain effects on alanine and glucose uptake by renal brush border membranes. Kidney Int. 30, 662–665 (1986).

    Article  CAS  PubMed  Google Scholar 

  114. Batuman, V., Guan, S., O'Donovan, R. & Puschett, J. B. Effect of myeloma light chains on phosphate and glucose transport in renal proximal tubule cells. Ren. Physiol. Biochem. 17, 294–300 (1994).

    CAS  PubMed  Google Scholar 

  115. Pote, A., Zwizinski, C., Simon, E. E., Meleg-Smith, S. & Batuman, V. Cytotoxicity of myeloma light chains in cultured human kidney proximal tubule cells. Am. J. Kidney Dis. 36, 735–744 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Sengul, S., Zwizinski, C. & Batuman, V. Role of MAPK pathways in light chain-induced cytokine production in human proximal tubule cells. Am. J. Physiol. Renal Physiol. 284, F1245–F1254 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, P.-X. & Sanders, P. W. Immunoglobulin light chains generate hydrogen peroxide. J. Am. Soc. Nephrol. 18, 1239–1245 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Li, M., Balamuthusamy, S., Simon, E. E. & Batuman, V. Silencing megalin and cubilin genes inhibits myeloma light chain endocytosis and ameliorates toxicity in human renal proximal tubule epithelial cells. Am. J. Physiol. Renal Physiol. 295, F82–F90 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Ying, W.-Z., Wang, P.-X., Aaron, K. J., Basnayake, K. & Sanders, P. W. Immunoglobulin light chains activate nuclear factor-κB in renal epithelial cells through a Src-dependent mechanism. Blood 117, 1301–1307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sirac, C. et al. Toward understanding renal Fanconi syndrome: step by step advances through experimental models. Contrib. Nephrol. 169, 247–261 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Raggi, C. et al. Dedifferentiation and aberrations of the endolysosomal compartment characterize the early stage of nephropathic cystinosis. Hum. Mol. Genet. 23, 2266–2278 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Aufman, J. & Herrera, G. A. Circulating monoclonal light chains and acute kidney injury: the role of the renal biopsy with emphasis on ultrastructural evaluation in assessing and understanding renal injury. Ultrastruct. Pathol. 39, 159–168 (2015).

    Article  PubMed  Google Scholar 

  123. Weiss, J. H. et al. Pathophysiology of acute Bence-Jones protein nephrotoxicity in the rat. Kidney Int. 20, 198–210 (1981).

    Article  CAS  PubMed  Google Scholar 

  124. Sanders, P. W. & Booker, B. B. Pathobiology of cast nephropathy from human Bence Jones proteins. J. Clin. Invest. 89, 630–639 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Huang, Z. Q., Kirk, K. A., Connelly, K. G. & Sanders, P. W. Bence Jones proteins bind to a common peptide segment of Tamm-Horsfall glycoprotein to promote heterotypic aggregation. J. Clin. Invest. 92, 2975–2983 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Huang, Z. Q. & Sanders, P. W. Biochemical interaction between Tamm-Horsfall glycoprotein and Ig light chains in the pathogenesis of cast nephropathy. Lab. Invest. 73, 810–817 (1995).

    CAS  PubMed  Google Scholar 

  127. Huang, Z. Q. & Sanders, P. W. Localization of a single binding site for immunoglobulin light chains on human Tamm-Horsfall glycoprotein. J. Clin. Invest. 99, 732–736 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ying, W. Z. & Sanders, P. W. Mapping the binding domain of immunoglobulin light chains for Tamm-Horsfall protein. Am. J. Pathol. 158, 1859–1866 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Korbet, S. M. & Schwartz, M. M. Multiple myeloma. J. Am. Soc. Nephrol. 17, 2533–2545 (2006).

    Article  PubMed  Google Scholar 

  130. Drayson, M. et al. Effects of paraprotein heavy and light chain types and free light chain load on survival in myeloma: an analysis of patients receiving conventional-dose chemotherapy in Medical Research Council UK multiple myeloma trials. Blood 108, 2013–2019 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Richards, D. B. et al. Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N. Engl. J. Med. 373, 1106–1114 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Blancas-Mejía, L. M., Misra, P. & Ramirez-Alvarado, M. Differences in protein concentration dependence for nucleation and elongation in light chain amyloid formation. Biochemistry 56, 757–766 (2017).

    Article  PubMed  CAS  Google Scholar 

  133. Becker, G. J. & Hewitson, T. D. Animal models of chronic kidney disease: useful but not perfect. Nephrol. Dial. Transplant. 28, 2432–2438 (2013).

    Article  PubMed  Google Scholar 

  134. Srour, N. et al. A plasma cell differentiation quality control ablates B cell clones with biallelic Ig rearrangements and truncated Ig production. J. Exp. Med. 213, 109–122 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the International Kidney and Monoclonal Gammopathy Research Group for their intellectual support in this project. C.S. thanks C. Carrion, A. Rinsant, S. Kaaki, N. Quellard, J.M. Goujon, A. Jaccard and D. Lavergne for their technical and intellectual support. C.S. is supported by a grant from Fondation Française pour le Recheche contre le Myelome et les Gammapathies Monoclonales. G.A.H. is supported by a grant from the Amyloidosis Foundation. P.W.S. is supported by grants from the Office of Research and Development, Medical Research Service, US Department of Veterans Affairs (I01 CX001326) and the US National Institutes of Health George M. O'Brien Kidney and Urological Research Centers Program (P30 DK079337). M.V.A. is funded by a fellowship from region Nouvelle Aquitaine. S.B. is supported by the French Ministry of Research 'Plan maladies rares'.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article and writing, reviewing and editing the article before submission.

Corresponding author

Correspondence to Christophe Sirac.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Immunoglobulin-related amyloidosis

Accumulation of abnormal immunoglobulin fragments that form fibrils and deposit in organs and tissues, causing their dysfunction.

Monoclonal immunoglobulin deposition disease

(MIDD). Accumulation of abnormal immunoglobulin fragments that form granular deposits in organs and tissues, mainly the kidneys, causing their dysfunction.

Myeloma cast nephropathy

(MCN). Acute kidney disease that occurs in multiple myeloma and is characterized by the obstruction of distal tubules by casts composed of a monoclonal immunoglobulin light chain.

Light chain-induced Fanconi syndrome

Generalized dysfunction of reabsorption in proximal tubules due to the intracellular accumulation of a monoclonal immunoglobulin light chain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirac, C., Herrera, G., Sanders, P. et al. Animal models of monoclonal immunoglobulin-related renal diseases. Nat Rev Nephrol 14, 246–264 (2018). https://doi.org/10.1038/nrneph.2018.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2018.8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing