Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Angiotensin-converting enzyme in innate and adaptive immunity

Key Points

  • Angiotensin-converting enzyme (ACE) expression by myeloid cells is increased in response to infection.

  • Forced ACE overexpression in mouse macrophages increases their ability to respond to infection and some tumour models, which is in part mediated by increased levels of nitric oxide, superoxide (O2) and pro-inflammatory cytokines.

  • Forced ACE overexpression in neutrophils increases their response to infection by increasing NADPH oxidase-dependent production of O2.

  • The effects of ACE overexpression are not mediated by angiotensin II, any other angiotensin peptides or the type 1 angiotensin II receptor but instead by unknown ACE substrate(s) or product(s).

  • No known immunological framework can currently explain the effects of ACE overexpression, but an as yet unrecognized pathway capable of stimulating myeloid function beyond levels achievable by wild-type cells must exist.

Abstract

Angiotensin-converting enzyme (ACE) — a zinc-dependent dicarboxypeptidase with two catalytic domains — plays a major part in blood pressure regulation by converting angiotensin I to angiotensin II. However, ACE cleaves many peptides besides angiotensin I and thereby affects diverse physiological functions, including renal development and male reproduction. In addition, ACE has a role in both innate and adaptive responses by modulating macrophage and neutrophil function — effects that are magnified when these cells overexpress ACE. Macrophages that overexpress ACE are more effective against tumours and infections. Neutrophils that overexpress ACE have an increased production of superoxide, which increases their ability to kill bacteria. These effects are due to increased ACE activity but are independent of angiotensin II. ACE also affects the display of major histocompatibility complex (MHC) class I and MHC class II peptides, potentially by enzymatically trimming these peptides. Understanding how ACE expression and activity affect myeloid cells may hold great promise for therapeutic manipulation, including the treatment of both infection and malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional diversity of ACE.
Figure 2: Macrophage-specific ACE overexpression suppresses tumour growth.
Figure 3: ACE participates in peptide trimming during antigen processing.
Figure 4: ACE overexpression in neutrophils reduces skin lesions caused by MRSA infection.
Figure 5: ACE overexpression enhances the adaptive and innate immune response.

Similar content being viewed by others

References

  1. Skeggs, L. T. Jr Discovery of the two angiotensin peptides and the angiotensin converting enzyme. Hypertension 21, 259–260 (1993).

    Article  PubMed  Google Scholar 

  2. Skeggs, L. T. Jr., Marsh, W. H., Kahn, J. R. & Shumway, N. P. The existence of two forms of hypertensin. J. Exp. Med. 99, 275–282 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Metzger, R. et al. Heterogeneous distribution of angiotensin I-converting enzyme (CD143) in the human and rat vascular systems: vessel, organ and species specificity. Microvasc. Res. 81, 206–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Bernstein, K. E. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol. Rev. 65, 1–46 (2012).

    Article  PubMed  CAS  Google Scholar 

  5. Rigat, B. et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86, 1343–1346 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dux, S. et al. Serum angiotensin converting enzyme activity in normal adults and patients with different types of hypertension. Isr. J. Med. Sci. 20, 1138–1142 (1984).

    CAS  PubMed  Google Scholar 

  7. Bénéteau-Burnat, B., Baudin, B., Morgant, G., Baumann, F. C. & Giboudeau, J. Serum angiotensin-converting enzyme in healthy and sarcoidotic children: comparison with the reference interval for adults. J. Clin. Chem. 36, 344–346 (1990).

    Google Scholar 

  8. Cushman, D. W. & Ondetti, M. A. History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension 17, 589–592 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Mentz, R. J. et al. The past, present and future of renin-angiotensin aldosterone system inhibition. Int. J. Cardiol. 167, 1677–1687 (2013).

    Article  PubMed  Google Scholar 

  10. CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N. Engl. J. Med. 316, 1429–1435 (1987).

  11. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N. Engl. J. Med. 325, 293–302 (1991).

  12. Lieberman, J. Elevation of serum angiotensin-converting-enzyme (ACE) level in sarcoidosis. Am. J. Med. 59, 365–372 (1975).

    Article  CAS  PubMed  Google Scholar 

  13. Silverstein, E., Pertschuk, L. P. & Friedland, J. Immunofluorescent localization of angiotensin converting enzyme in epithelioid and giant cells of sarcoidosis granulomas. Proc. Natl Acad. Sci. USA 76, 6646–6648 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smithies, O., Kim. H. S., Takahashi, N. & Edgell, M. H. Importance of quantitative genetic variations in the etiology of hypertension. Kidney Int. 58, 2265–2280 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, S. & Iwao, H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol. Rev. 52, 11–34 (2000).

    CAS  PubMed  Google Scholar 

  16. Krege, J. H. et al. Male-female differences in fertility and blood pressure in ACE deficient mice. Nature 375, 146–148 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Esther, C. R. Jr et al. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab. Invest. 74, 953–965 (1996).

    CAS  PubMed  Google Scholar 

  18. Gribouval, O. et al. Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis. Hum. Mutat. 33, 316–326 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Ertoy, D. & Bernstein, K. E. in Drugs, Enzymes and Receptors of the Renin-Angiotensin System: Celebrating a Century of Discovery (eds Husain, A. & Graham, R.) 205–223 (Harwood Academic Publishers, The Netherlands, 2000).

    Google Scholar 

  20. Kim, H. S. et al. Genetic control of blood pressure and the angiotensinogen locus. Proc. Natl Acad. Sci. USA 92, 2735–2739 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yanai, K. et al. Renin-dependent cardiovascular functions and renin-independent blood-brain barrier functions revealed by renin-deficient mice. J. Biol. Chem. 275, 5–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Tsuchida, S. et al. Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J. Clin. Invest. 101, 755–760 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miyazaki, Y. et al. Angiotensin induces the urinary peristaltic machinery during the perinatal period. J. Clin. Invest. 102, 1489–1497 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fuchs, S. et al. Male fertility is dependent on dipeptidase activity of testis ACE. Nat. Med. 11, 1140–1142 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Li, L. J. et al. Human sperm devoid of germinal angiotensin-converting enzyme is responsible for total fertilization failure and lower fertilization rates by conventional in vitro fertilization. Biol. Reprod. 90 125, 1–7 (2014).

    Google Scholar 

  26. Hagaman, J. R. et al. Angiotensin-converting enzyme and male fertility. Proc. Natl Acad. Sci. USA 95, 2552–2557 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ramaraj, P., Kessler, S. P., Colmenares, C. & Sen, G. C. Selective restoration of male fertility in mice lacking angiotensin-converting enzymes by sperm-specific expression of the testicular isozyme. J. Clin. Invest. 102, 371–378 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marchesi, C., Paradis, P. & Schiffrin, E. L. Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol. Sci. 29, 367–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Benigni, A., Cassis, P. & Remuzzi, G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol. Med. 2, 247–257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Montezano, A. C., Nguyen Dinh Cat, A., Rios, F. J. & Touyz, R. M. Angiotensin II and vascular injury. Curr. Hypertens. Rep. 16, 431 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. Mateo, T. et al. Angiotensin II-induced mononuclear leukocyte interactions with arteriolar and venular endothelium are mediated by the release of different CC chemokines. J. Immunol. 176, 5577–5586 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Nathan, C. Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J. Clin. Invest. 111, 769–778 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Torres, M. & Forman, H. J. Redox signaling and the MAP kinase pathways. Biofactors 17, 287–296 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Biancardi, V. C., Bomfim, G. F., Reis, W. L., Al-Gassimi, S. & Nunes, K. P. The interplay between Angiotensin II, TLR4 and hypertension. Pharmacol. Res. 120, 88–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Meng, Y., Chen, C., Liu, Y., Tian, C. & Li, H. H. Angiotensin II regulates dendritic cells through activation of NF-κB /p65, ERK1/2 and STAT1 pathways. Cell Physiol. Biochem. 42, 1550–1558 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Hoch, N. E. et al. Regulation of T cell function by endogenously produced angiotensin II. Am. J. Physiol. Reful Integr. Comp. Physiol. 296, R208–R216 (2009).

    Article  CAS  Google Scholar 

  37. Platten, M. et al. Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc. Natl Acad. Sci. USA 106, 14948–14953 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lanz, T. V. et al. Angiotensin II sustains brain inflammation in mice via TGF-beta. J. Clin. Invest. 120, 2782–2794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crowley, S., D. & Rudemiller, N. P. Immunologic Effects of the Renin-Angiotensin System. J. Am. Soc. Nephrol. 28, 1350–1361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Crowley, S. D. et al. A role for angiotensin II type 1 receptors on bone marrow-derived cells in the pathogenesis of angiotensin II-dependent hypertension. Hypertension 55, 99–108 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, J. D. et al. A novel role for type 1 angiotensin receptors on T lymphocytes to limit target organ damage in hypertension. Circ. Res. 110, 1604–1617 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, J. D. et al. Type 1 angiotensin receptors on macrophages ameliorate IL-1 receptor-mediated kidney fibrosis. J. Clin. Invest. 124, 2198–2203 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, L. J. et al. Angiotensin type 1 receptor modulates macrophage polarization and renal injury in obesity. Am. J. Physiol. Renal Physiol. 300, F1203–F1213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brice, E. A., Friedlander, W., Bateman, E. D. & Kirsch, R. E. Serum angiotensin-converting enzyme activity, concentration, and specific activity in granulomatous interstitial lung disease, tuberculosis, and COPD. Chest 107, 706–710 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Lieberman, J. & Rea, T. H. Serum angiotensin converting enzyme in leprosy and coccidioidomycosis. Ann. Intern. Med. 87, 422–425 (1977).

    Article  CAS  Google Scholar 

  46. Olle, E. W. et al. Screening of serum samples from Wegener's granulomatosis patients using antibody microarrays. Proteom. Clin. Appl. 1, 1212–1220 (2007).

    Article  CAS  Google Scholar 

  47. Weinstock, J. V. Production of neuropeptides by inflammatory cells within the granulomas of murine schistosomiasis mansoni. Eur. J. Clin. Invest. 21, 145–153 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Williams, G. T. & Williams, W. J. Granulomatous inflammation - a review. J. Clin. Pathol. 36, 723–733 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nathan, C. Macrophages' choice: take it in or keep it out. Immunity 45, 710–711 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 12, 352–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Sylvius, F. Opera Medica (A. Wolfgang, 1679).

    Google Scholar 

  52. Bean, A. G. et al. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J. Immunol. 162, 3504–3511 (1999).

    CAS  PubMed  Google Scholar 

  53. Roach, D. R. et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J. Immunol. 168, 4620–4627 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Bouley, D. M., Ghori, N., Mercer, K. L., Falkow, S. & Ramakrishnan, L. Dynamic nature of host-pathogen interactions in Mycobacterium marinum granulomas. Infect. Immun. 69, 7820–7831 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Helming, L. & Gordon, S. The molecular basis of macrophage fusion. Immunobiology 212, 785–793 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Cronan et al. Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. Immunity 45, 861–876 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shen, X. Z. et al. Mice with enhanced macrophage angiotensin-converting enzyme are resistant to melanoma. Am. J. Pathol. 170, 2122–2134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shen, X. Z. et al. Myeloid expression of angiotensin-converting enzyme facilitates myeloid maturation and inhibits the development of myeloid-derived suppressor cells. Lab Invest. 94, 536–544 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Okwan-Duodu, D. et al. Angiotensin-converting enzyme overexpression in mouse myelomonocytic cells augments resistance to Listeria and methicillin-resistant Staphylococcus aureus. J. Biol. Chem. 285, 39051–39060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pamer, E. & Cresswell, P. Mechanism of MHC class I resticted antigen processing. Annu. Rev. Immunol. 16, 323–358 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Purcell, A. W. & Elliott, T. Molecular machinations of the MHC-I peptide loading complex. Curr. Opin. Immunol. 20, 75–81 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Shen, X. Z., Lukacher, A. E., Billet, S., Williams, I. R. & Bernstein, K. E. Expression of angiotensin-converting enzyme changes major histocompatibility complex class I peptide presentation by modifying C termini of peptide precursors. J. Biol. Chem. 283, 9957–9965 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shen, X. Z. et al. The carboxypeptidase ACE shapes the MHC class I peptide repertoire. Nat. Immunol. 12, 1078–1085 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gonzalez-Villalobos, R. A. et al. Rediscovering ACE: novel insights into the many roles of the angiotensin converting enzyme. J. Mol. Med. 91, 1143–1154 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Zhao, T., Bernstein, K. E., Fang, J. & Shen, X. Z. Angiotensin-converting enzyme affects the presentation of MHC class II antigens. Lab. Invest. 97, 764–771 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. de Oliveira, S., Rosowski, E. E. & Huttenlocher, A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat. Rev. Immunol. 16, 378–391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guerra, F. E., Borgogna, T. R., Patel, D. M., Sward, E. W. & Voyich, J. M. Epic immune battles of history: neutrophils versus Staphylococcus aureus. Front. Cell. Infect. Microbiol. 7, 286 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Khan, Z. et al. Angiotensin-converting enzyme enhances the oxidative response and bactericidal activity of neutrophils. Blood 130, 328–339 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Winterbourn, C. C., Kettle, A. J. & Hampton, M. B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 85, 765–792 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Remijsen, Q. et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 18, 581–588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15, 1017–1025 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Branzk, N. & Papayannopoulos, V. Molecular mechanisms regulating NETosis in infection and disease. Semin. Immunopathol. 35, 513–530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pouwels, K. B., Visser, S. T. & Hak, E. Effect of pravastatin and fosinopril on recurrent urinary tract infections. J. Antimicrob. Chemother. 68, 708–714 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Pouwels, K. B., Bos, J. H. & Hak, E. ACE inhibitors and urinary tract infections. Epidemiology 25, 466–467 (2014).

    Article  PubMed  Google Scholar 

  76. Dial, S., Nessim, S. J., Kezouh, A., Benisty, J. & Suissa, S. Antihypertensive agents acting on the renin-angiotensin system and the risk of sepsis. Br. J. Clin. Pharmacol. 78, 1151–1158 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mortensen, E. M., Restrepo, M. I., Anzueto, A. & Pugh, J. The impact of prior outpatient ACE inhibitor use on 30-day mortality for patients hospitalized with community-acquired pneumonia. BMC Pulm. Med. 5, 12 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mortensen, E. M. et al. Impact of statins and angiotensin converting enzyme inhibitors on mortality of subjects hospitalised with pneumonia. Eur. Respir. J. 31, 611–617 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Sobczuk, P., Szczylik, C., Porta, C. & Czarnecka, A. M. Renin angiotensin system deregulation as renal cancer risk factor. Oncol. Lett. 14, 5059–5068 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Pinter, M. & Jain, R. K. Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Sci. Transl Med. 9, eaan5616 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Steinman, L. Development of therapies for autoimmune disease at Stanford: a tale of multiple shots and one goal. Immunol. Res. 58, 307–314 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Lühder, F., Lee, D. H., Gold, R., Stegbauer, J. & Linker, R. A. Small but powerful: short peptide hormones and their role in autoimmune inflammation. J. Neuroimmunol. 217, 1–7 (2009).

    Article  PubMed  CAS  Google Scholar 

  83. Fahmy Wahba, M. G., Shehata Messiha, B. A. & Abo-Saif, A. A. Ramipril and haloperidol as promising approaches in managing rheumatoid arthritis in rats. Eur. J. Pharmacol. 765, 307–315 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Sagawa, K., Nagatani, K., Komagata, Y. & Yamamoto, K. Angiotensin receptor blockers suppress antigen-specific T-cell responses and ameliorate collagen-induced arthritis in mice. Arthr. Rheumat. 52, 1920–1928 (2005).

    Article  CAS  Google Scholar 

  85. Bahk, T. J., Daniels, M. D., Leon, J. S., Wang, K. & Engman, D. M. Comparison of angiotensin converting enzyme inhibition and angiotensin II receptor blockade for the prevention of experimental autoimmune myocarditis. Int. J. Cardiol. 125, 85–93 (2008).

    Article  PubMed  Google Scholar 

  86. Chang, Y. & Wei, W. Angiotensin II in inflammation, immunity and rheumatoid arthritis. Clin. Exp. Immunol. 179, 137–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Martin, M. F. et al. Captopril: a new treatment for rheumatoid arthritis? Lancet 1, 1325–1328 (1984).

    Article  CAS  PubMed  Google Scholar 

  88. Danilov, S. M. et al. Angiotensin-converting enzyme (CD143) is abundantly expressed by dendritic cells and discriminates human monocyte-derived dendritic cells from acute myeloid leukemia-derived dendritic cells. Exp. Hematol. 31, 1301–1309 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Viinikainen, A., Nyman, T., Fyhrquist, F. & Saijonmaa, O. Downregulation of angiotensin converting enzyme by TNF-alpha in differentiating human macrophages. Cytokine 18, 304–310 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Inagami, T. in Biochemical Regulation of Blood Pressure (ed. Soffer, R. L. ) 39–72 (John Wiley and Sons, New York, 1981).

    Google Scholar 

  91. Sun, X. et al. Catabolic attacks of membrane-bound angiotensin-converting enzyme on the N-terminal part of species-specific amyloid-beta peptides. Eur. J. Pharmacol. 588, 18–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, H. L., Lünsdorf, H., Hecht, H. J. & Tsai, H. Porcine pulmonary angiotensin I-converting enzyme—biochemical characterization and spatial arrangement of the N- and C-domains by three-dimensional electron microscopic reconstruction. Micron 41, 674–685 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Allinson, T. M. et al. The role of ADAM10 and ADAM17 in the ectodomain shedding of angiotensin converting enzyme and the amyloid precursor protein. Eur. J. Biochem. 271, 2539–2547 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Parkin, E. T., Turner, A. J. & Hooper, N. M. Secretase-mediated cell surface shedding of the angiotensin-converting enzyme. Protein Pept. Lett. 11, 423–432 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Barauna, V. G., Campos, L. C., Miyakawa, A. A. & Krieger, J. E. ACE as a mechanosensor to shear stress influences the control of its own regulation via phosphorylation of cytoplasmic Ser(1270). PLoS ONE. 6, e22803 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fleming, I. Signaling by the angiotensin-converting enzyme. Circ. Res. 98, 887–896 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Howard, T. E., Shai, S.-Y., Langford, K. G. & Martin, B. M. & Bernstein, K. E. Transcription of testicular angiotensin-converting enzyme (ACE) is initiated within the 12th intron of the somatic ACE gene. Mol. Cell. Biol. 10, 4294–4302 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wei, L., Alhenc-Gelas, F., Corvol, P. & Clauser, E. The two homologous domains of human angiotensin I-converting enzyme are both catalytically active. J. Biol. Chem. 266, 9002–9008 (1991).

    CAS  PubMed  Google Scholar 

  99. Fuchs, S. et al. Angiotensin-converting enzyme C-terminal catalytic domain is the main site of angiotensin I cleavage in vivo. Hypertension 51, 267–274 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Rousseau, A. et al. The hemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme. J. Biol. Chem. 270, 3656–3661 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Zhu, L. et al. Ac-SDKP suppresses TNF-α-induced ICAM-1 expression in endothelial cells via inhibition of IκB kinase and NF-κB activation. Am. J. Physiol. Heart Circ. Physiol. 310, H1176–H1183 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hubert, C., Houot, A. M., Corvol, P. & Soubrier, F. Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J. Biol. Chem. 266, 15377–15383 (1991).

    CAS  PubMed  Google Scholar 

  103. [No authors listed.] Alzheimer's Disease Facts and Figures. Alzheimer's Association https://www.alz.org/facts/ (2017)

  104. Alzheimer's Association. 2016 Alzheimer's disease facts and figures. Alzheimers Dement. 12, 459–509 (2016).

  105. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schwartz, M. Can immunotherapy treat neurodegeneration? Science 357, 254–255 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Bernstein, K. E. et al. Angiotensin-converting enzyme overexpression in myelomonocytes prevents Alzheimer's-like cognitive decline. J. Clin. Invest. 124, 1000–1012 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank B. Taylor of Cedars-Sinai Medical Center for help in preparing the manuscript before submission. The authors' work described in this Review was supported by US National Institute of Health grants P01HL129941, R21AI114965 and R03DK101592, and American Heart Association grants 16SDG30130015 and 17GRNT33661206.

Author information

Authors and Affiliations

Authors

Contributions

All authors substantially contributed to the discussion of the content. K.E.B., Z.K., D.-Y.C. and X.Z.S. researched data for the article. K.E.B., J.F.G., E.A.B. and X.Z.S. drafted and edited the manuscript before submission.

Corresponding author

Correspondence to Kenneth E. Bernstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

Angiotensinogen knockout mice were bred such that their ACE genes were either homozygous for the ACE 10 mutation (10/10) or WT for ACE. (PDF 66 kb)

Supplementary information S2 (figure)

A mouse model of Alzheimer's disease was crossed such that the ACE genes were either WT or ACE 10/10. (PDF 1919 kb)

PowerPoint slides

Glossary

ACE inhibitors

Compounds that block the formation of angiotensin II and all other angiotensin-converting enzyme (ACE) products by inhibiting ACE activity.

Sarcoidosis

A granulomatous disease characterized by abnormal foci of inflammation. This disease is often associated with high plasma levels of angiotensin-converting enzyme.

Type 1 angiotensin II receptors

(AT1Rs). Receptors for angiotensin II that mediate a variety of functions, such as decreased renal blood flow. Whereas humans have a single gene for this receptor (AGTR1), mice have two genes (Agtr1a and Agtr1b), which encode proteins that are referred to as AT1A and AT1B, respectively. Studies in Agtr1a−/− mice have demonstrated that most angiotensin II-mediated effects in the kidney are mediated by AT1A.

ACE-like enzymes

Enzymes that have protein sequence similarity to human or mouse angiotensin-converting enzyme (ACE). Such enzymes usually bind zinc and have two catalytic domains.

Granulomas

Compact aggregates of immune cells in response to infection or another form of chronic stimulation, resulting in a physical barrier surrounding the enclosed bacteria and hindering the spread of the pathogen throughout the organism. Tuberculosis is most commonly associated with granulomas, but a number of other infectious and noninfectious diseases induce granulomas, as do difficult-to-phagocytize inert foreign bodies such as those in berylliosis.

Histoplasmosis

A granulomatous disease, often primary of the lung, caused by the fungus Histoplasma capsulatum.

Leprosy

A granulomatous disease caused by Mycobacterium leprae; also known as Hansen disease.

Silicosis

A granulomatous disease, often primary of the lung, caused by exposure to silica dust.

Granulomatosis with polyangiitis

A systemic form of vasculitis (inflammation of blood vessels) often referred to as Wegener granulomatosis. The vasculitis typically involves small-to-medium-sized blood vessels that become inflamed and can develop granulomas. The origin of the disease is thought to be due to anti-neutrophil cytoplasmic antibodies (ANCAs).

Schistosomiasis

A parasitic infection caused by the flatworm genus Schistosoma. Eggs of these worms can induce a granulomatous inflammatory response.

ACE 10/10 mice

Mice homozygous for the angiotensin-converting enzyme (ACE) 10 mutation, resulting in ACE overexpression in myeloid cells, particularly in monocytes and macrophages. These animals develop normally and have normal blood pressure because ACE present on the surface of monocytes and macrophages, as well as circulating ACE shed from these cells, maintains normal angiotensin II plasma levels.

B16 melanoma

An aggressive mouse tumour cell line that, when implanted into the skin, develops into a 600 mm3 lesion in 2 weeks.

Syngeneic mice

Mice that can donate tissue or cells without triggering an immune response in the recipient mice because cellular proteins and the derived cell surface major histocompatibility complex (MHC) class I peptides are identical.

Ovalbumin

(OVA). A main protein found in egg white. OVA is often used in immunology studies, as many reagents are commercially available, and many details are known as to how the protein stimulates an immune response.

NeuACE mice

Mice that have been genetically modified to overexpress angiotensin-converting enzyme (ACE) in neutrophils. Unlike ACE 10/10 mice, NeuACE mice retain normal levels of ACE expression in all other tissues and cells, including lungs, kidneys, monocytes and macrophages. These animals also develop normally and have normal blood pressure.

Anti-neutrophil antisera

Antibodies that recognize and attach to neutrophils, leading to neutrophil depletion.

Amyloid plaques

Extracellular collections of amyloid protein in the brain. Such plaques are typical of Alzheimer disease.

Alzheimer-prone mice

Mice that have been genetically modified to produce mutant versions of amyloid precursor protein and presenilin owing to expression of transgenic APPK595N,M596L and PS1ΔE9. These mice develop amyloid plaques in the brain over time and show a decreased ability to learn new tasks.

Barnes maze test

A test involving a white platform with 20 equally spaced holes. Only one hole leads to an escape box, whereas the other holes lead to boxes that are too small to enter. The mice are trained to enter the escape box over several days. By measuring the time an animal takes to enter the escape box, and by measuring how rapidly knowledge of the location of the escape box is lost over several days, one can estimate learning and memory retention.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernstein, K., Khan, Z., Giani, J. et al. Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol 14, 325–336 (2018). https://doi.org/10.1038/nrneph.2018.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2018.15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing