Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extracellular vesicles in renal disease

This article has been updated

Key Points

  • Extracellular vesicles are involved in cell–to–cell communication and they transfer nucleic acids, proteins and lipids that can alter the phenotype of the recipient cell

  • Extracellular vesicles can be used as biomarkers of renal diseases

  • Circulating microvesicles and exosomes may contribute to the development of renal diseases by immunomodulation, thrombogenesis and matrix modulation

  • Extracellular vesicles may have a therapeutic role in tissue regeneration after acute kidney injury

  • Extracellular vesicles have the potential to transfer endogenous and exogenous therapeutic substances to recipient cells

Abstract

Extracellular vesicles, such as exosomes and microvesicles, are host cell-derived packages of information that allow cell–cell communication and enable cells to rid themselves of unwanted substances. The release and uptake of extracellular vesicles has important physiological functions and may also contribute to the development and propagation of inflammatory, vascular, malignant, infectious and neurodegenerative diseases. This Review describes the different types of extracellular vesicles, how they are detected and the mechanisms by which they communicate with cells and transfer information. We also describe their physiological functions in cellular interactions, such as in thrombosis, immune modulation, cell proliferation, tissue regeneration and matrix modulation, with an emphasis on renal processes. We discuss how the detection of extracellular vesicles could be utilized as biomarkers of renal disease and how they might contribute to disease processes in the kidney, such as in acute kidney injury, chronic kidney disease, renal transplantation, thrombotic microangiopathies, vasculitides, IgA nephropathy, nephrotic syndrome, urinary tract infection, cystic kidney disease and tubulopathies. Finally, we consider how the release or uptake of extracellular vesicles can be blocked, as well as the associated benefits and risks, and how extracellular vesicles might be used to treat renal diseases by delivering therapeutics to specific cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Release and uptake mechanisms of extracellular vesicles.
Figure 2: Physiological processes influenced by extracellular vesicles.
Figure 3: Involvement of microvesicles in vasculitis and thrombotic microangiopathies.
Figure 4: Drugs that block extracellular vesicle release and uptake.

Similar content being viewed by others

Change history

  • 28 July 2017

    This article has been updated to remove some characters that were accidently inserted at the end of a word. The error did not impact on the scientific meaning.

References

  1. Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Morel, O., Jesel, L., Freyssinet, J. M. & Toti, F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler. Thromb. Vasc. Biol. 31, 15–26 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Ståhl, A. L., Sartz, L. & Karpman, D. Complement activation on platelet–leukocyte complexes and microparticles in enterohemorrhagic Escherichia coli-induced hemolytic uremic syndrome. Blood 117, 5503–5513 (2011). The paper presents complement-coated microvesicles in the circulation during HUS, suggesting a role in inflammation and thrombogenesis.

    Article  CAS  PubMed  Google Scholar 

  4. Iida, K., Whitlow, M. B. & Nussenzweig, V. Membrane vesiculation protects erythrocytes from destruction by complement. J. Immunol. 147, 2638–2642 (1991).

    CAS  PubMed  Google Scholar 

  5. Mause, S. F. & Weber, C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ. Res. 107, 1047–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007). Seminal paper demonstrating the capability of exosomes to transfer genetic material, even between species.

    Article  CAS  PubMed  Google Scholar 

  7. Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A. & Ratajczak, M. Z. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20, 1487–1495 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Deregibus, M. C. et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110, 2440–2448 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Davizon, P., Munday, A. D. & Lopez, J. A. Tissue factor, lipid rafts, and microparticles. Semin. Thromb. Hemost. 36, 857–864 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Del Conde, I., Shrimpton, C. N., Thiagarajan, P. & Lopez, J. A. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106, 1604–1611 (2005). Describes the importance of tissue factor and lipid rafts on microvesicles.

    Article  CAS  PubMed  Google Scholar 

  11. Sinauridze, E. I. et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb. Haemost. 97, 425–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Pluskota, E. et al. Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles. Blood 112, 2327–2335 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meckes, D. G. Jr & Raab-Traub, N. Microvesicles and viral infection. J. Virol. 85, 12844–12854 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ståhl, A. L. et al. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles. PLoS Pathog. 11, e1004619 (2015). This paper describes a novel mechanism of bacterial virulence whereby host-derived blood cell microvesicles transfer a bacterial virulence factor to the kidneys.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keller, S. et al. CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 72, 1095–1102 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Nilsson, J. et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br. J. Cancer 100, 1603–1607 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stegmayr, B. & Ronquist, G. Promotive effect on human sperm progressive motility by prostasomes. Urol. Res. 10, 253–257 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Street, J. M. et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J. Transl Med. 10, 5 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gyorgy, B. et al. Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS ONE 7, e49726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Admyre, C. et al. Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 179, 1969–1978 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Michael, A. et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 16, 34–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Severino, V. et al. Extracellular vesicles in bile as markers of malignant biliary stenoses. Gastroenterology http://dx.doi.org/10.1053/j.gastro.2017.04.043 (2017).

  23. Andre, F. et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360, 295–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. van Balkom, B. W., Pisitkun, T., Verhaar, M. C. & Knepper, M. A. Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases. Kidney Int. 80, 1138–1145 (2011). An excellent review of exosomes in renal diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Skokos, D. et al. Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J. Immunol. 166, 868–876 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Combes, V. et al. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J. Clin. Invest. 104, 93–102 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sapet, C. et al. Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2. Blood 108, 1868–1876 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Faure, V. et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J. Thromb. Haemost. 4, 566–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Cocucci, E., Racchetti, G. & Meldolesi, J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 19, 43–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Bianco, F. et al. Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J. Immunol. 174, 7268–7277 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Pizzirani, C. et al. Stimulation of P2 receptors causes release of IL-1beta-loaded microvesicles from human dendritic cells. Blood 109, 3856–3864 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Tati, R. et al. Complement activation associated with ADAMTS13 deficiency in human and murine thrombotic microangiopathy. J. Immunol. 191, 2184–2193 (2013). This paper describes the release of complement-coated endothelial-derived microvesicles when plasma from patients with TTP is perfused over glomerular endothelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park, J. E. et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol. Cell. Proteomics 9, 1085–1099 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lehmann, B. D. et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 68, 7864–7871 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. El Andaloussi, S., Mager, I., Breakefield, X. O. & Wood, M. J. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357 (2013). An excellent review covering the potential of extracellular vesicles in therapeutics.

    Article  CAS  PubMed  Google Scholar 

  36. Adell, M. A. et al. Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation. J. Cell Biol. 205, 33–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guescini, M., Genedani, S., Stocchi, V. & Agnati, L. F. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. (Vienna) 117, 1–4 (2010).

    Article  CAS  Google Scholar 

  38. Colombo, M. et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126, 5553–5565 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Crescitelli, R. et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles 2, 20677 (2013).

    Article  CAS  Google Scholar 

  40. Boulanger, C. M., Amabile, N. & Tedgui, A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension 48, 180–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Chironi, G. N. et al. Endothelial microparticles in diseases. Cell Tissue Res. 335, 143–151 (2009).

    Article  PubMed  Google Scholar 

  42. Muralidharan-Chari, V. et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19, 1875–1885 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Daleke, D. L. Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid Res. 44, 233–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Bevers, E. M. & Williamson, P. L. Phospholipid scramblase: an update. FEBS Lett. 584, 2724–2730 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki, J., Umeda, M., Sims, P. J. & Nagata, S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468, 834–838 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Yang, H. et al. TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151, 111–122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fujii, T., Sakata, A., Nishimura, S., Eto, K. & Nagata, S. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets. Proc. Natl Acad. Sci. USA 112, 12800–12805 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, D. K. et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics 31, 933–939 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Lai, R. C. et al. MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. J. Extracell. Vesicles 5, 29828 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Jimenez, J. J. et al. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb. Res. 109, 175–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. de Gassart, A., Geminard, C., Fevrier, B., Raposo, G. & Vidal, M. Lipid raft-associated protein sorting in exosomes. Blood 102, 4336–4344 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Biro, E. et al. The phospholipid composition and cholesterol content of platelet-derived microparticles: a comparison with platelet membrane fractions. J. Thromb. Haemost. 3, 2754–2763 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Yanez-Mo, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).

    Article  PubMed  Google Scholar 

  54. Mulcahy, L. A., Pink, R. C. & Carter, D. R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 24641 (2014).

    Article  CAS  Google Scholar 

  55. George, J. N., Thoi, L. L., McManus, L. M. & Reimann, T. A. Isolation of human platelet membrane microparticles from plasma and serum. Blood 60, 834–840 (1982).

    CAS  PubMed  Google Scholar 

  56. Arvidsson, I. et al. Shiga toxin-induced complement-mediated hemolysis and release of complement-coated red blood cell-derived microvesicles in hemolytic uremic syndrome. J. Immunol. 194, 2309–2318 (2015). The paper describes the involvement of red blood cell-derived microvesicles in haemolysis and inhibition by purinergic receptor inhibitors.

    Article  CAS  PubMed  Google Scholar 

  57. Mossberg, M. et al. C1-inhibitor decreases the release of vasculitis-like chemotactic endothelial microvesicles. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2016060637 (2017). This paper describes the chemotactic potential of endothelial-derived microvesicles positive for both kinin receptors, B1 and B2, and IL-8, and inhibition of their release by C1 inhibitor.

  58. Fang, D. Y., King, H. W., Li, J. Y. & Gleadle, J. M. Exosomes and the kidney: blaming the messenger. Nephrology (Carlton) 18, 1–10 (2013).

    Article  CAS  Google Scholar 

  59. Zhou, H. et al. Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int. 74, 613–621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dear, J. W., Street, J. M. & Bailey, M. A. Urinary exosomes: a reservoir for biomarker discovery and potential mediators of intrarenal signalling. Proteomics 13, 1572–1580 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Pisitkun, T., Shen, R. F. & Knepper, M. A. Identification and proteomic profiling of exosomes in human urine. Proc. Natl Acad. Sci. USA 101, 13368–13373 (2004). A comprehensive study of exosomes in urine.

    Article  CAS  PubMed  Google Scholar 

  62. Erdbrugger, U. & Le, T. H. Extracellular vesicles in renal diseases: more than novel biomarkers? J. Am. Soc. Nephrol. 27, 12–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. van der Pol, E. et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 12, 1182–1192 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Erdbrugger, U. & Lannigan, J. Analytical challenges of extracellular vesicle detection: a comparison of different techniques. Cytometry A 89, 123–134 (2016). A review describing and comparing methods for detection of extracellular vesicles.

    Article  CAS  PubMed  Google Scholar 

  65. Maas, S. L. et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J. Control. Release 200, 87–96 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Oosthuyzen, W. et al. Quantification of human urinary exosomes by nanoparticle tracking analysis. J. Physiol. 591, 5833–5842 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Murakami, T. et al. Development of glomerulus-, tubule-, and collecting duct-specific mRNA assay in human urinary exosomes and microvesicles. PLoS ONE 9, e109074 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rood, I. M. et al. Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int. 78, 810–816 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Salih, M., Zietse, R. & Hoorn, E. J. Urinary extracellular vesicles and the kidney: biomarkers and beyond. Am. J. Physiol. Renal Physiol. 306, F1251–F1259 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, D. & Sun, W. Urinary extracellular microvesicles: isolation methods and prospects for urinary proteome. Proteomics 14, 1922–1932 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Tricarico, C., Clancy, J. & D'Souza-Schorey, C. Biology and biogenesis of shed microvesicles. Small GTPases http://dx.doi.org/10.1080/21541248.2016.1215283 (2016).

  72. Clancy, J. W., Tricarico, C. J. & D'Souza-Schorey, C. Tumor-derived microvesicles in the tumor microenvironment: how vesicle heterogeneity can shape the future of a rapidly expanding field. Bioessays 37, 1309–1316 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Laulagnier, K. et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem. J. 380, 161–171 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bolukbasi, M. F. et al. miR-1289 and “zipcode”-like sequence enrich mRNAs in microvesicles. Mol. Ther. Nucleic Acids 1, e10 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alexy, T., Rooney, K., Weber, M., Gray, W. D. & Searles, C. D. TNF-alpha alters the release and transfer of microparticle-encapsulated miRNAs from endothelial cells. Physiol. Genomics 46, 833–840 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Parolini, I. et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem. 284, 34211–34222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nolte-'t Hoen, E. N., Buschow, S. I., Anderton, S. M., Stoorvogel, W. & Wauben, M. H. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood 113, 1977–1981 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Dasgupta, S. K., Le, A., Chavakis, T., Rumbaut, R. E. & Thiagarajan, P. Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation 125, 1664–1672 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Collino, F. et al. AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNAs. J. Am. Soc. Nephrol. 26, 2349–2360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Quesenberry, P. J. et al. Cellular phenotype and extracellular vesicles: basic and clinical considerations. Stem Cells Dev. 23, 1429–1436 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pegtel, D. M. et al. Functional delivery of viral miRNAs via exosomes. Proc. Natl Acad. Sci. USA 107, 6328–6333 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Balaj, L. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Thakur, B. K. et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 24, 766–769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kahlert, C. et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289, 3869–3875 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Miranda, K. C. et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 78, 191–199 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Muhsin-Sharafaldine, M. R. et al. Procoagulant and immunogenic properties of melanoma exosomes, microvesicles and apoptotic vesicles. Oncotarget 7, 56279–56294 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Spees, J. L., Olson, S. D., Whitney, M. J. & Prockop, D. J. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl Acad. Sci. USA 103, 1283–1288 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Phinney, D. G. et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat. Commun. 6, 8472 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hayakawa, K. et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mack, M. et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat. Med. 6, 769–775 (2000). The first description of microvesicles transferring functional receptors involved in inflammatory signalling.

    Article  CAS  PubMed  Google Scholar 

  91. Al-Nedawi, K., Meehan, B., Kerbel, R. S., Allison, A. C. & Rak, J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc. Natl Acad. Sci. USA 106, 3794–3799 (2009).

    Article  PubMed  Google Scholar 

  92. Rozmyslowicz, T. et al. Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS 17, 33–42 (2003). This paper describes microvesicle transfer of functional receptors involved in inflammatory signalling.

    Article  CAS  PubMed  Google Scholar 

  93. Baj-Krzyworzeka, M. et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp. Hematol. 30, 450–459 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Salanova, B. et al. Beta2-integrins and acquired glycoprotein IIb/IIIa (GPIIb/IIIa) receptors cooperate in NF-kappaB activation of human neutrophils. J. Biol. Chem. 282, 27960–27969 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Kahn, R. et al. Microvesicle transfer of kinin B1-receptors is a novel inflammatory mechanism in vasculitis. Kidney Int. 91, 96–105 (2017). This paper describes transfer of functional kinin receptors between cells by microvesicles.

    Article  CAS  PubMed  Google Scholar 

  96. Janowska-Wieczorek, A. et al. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood 98, 3143–3149 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Barry, O. P., Pratico, D., Lawson, J. A. & FitzGerald, G. A. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J. Clin. Invest. 99, 2118–2127 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Giri, P. K. & Schorey, J. S. Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo. PLoS ONE 3, e2461 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Walker, J. D., Maier, C. L. & Pober, J. S. Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J. Immunol. 182, 1548–1559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gould, S. J., Booth, A. M. & Hildreth, J. E. The Trojan exosome hypothesis. Proc. Natl Acad. Sci. USA 100, 10592–10597 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Chaput, N. & Thery, C. Exosomes: immune properties and potential clinical implementations. Semin. Immunopathol. 33, 419–440 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Mesri, M. & Altieri, D. C. Endothelial cell activation by leukocyte microparticles. J. Immunol. 161, 4382–4387 (1998).

    CAS  PubMed  Google Scholar 

  103. Gasser, O. & Schifferli, J. A. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104, 2543–2548 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Distler, J. H., Huber, L. C., Gay, S., Distler, O. & Pisetsky, D. S. Microparticles as mediators of cellular cross-talk in inflammatory disease. Autoimmunity 39, 683–690 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Burrello, J. et al. Stem cell-derived extracellular vesicles and immune-modulation. Front. Cell Dev. Biol. 4, 83 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Peche, H., Heslan, M., Usal, C., Amigorena, S. & Cuturi, M. C. Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection. Transplantation 76, 1503–1510 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Miksa, M. et al. Dendritic cell-derived exosomes containing milk fat globule epidermal growth factor-factor VIII attenuate proinflammatory responses in sepsis. Shock 25, 586–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Sadallah, S., Eken, C., Martin, P. J. & Schifferli, J. A. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J. Immunol. 186, 6543–6552 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Sprague, D. L. et al. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 111, 5028–5036 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brown, G. T. & McIntyre, T. M. Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1beta-rich microparticles. J. Immunol. 186, 5489–5496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Barry, O. P., Pratico, D., Savani, R. C. & FitzGerald, G. A. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J. Clin. Invest. 102, 136–144 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mause, S. F., von Hundelshausen, P., Zernecke, A., Koenen, R. R. & Weber, C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler. Thromb. Vasc. Biol. 25, 1512–1518 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Sims, P. J., Faioni, E. M., Wiedmer, T. & Shattil, S. J. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J. Biol. Chem. 263, 18205–18212 (1988).

    CAS  PubMed  Google Scholar 

  114. Ståhl, A. L. et al. Factor H dysfunction in patients with atypical hemolytic uremic syndrome contributes to complement deposition on platelets and their activation. Blood 111, 5307–5315 (2008). This paper describes complement-coated platelets releasing tissue factor-positive microvesicles and inhibition by addition of factor H to prevent complement activation on blood cells in atypical HUS.

    Article  CAS  PubMed  Google Scholar 

  115. Yin, W., Ghebrehiwet, B. & Peerschke, E. I. Expression of complement components and inhibitors on platelet microparticles. Platelets 19, 225–233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rabesandratana, H., Toutant, J. P., Reggio, H. & Vidal, M. Decay-accelerating factor (CD55) and membrane inhibitor of reactive lysis (CD59) are released within exosomes during in vitro maturation of reticulocytes. Blood 91, 2573–2580 (1998).

    CAS  PubMed  Google Scholar 

  117. Bevers, E. M. & Williamson, P. L. Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane. Physiol. Rev. 96, 605–645 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Falati, S. et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J. Exp. Med. 197, 1585–1598 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ståhl, A. L., Sartz, L., Nelsson, A., Békássy, Z. D. & Karpman, D. Shiga toxin and lipopolysaccharide induce platelet-leukocyte aggregates and tissue factor release, a thrombotic mechanism in hemolytic uremic syndrome. PLoS ONE 4, e6990 (2009). The presence of tissue factor on blood cell-derived microvesicles could contribute to thrombotic microangiopathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Abid Hussein, M. N. et al. Phospholipid composition of in vitro endothelial microparticles and their in vivo thrombogenic properties. Thromb. Res. 121, 865–871 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Sabatier, F. et al. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood 99, 3962–3970 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Raturi, A., Miersch, S., Hudson, J. W. & Mutus, B. Platelet microparticle-associated protein disulfide isomerase promotes platelet aggregation and inactivates insulin. Biochim. Biophys. Acta 1778, 2790–2796 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Gilbert, G. E. et al. Platelet-derived microparticles express high affinity receptors for factor VIII. J. Biol. Chem. 266, 17261–17268 (1991).

    CAS  PubMed  Google Scholar 

  124. Van Der Meijden, P. E. et al. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J. Thromb. Haemost. 10, 1355–1362 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Connor, D. E., Exner, T., Ma, D. D. & Joseph, J. E. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb. Haemost. 103, 1044–1052 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Rossaint, J. et al. Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nat. Commun. 7, 13464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Berckmans, R. J. et al. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb. Haemost. 85, 639–646 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Tans, G. et al. Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood 77, 2641–2648 (1991).

    CAS  PubMed  Google Scholar 

  129. Abid Hussein, M. N., Boing, A. N., Sturk, A., Hau, C. M. & Nieuwland, R. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment. Thromb. Haemost. 98, 1096–1107 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Perez-Casal, M., Downey, C., Fukudome, K., Marx, G. & Toh, C. H. Activated protein C induces the release of microparticle-associated endothelial protein C receptor. Blood 105, 1515–1522 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Perez-Casal, M. et al. Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects. Haematologica 94, 387–394 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Janowska-Wieczorek, A. et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int. J. Cancer 113, 752–760 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Hood, J. L. et al. Paracrine induction of endothelium by tumor exosomes. Lab. Invest. 89, 1317–1328 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mezentsev, A. et al. Endothelial microparticles affect angiogenesis in vitro: role of oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 289, H1106–H1114 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Kim, H. K., Song, K. S., Chung, J. H., Lee, K. R. & Lee, S. N. Platelet microparticles induce angiogenesis in vitro. Br. J. Haematol. 124, 376–384 (2004).

    Article  PubMed  Google Scholar 

  136. Chen, J. et al. Proangiogenic compositions of microvesicles derived from human umbilical cord mesenchymal stem cells. PLoS ONE 9, e115316 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Brill, A., Dashevsky, O., Rivo, J., Gozal, Y. & Varon, D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc. Res. 67, 30–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Riazifar, M., Pone, E. J., Lotvall, J. & Zhao, W. Stem cell extracellular vesicles: extended messages of regeneration. Annu. Rev. Pharmacol. Toxicol. 57, 125–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Aliotta, J. M. et al. Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: a novel mechanism for phenotype modulation. Stem Cells 25, 2245–2256 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sedgwick, A. E., Clancy, J. W., Olivia Balmert, M. & D'Souza-Schorey, C. Extracellular microvesicles and invadopodia mediate non-overlapping modes of tumor cell invasion. Sci. Rep. 5, 14748 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Graves, L. E. et al. Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res. 64, 7045–7049 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Clancy, J. W. et al. Regulated delivery of molecular cargo to invasive tumour-derived microvesicles. Nat. Commun. 6, 6919 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. McCready, J., Sims, J. D., Chan, D. & Jay, D. G. Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer 10, 294 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bruno, S. et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. 20, 1053–1067 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Oosthuyzen, W. et al. Vasopressin regulates extracellular vesicle uptake by kidney collecting duct cells. J. Am. Soc. Nephrol. 27, 3345–3355 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cheng, Y. et al. A translational study of urine miRNAs in acute myocardial infarction. J. Mol. Cell. Cardiol. 53, 668–676 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gonzales, P. A. et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J. Am. Soc. Nephrol. 20, 363–379 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Street, J. M. et al. Exosomal transmission of functional aquaporin 2 in kidney cortical collecting duct cells. J. Physiol. 589, 6119–6127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Winyard, P. J. & Price, K. L. Experimental renal progenitor cells: repairing and recreating kidneys? Pediatr. Nephrol. 29, 665–672 (2014).

    Article  PubMed  Google Scholar 

  150. Ranghino, A. et al. The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Res. Ther. 8, 24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Turco, A. E. et al. Specific renal parenchymal-derived urinary extracellular vesicles identify age-associated structural changes in living donor kidneys. J. Extracell. Vesicles 5, 29642 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Karpman, D., Loos, S., Tati, R. & Arvidsson, I. Haemolytic uraemic syndrome. J. Intern. Med. 281, 123–148 (2017).

    Article  PubMed  Google Scholar 

  153. Ge, S. et al. Microparticle generation and leucocyte death in Shiga toxin-mediated HUS. Nephrol. Dial. Transplant. 27, 2768–2775 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Brigotti, M. et al. Clinical relevance of shiga toxin concentrations in the blood of patients with hemolytic uremic syndrome. Pediatr. Infect. Dis. J. 30, 486–490 (2011).

    Article  PubMed  Google Scholar 

  155. Karpman, D. et al. Platelet activation by Shiga toxin and circulatory factors as a pathogenetic mechanism in the hemolytic uremic syndrome. Blood 97, 3100–3108 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Zoja, C., Buelli, S. & Morigi, M. Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatr. Nephrol. 25, 2231–2240 (2010).

    Article  PubMed  Google Scholar 

  157. Afshar-Kharghan, V. Unleashed platelets in aHUS. Blood 111, 5266 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Levy, G. G. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413, 488–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Manea, M. & Karpman, D. Molecular basis of ADAMTS13 dysfunction in thrombotic thrombocytopenic purpura. Pediatr. Nephrol. 24, 447–458 (2009).

    Article  PubMed  Google Scholar 

  160. Tsai, H. M. Pathophysiology of thrombotic thrombocytopenic purpura. Int. J. Hematol. 91, 1–19 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Kelton, J. G., Warkentin, T. E., Hayward, C. P., Murphy, W. G. & Moore, J. C. Calpain activity in patients with thrombotic thrombocytopenic purpura is associated with platelet microparticles. Blood 80, 2246–2251 (1992).

    CAS  PubMed  Google Scholar 

  162. Jimenez, J. J. et al. Endothelial microparticles released in thrombotic thrombocytopenic purpura express von Willebrand factor and markers of endothelial activation. Br. J. Haematol. 123, 896–902 (2003).

    Article  PubMed  Google Scholar 

  163. Brogan, P. A. et al. Endothelial and platelet microparticles in vasculitis of the young. Arthritis Rheum. 50, 927–936 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Erdbruegger, U. et al. Diagnostic role of endothelial microparticles in vasculitis. Rheumatology (Oxford) 47, 1820–1825 (2008).

    Article  CAS  Google Scholar 

  165. Clarke, L. A. et al. Endothelial injury and repair in systemic vasculitis of the young. Arthritis Rheum. 62, 1770–1780 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Daniel, L. et al. Increase of circulating neutrophil and platelet microparticles during acute vasculitis and hemodialysis. Kidney Int. 69, 1416–1423 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Hong, Y. et al. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles. J. Am. Soc. Nephrol. 23, 49–62 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Gasser, O. et al. Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp. Cell Res. 285, 243–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Hogan, M. C. et al. Subfractionation, characterization, and in-depth proteomic analysis of glomerular membrane vesicles in human urine. Kidney Int. 85, 1225–1237 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Huang, Y. M., Wang, H., Wang, C., Chen, M. & Zhao, M. H. Promotion of hypercoagulability in antineutrophil cytoplasmic antibody-associated vasculitis by C5a-induced tissue factor-expressing microparticles and neutrophil extracellular traps. Arthritis Rheumatol. 67, 2780–2790 (2015).

    Article  PubMed  Google Scholar 

  171. Eleftheriou, D., Hong, Y., Klein, N. J. & Brogan, P. A. Thromboembolic disease in systemic vasculitis is associated with enhanced microparticle-mediated thrombin generation. J. Thromb. Haemost. 9, 1864–1867 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Kahn, R. et al. Contact-system activation in children with vasculitis. Lancet 360, 535–541 (2002).

    Article  PubMed  Google Scholar 

  173. Kahn, R. et al. Neutrophil-derived proteinase 3 induces kallikrein-independent release of a novel vasoactive kinin. J. Immunol. 182, 7906–7915 (2009).

    Article  CAS  PubMed  Google Scholar 

  174. Mack, M. Leukocyte-derived microvesicles dock on glomerular endothelial cells: stardust in the kidney. Kidney Int. 91, 13–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Duan, Z. Y. et al. Selection of urinary sediment miRNAs as specific biomarkers of IgA nephropathy. Sci. Rep. 6, 23498 (2016). A paper describing urinary erythrocyte miRNAs derived from microvesicles as biomarkers of IgA nephropathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang, G. et al. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy. Dis. Markers 30, 171–179 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Moon, P. G. et al. Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics 11, 2459–2475 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Zhou, H. et al. Urinary exosomal Wilms' tumor-1 as a potential biomarker for podocyte injury. Am. J. Physiol. Renal Physiol. 305, F553–F559 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lee, H. et al. Urinary exosomal WT1 in childhood nephrotic syndrome. Pediatr. Nephrol. 27, 317–320 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Rood, I. M. et al. Increased expression of lysosome membrane protein 2 in glomeruli of patients with idiopathic membranous nephropathy. Proteomics 15, 3722–3730 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Gao, C. et al. Procoagulant activity of erythrocytes and platelets through phosphatidylserine exposure and microparticles release in patients with nephrotic syndrome. Thromb. Haemost. 107, 681–689 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Eyre, J. et al. Monocyte- and endothelial-derived microparticles induce an inflammatory phenotype in human podocytes. Nephron Exp. Nephrol. 119, e58–e66 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Woei, A. J. F. J. et al. Procoagulant tissue factor activity on microparticles is associated with disease severity and bacteremia in febrile urinary tract infections. Thromb. Res. 133, 799–803 (2014).

    Article  CAS  Google Scholar 

  184. Hiemstra, T. F. et al. Human urinary exosomes as innate immune effectors. J. Am. Soc. Nephrol. 25, 2017–2027 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hogan, M. C. et al. Identification of biomarkers for PKD1 using urinary exosomes. J. Am. Soc. Nephrol. 26, 1661–1670 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Hogan, M. C. et al. Characterization of PKD protein-positive exosome-like vesicles. J. Am. Soc. Nephrol. 20, 278–288 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ben-Dov, I. Z. et al. Urine microRNA as potential biomarkers of autosomal dominant polycystic kidney disease progression: description of miRNA profiles at baseline. PLoS ONE 9, e86856 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Joo, K. W. et al. Reduced urinary excretion of thiazide-sensitive Na-Cl cotransporter in Gitelman syndrome: preliminary data. Am. J. Kidney Dis. 50, 765–773 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Tokes-Fuzesi, M. et al. Microparticles and acute renal dysfunction in septic patients. J. Crit. Care 28, 141–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Martino, F. et al. Circulating microRNAs are not eliminated by hemodialysis. PLoS ONE 7, e38269 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Cantaluppi, V. et al. Protective effect of resin adsorption on septic plasma-induced tubular injury. Crit. Care 14, R4 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Mariano, F. et al. Circulating plasma factors induce tubular and glomerular alterations in septic burns patients. Crit. Care 12, R42 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  193. du Cheyron, D. et al. Urinary measurement of Na+/H+ exchanger isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF. Am. J. Kidney Dis. 42, 497–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Zhou, H. et al. Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int. 70, 1847–1857 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Chen, H. H. et al. Exosomal ATF3 RNA attenuates pro-inflammatory gene MCP-1 transcription in renal ischemia-reperfusion. J. Cell. Physiol. 229, 1202–1211 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Mostefai, H. A. et al. Circulating microparticles from patients with septic shock exert protective role in vascular function. Am. J. Respir. Crit. Care Med. 178, 1148–1155 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Delabranche, X. et al. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med. 39, 1695–1703 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Soriano, A. O. et al. Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit. Care Med. 33, 2540–2546 (2005).

    Article  PubMed  Google Scholar 

  199. Trepesch, C. et al. High intravascular tissue factor-but not extracellular microvesicles-in septic patients is associated with a high SAPS II score. J. Intensive Care 4, 34 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Joop, K. et al. Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb. Haemost. 85, 810–820 (2001).

    Article  CAS  PubMed  Google Scholar 

  201. Nieuwland, R. et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 95, 930–935 (2000).

    CAS  PubMed  Google Scholar 

  202. Timar, C. I. et al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood 121, 510–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Oehmcke, S. et al. A novel role for pro-coagulant microvesicles in the early host defense against streptococcus pyogenes. PLoS Pathog. 9, e1003529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Mortaza, S. et al. Detrimental hemodynamic and inflammatory effects of microparticles originating from septic rats. Crit. Care Med. 37, 2045–2050 (2009).

    Article  CAS  PubMed  Google Scholar 

  205. Meziani, F., Delabranche, X., Asfar, P. & Toti, F. Bench-to-bedside review: circulating microparticles — a new player in sepsis? Crit. Care 14, 236 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Camussi, G., Cantaluppi, V., Deregibus, M. C., Gatti, E. & Tetta, C. Role of microvesicles in acute kidney injury. Contrib. Nephrol. 174, 191–199 (2011).

    Article  PubMed  Google Scholar 

  207. Bruno, S. & Camussi, G. Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Methods Mol. Biol. 879, 367–380 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Akyurekli, C. et al. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Rev. 11, 150–160 (2015).

    Article  CAS  Google Scholar 

  209. He, J. et al. Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton) 17, 493–500 (2012).

    Article  Google Scholar 

  210. Biancone, L., Bruno, S., Deregibus, M. C., Tetta, C. & Camussi, G. Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol. Dial. Transplant. 27, 3037–3042 (2012).

    Article  CAS  PubMed  Google Scholar 

  211. Bianchi, F., Sala, E., Donadei, C., Capelli, I. & La Manna, G. Potential advantages of acute kidney injury management by mesenchymal stem cells. World J. Stem Cells 6, 644–650 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Camussi, G., Deregibus, M. C., Bruno, S., Cantaluppi, V. & Biancone, L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 78, 838–848 (2010). An excellent review about how microvesicles transfer information between cells.

    Article  CAS  PubMed  Google Scholar 

  213. Eirin, A. et al. Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue-derived mesenchymal stem/stromal cells. Sci. Rep. 6, 36120 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Ju, G. Q. et al. Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction. PLoS ONE 10, e0121534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Tomasoni, S. et al. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 22, 772–780 (2013).

    Article  CAS  PubMed  Google Scholar 

  216. Wang, Y., Lu, X., He, J. & Zhao, W. Influence of erythropoietin on microvesicles derived from mesenchymal stem cells protecting renal function of chronic kidney disease. Stem Cell Res. Ther. 6, 100 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hao, S., Yuan, J. & Xiang, J. Nonspecific CD4+ T cells with uptake of antigen-specific dendritic cell-released exosomes stimulate antigen-specific CD8+ CTL responses and long-term T cell memory. J. Leukoc. Biol. 82, 829–838 (2007).

    Article  CAS  PubMed  Google Scholar 

  218. Montecalvo, A. et al. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J. Immunol. 180, 3081–3090 (2008).

    Article  CAS  PubMed  Google Scholar 

  219. Grange, C. et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int. J. Mol. Med. 33, 1055–1063 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Gatti, S. et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol. Dial. Transplant. 26, 1474–1483 (2011).

    Article  CAS  PubMed  Google Scholar 

  221. Bonventre, J. V. Microvesicles from mesenchymal stromal cells protect against acute kidney injury. J. Am. Soc. Nephrol. 20, 927–928 (2009).

    Article  PubMed  Google Scholar 

  222. Cantaluppi, V. et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 82, 412–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  223. Herrera Sanchez, M. B. et al. Human liver stem cells and derived extracellular vesicles improve recovery in a murine model of acute kidney injury. Stem Cell Res. Ther. 5, 124 (2014).

    Article  CAS  PubMed  Google Scholar 

  224. Ando, M. et al. Circulating platelet-derived microparticles with procoagulant activity may be a potential cause of thrombosis in uremic patients. Kidney Int. 62, 1757–1763 (2002).

    Article  PubMed  Google Scholar 

  225. Burton, J. O. et al. Elevated levels of procoagulant plasma microvesicles in dialysis patients. PLoS ONE 8, e72663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Amabile, N. et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J. Am. Soc. Nephrol. 16, 3381–3388 (2005).

    Article  CAS  PubMed  Google Scholar 

  227. Trappenburg, M. C. et al. Chronic renal failure is accompanied by endothelial activation and a large increase in microparticle numbers with reduced procoagulant capacity. Nephrol. Dial. Transplant. 27, 1446–1453 (2012).

    Article  CAS  PubMed  Google Scholar 

  228. Amabile, N., Guerin, A. P., Tedgui, A., Boulanger, C. M. & London, G. M. Predictive value of circulating endothelial microparticles for cardiovascular mortality in end-stage renal failure: a pilot study. Nephrol. Dial. Transplant. 27, 1873–1880 (2012).

    Article  CAS  PubMed  Google Scholar 

  229. Boulanger, C. M. et al. In vivo shear stress determines circulating levels of endothelial microparticles in end-stage renal disease. Hypertension 49, 902–908 (2007).

    Article  CAS  PubMed  Google Scholar 

  230. Lv, L. L. et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am. J. Physiol. Renal Physiol. 305, F1220–F1227 (2013).

    Article  CAS  PubMed  Google Scholar 

  231. Lv, L. L. et al. CD2AP mRNA in urinary exosome as biomarker of kidney disease. Clin. Chim. Acta 428, 26–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  232. Al-Massarani, G. et al. Kidney transplantation decreases the level and procoagulant activity of circulating microparticles. Am. J. Transplant. 9, 550–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  233. Dimuccio, V. et al. Urinary CD133+ extracellular vesicles are decreased in kidney transplanted patients with slow graft function and vascular damage. PLoS ONE 9, e104490 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Meehan, S. M. et al. Platelets and capillary injury in acute humoral rejection of renal allografts. Hum. Pathol. 34, 533–540 (2003).

    Article  CAS  PubMed  Google Scholar 

  235. Cumpelik, A. et al. Mechanism of platelet activation and hypercoagulability by antithymocyte globulins (ATG). Am. J. Transplant. 15, 2588–2601 (2015).

    Article  CAS  PubMed  Google Scholar 

  236. Renner, B. et al. Cyclosporine induces endothelial cell release of complement-activating microparticles. J. Am. Soc. Nephrol. 24, 1849–1862 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Matignon, M. et al. Urinary cell mRNA profiles and differential diagnosis of acute kidney graft dysfunction. J. Am. Soc. Nephrol. 25, 1586–1597 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Lorenzen, J. M. et al. Long noncoding RNAs in urine are detectable and may enable early detection of acute T cell-mediated rejection of renal allografts. Clin. Chem. 61, 1505–1514 (2015).

    Article  CAS  PubMed  Google Scholar 

  239. Pisitkun, T., Gandolfo, M. T., Das, S., Knepper, M. A. & Bagnasco, S. M. Application of systems biology principles to protein biomarker discovery: urinary exosomal proteome in renal transplantation. Proteomics Clin. Appl. 6, 268–278 (2012).

    Article  CAS  PubMed  Google Scholar 

  240. Alvarez, S. et al. Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation. Transplant. Proc. 45, 3719–3723 (2013).

    Article  CAS  PubMed  Google Scholar 

  241. Peake, P. W. et al. A comparison of the ability of levels of urinary biomarker proteins and exosomal mRNA to predict outcomes after renal transplantation. PLoS ONE 9, e98644 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Sonoda, H. et al. Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 297, F1006–F1016 (2009).

    Article  CAS  PubMed  Google Scholar 

  243. Becker, A. et al. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30, 836–848 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Janas, A. M., Sapon, K., Janas, T., Stowell, M. H. & Janas, T. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases. Biochim.Biophys. Acta 1858, 1139–1151 (2016).

    Article  CAS  PubMed  Google Scholar 

  245. Khalyfa, A. et al. Extracellular microvesicle microRNAs in children with sickle cell anaemia with divergent clinical phenotypes. Br. J. Haematol. 174, 786–798 (2016).

    Article  CAS  PubMed  Google Scholar 

  246. Gilani, S. I., Weissgerber, T. L., Garovic, V. D. & Jayachandran, M. Preeclampsia and extracellular vesicles. Curr. Hypertens. Rep. 18, 68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Sellam, J. et al. Increased levels of circulating microparticles in primary Sjogren's syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Res. Ther. 11, R156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Aatonen, M., Gronholm, M. & Siljander, P. R. Platelet-derived microvesicles: multitalented participants in intercellular communication. Semin. Thromb. Hemost. 38, 102–113 (2012).

    Article  CAS  PubMed  Google Scholar 

  249. Nielsen, C. T., Ostergaard, O., Johnsen, C., Jacobsen, S. & Heegaard, N. H. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus. Arthritis Rheum. 63, 3067–3077 (2011).

    Article  PubMed  Google Scholar 

  250. Nielsen, C. T. et al. Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation. Arthritis Rheum. 64, 1227–1236 (2012).

    Article  CAS  PubMed  Google Scholar 

  251. Nielsen, C. T., Rasmussen, N. S., Heegaard, N. H. & Jacobsen, S. “Kill” the messenger: targeting of cell-derived microparticles in lupus nephritis. Autoimmun. Rev. 15, 719–725 (2016).

    Article  CAS  PubMed  Google Scholar 

  252. Sole, C., Cortes-Hernandez, J., Felip, M. L., Vidal, M. & Ordi-Ros, J. miR-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Nephrol. Dial. Transplant. 30, 1488–1496 (2015).

    Article  CAS  PubMed  Google Scholar 

  253. Knijff-Dutmer, E. A., Koerts, J., Nieuwland, R., Kalsbeek-Batenburg, E. M. & van de Laar, M. A. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum. 46, 1498–1503 (2002).

    Article  CAS  PubMed  Google Scholar 

  254. Boilard, E. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327, 580–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Rectenwald, J. E. et al. D-Dimer, P-selectin, and microparticles: novel markers to predict deep venous thrombosis. A pilot study. Thromb. Haemost. 94, 1312–1317 (2005).

    Article  CAS  PubMed  Google Scholar 

  256. Chirinos, J. A. et al. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J. Am. Coll. Cardiol. 45, 1467–1471 (2005).

    Article  CAS  PubMed  Google Scholar 

  257. Campello, E., Spiezia, L., Radu, C. M. & Simioni, P. Microparticles as biomarkers of venous thromboembolic events. Biomark. Med. 10, 743–755 (2016).

    Article  CAS  PubMed  Google Scholar 

  258. Bal, L. et al. Factors influencing the level of circulating procoagulant microparticles in acute pulmonary embolism. Arch. Cardiovasc. Dis. 103, 394–403 (2010).

    Article  PubMed  Google Scholar 

  259. Dignat-George, F. et al. Endothelial microparticles: a potential contribution to the thrombotic complications of the antiphospholipid syndrome. Thromb. Haemost. 91, 667–673 (2004).

    Article  CAS  PubMed  Google Scholar 

  260. Pericleous, C., Giles, I. & Rahman, A. Are endothelial microparticles potential markers of vascular dysfunction in the antiphospholipid syndrome? Lupus 18, 671–675 (2009).

    Article  CAS  PubMed  Google Scholar 

  261. Brodsky, R. A. Paroxysmal nocturnal hemoglobinuria. Blood 124, 2804–2811 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Helley, D. et al. Evaluation of hemostasis and endothelial function in patients with paroxysmal nocturnal hemoglobinuria receiving eculizumab. Haematologica 95, 574–581 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Angelillo-Scherrer, A. Leukocyte-derived microparticles in vascular homeostasis. Circ. Res. 110, 356–369 (2012).

    Article  CAS  PubMed  Google Scholar 

  264. Leroyer, A. S., Tedgui, A. & Boulanger, C. M. Role of microparticles in atherothrombosis. J. Intern. Med. 263, 528–537 (2008).

    Article  CAS  PubMed  Google Scholar 

  265. Rautou, P. E. et al. Microparticles, vascular function, and atherothrombosis. Circ. Res. 109, 593–606 (2011).

    Article  CAS  PubMed  Google Scholar 

  266. Owens, A. P. III & Mackman, N. Microparticles in hemostasis and thrombosis. Circ. Res. 108, 1284–1297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Lakhter, A. J. & Sims, E. K. Minireview: emerging roles for extracellular vesicles in diabetes and related metabolic disorders. Mol. Endocrinol. 29, 1535–1548 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Omoto, S. et al. Detection of monocyte-derived microparticles in patients with type II diabetes mellitus. Diabetologia 45, 550–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  269. Nomura, S. Dynamic role of microparticles in type 2 diabetes mellitus. Curr. Diabetes Rev. 5, 245–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  270. Sabatier, F. et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes 51, 2840–2845 (2002).

    Article  CAS  PubMed  Google Scholar 

  271. Diamant, M. et al. Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation 106, 2442–2447 (2002).

    Article  CAS  PubMed  Google Scholar 

  272. Chen, Y., Feng, B., Li, X., Ni, Y. & Luo, Y. Plasma endothelial microparticles and their correlation with the presence of hypertension and arterial stiffness in patients with type 2 diabetes. J. Clin. Hypertens. (Greenwich) 14, 455–460 (2012).

    Article  CAS  Google Scholar 

  273. Zubiri, I. et al. Kidney tissue proteomics reveals regucalcin downregulation in response to diabetic nephropathy with reflection in urinary exosomes. Transl Res. 166, 474–484.e4 (2015).

    Article  CAS  PubMed  Google Scholar 

  274. Johansson, H. et al. Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes 54, 1755–1762 (2005).

    Article  CAS  PubMed  Google Scholar 

  275. Ueba, T. et al. Level, distribution and correlates of platelet-derived microparticles in healthy individuals with special reference to the metabolic syndrome. Thromb. Haemost. 100, 280–285 (2008).

    Article  CAS  PubMed  Google Scholar 

  276. Murakami, T. et al. Impact of weight reduction on production of platelet-derived microparticles and fibrinolytic parameters in obesity. Thromb. Res. 119, 45–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  277. Heinrich, L. F., Andersen, D. K., Cleasby, M. E. & Lawson, C. Long-term high fat feeding of rats results in increased numbers of circulating microvesicles with pro-inflammatory effects on endothelial cells. Br. J. Nutr. 113, 1704–1711 (2015).

    Article  CAS  PubMed  Google Scholar 

  278. Stepanian, A. et al. Microparticle increase in severe obesity: not related to metabolic syndrome and unchanged after massive weight loss. Obesity (Silver Spring) 21, 2236–2243 (2013).

    Article  CAS  Google Scholar 

  279. Agouni, A. et al. Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. Am. J. Pathol. 173, 1210–1219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Arteaga, R. B. et al. Endothelial microparticles and platelet and leukocyte activation in patients with the metabolic syndrome. Am. J. Cardiol. 98, 70–74 (2006).

    Article  CAS  PubMed  Google Scholar 

  281. Little, K. M., Smalley, D. M., Harthun, N. L. & Ley, K. The plasma microparticle proteome. Semin. Thromb. Hemost. 36, 845–856 (2010).

    Article  CAS  PubMed  Google Scholar 

  282. Karolina, D. S. et al. Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 97, E2271–E2276 (2012).

    Article  CAS  PubMed  Google Scholar 

  283. Preston, R. A. et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 41, 211–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  284. Wang, J. M. et al. Elevated circulating endothelial microparticles and brachial-ankle pulse wave velocity in well-controlled hypertensive patients. J. Hum. Hypertens. 23, 307–315 (2009).

    Article  PubMed  Google Scholar 

  285. Huang, P. H. et al. Increased circulating CD31+/annexin V+ apoptotic microparticles and decreased circulating endothelial progenitor cell levels in hypertensive patients with microalbuminuria. J. Hypertens. 28, 1655–1665 (2010).

    Article  CAS  PubMed  Google Scholar 

  286. Kwon, S. H. et al. Elevated urinary podocyte-derived extracellular microvesicles in renovascular hypertensive patients. Nephrol. Dial. Transplant. 32, 800–807 (2016).

    PubMed Central  Google Scholar 

  287. Wahlgren, J. et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 40, e130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Ohno, S. I. et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 21, 185–191 (2013).

    Article  CAS  PubMed  Google Scholar 

  289. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  290. Tian, Y. et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35, 2383–2390 (2014).

    Article  CAS  PubMed  Google Scholar 

  291. Johnsen, K. B. et al. A comprehensive overview of exosomes as drug delivery vehicles — endogenous nanocarriers for targeted cancer therapy. Biochim. Biophys. Acta 1846, 75–87 (2014).

    CAS  PubMed  Google Scholar 

  292. Pitt, J. M. et al. Dendritic cell-derived exosomes for cancer therapy. J. Clin. Invest. 126, 1224–1232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Lener, T. et al. Applying extracellular vesicles based therapeutics in clinical trials — an ISEV position paper. J. Extracell. Vesicles 4, 30087 (2015).

    Article  CAS  PubMed  Google Scholar 

  294. Rand, M. L., Wang, H., Bang, K. W., Packham, M. A. & Freedman, J. Rapid clearance of procoagulant platelet-derived microparticles from the circulation of rabbits. J. Thromb. Haemost. 4, 1621–1623 (2006).

    Article  CAS  PubMed  Google Scholar 

  295. Morel, O. et al. Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler. Thromb. Vasc. Biol. 26, 2594–2604 (2006).

    Article  CAS  PubMed  Google Scholar 

  296. Nomura, S., Kanazawa, S. & Fukuhara, S. Effects of efonidipine on platelet and monocyte activation markers in hypertensive patients with and without type 2 diabetes mellitus. J. Hum. Hypertens. 16, 539–547 (2002).

    Article  CAS  PubMed  Google Scholar 

  297. Nomura, S. et al. Probucol and ticlopidine: effect on platelet and monocyte activation markers in hyperlipidemic patients with and without type 2 diabetes. Atherosclerosis 174, 329–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  298. Nomura, S. et al. The effects of pitavastatin, eicosapentaenoic acid and combined therapy on platelet-derived microparticles and adiponectin in hyperlipidemic, diabetic patients. Platelets 20, 16–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  299. Nomura, S. et al. Effects of eicosapentaenoic acid on endothelial cell-derived microparticles, angiopoietins and adiponectin in patients with type 2 diabetes. J. Atheroscler. Thromb. 16, 83–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  300. Esposito, K., Ciotola, M. & Giugliano, D. Pioglitazone reduces endothelial microparticles in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 26, 1926 (2006).

    Article  CAS  PubMed  Google Scholar 

  301. Yano, Y. et al. The effects of calpeptin (a calpain specific inhibitor) on agonist induced microparticle formation from the platelet plasma membrane. Thromb. Res. 71, 385–396 (1993).

    Article  CAS  PubMed  Google Scholar 

  302. Zafrani, L. et al. Calpastatin controls polymicrobial sepsis by limiting procoagulant microparticle release. Am. J. Respir. Crit. Care Med. 185, 744–755 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Iero, M. et al. Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ. 15, 80–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  304. Chalmin, F. et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J. Clin. Invest. 120, 457–471 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  305. Faille, D. et al. Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J. Cell. Mol. Med. 16, 1731–1738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Barres, C. et al. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 115, 696–705 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge R. Tati (Department of Pediatrics, Lund University, Sweden) for help with figures 1 and 2. They are also grateful for funding from The Swedish Research Council (K2013-64X-14008-13-5 and K2015- 99X-22877-01-6), The Knut and Alice Wallenberg Foundation (Wallenberg Clinical Scholar 2015.0320), The Torsten Söderberg Foundation, Skåne Centre of Excellence in Health, Crown Princess Lovisa's Society for Child Care, Region Skåne and The Konung Gustaf V:s 80-årsfond.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussion of the content, and revising or editing the manuscript before submission.

Corresponding author

Correspondence to Diana Karpman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpman, D., Ståhl, Al. & Arvidsson, I. Extracellular vesicles in renal disease. Nat Rev Nephrol 13, 545–562 (2017). https://doi.org/10.1038/nrneph.2017.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.98

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing