Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reducing the costs of chronic kidney disease while delivering quality health care: a call to action

Key Points

  • The treatment of chronic kidney disease (CKD) and of end-stage kidney disease (ESRD) has a high societal cost

  • Insufficient efforts are being made to promote the use of cost-effective renal replacement therapies (RRT), such as transplantation and home dialysis (including peritoneal dialysis)

  • In CKD and in many other chronic diseases, the time has come to decrease investment in curative approaches and to focus on prevention

  • The relative costs and benefits of each approach should be carefully analysed before a preventive or curative method is favoured

  • A need exists for more health-economic studies of primary and secondary prevention in CKD to be conducted, and for the quality of such research to be improved

Abstract

The treatment of chronic kidney disease (CKD) and of end-stage renal disease (ESRD) imposes substantial societal costs. Expenditure is highest for renal replacement therapy (RRT), especially in-hospital haemodialysis. Redirection towards less expensive forms of RRT (peritoneal dialysis, home haemodialysis) or kidney transplantation should decrease financial pressure. However, costs for CKD are not limited to RRT, but also include nonrenal health-care costs, costs not related to health care, and costs for patients with CKD who are not yet receiving RRT. Even if patients with CKD or ESRD could be given the least expensive therapies, costs would decrease only marginally. We therefore propose a consistent and sustainable approach focusing on prevention. Before a preventive strategy is favoured, however, authorities should carefully analyse the cost to benefit ratio of each strategy. Primary prevention of CKD is more important than secondary prevention, as many other related chronic diseases, such as diabetes mellitus, hypertension, cardiovascular disease, liver disease, cancer, and pulmonary disorders could also be prevented. Primary prevention largely consists of lifestyle changes that will reduce global societal costs and, more importantly, result in a healthy, active, and long-lived population. Nephrologists need to collaborate closely with other sectors and governments, to reach these aims.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The burden of chronic kidney disease (CKD)*.
Figure 2: The network of chronic diseases and their mutual influences.
Figure 3: Societal costs for the care of patients with chronic kidney disease in the UK.
Figure 4: Savings in societal costs through secondary prevention of chronic kidney disease (CKD).

Similar content being viewed by others

References

  1. Klarenbach, S. W., Tonelli, M., Chui, B. & Manns, B. J. Economic evaluation of dialysis therapies. Nat. Rev. Nephrol. 10, 644–652 (2014).

    Article  PubMed  Google Scholar 

  2. Wang, V., Vilme, H., Maciejewski, M. L. & Boulware, L. E. The economic burden of chronic kidney disease and end-stage renal disease. Semin. Nephrol. 36, 319–330 (2016).

    Article  PubMed  Google Scholar 

  3. Collins, A. J., Foley, R. N., Gilbertson, D. T. & Chen, S. C. United States Renal Data System public health surveillance of chronic kidney disease and end-stage renal disease. Kidney Int. Suppl. 5, 2–7 (2015).

    Article  Google Scholar 

  4. Pippias, M. et al. The changing trends and outcomes in renal replacement therapy: data from the ERA-EDTA Registry. Nephrol. Dial. Transplant. 31, 831–841 (2016).

    Article  PubMed  Google Scholar 

  5. Kerr, M., Bray, B., Medcalf, J., O'Donoghue, D. J. & Matthews, B. Estimating the financial cost of chronic kidney disease to the NHS in England. Nephrol. Dial. Transplant. 27 (Suppl. 3), iii73–iii80 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carney, E. F. Epidemiology: Global Burden of Disease Study 2013 reports that disability caused by CKD is increasing worldwide. Nat. Rev. Nephrol. 11, 446 (2015).

    Article  PubMed  Google Scholar 

  7. Correa-Rotter, R., Wesseling, C. & Johnson, R. J. CKD of unknown origin in Central America: the case for a Mesoamerican nephropathy. Am. J. Kidney Dis. 63, 506–520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. European Kidney Health Alliance. Recommendations for sustainable kidney care. http://ekha.eu/wp-content/uploads/2016/01/EKHA-Recs-for-Sustainable-Kidney-Care-25.08.2015.pdf (2015).

  9. Ortiz, A. et al. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet 383, 1831–1843 (2014).

    Article  PubMed  Google Scholar 

  10. Vanholder, R. et al. Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diabetes Endocrinol. 4, 360–373 (2016).

    Article  PubMed  Google Scholar 

  11. Wyld, M. L. et al. Cost to government and society of chronic kidney disease stage 1-5: a national cohort study. Intern. Med. J. 45, 741–747 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Dormont, B., Grignon, M. & Huber, H. Health expenditure growth: reassessing the threat of ageing. Health Econ. 15, 947–963 (2006).

    Article  PubMed  Google Scholar 

  13. Hill, N. R. et al. Global prevalence of chronic kidney disease — a systematic review and meta-analysis. PLoS ONE 11, e0158765 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O'Callaghan, C. A., Shine, B. & Lasserson, D. S. Chronic kidney disease: a large-scale population-based study of the effects of introducing the CKD-EPI formula for eGFR reporting. BMJ Open 1, e000308 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kramer, A. et al. Renal replacement therapy in Europe: a summary of the 2013 ERA-EDTA Registry Annual Report with a focus on diabetes mellitus. Clin. Kidney J. 9, 457–469 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hirth, R. A. The organization and financing of kidney dialysis and transplant care in the United States of America. Int. J. Health Care Finance Econ. 7, 301–318 (2007).

    Article  PubMed  Google Scholar 

  17. Manns, B. J., Mendelssohn, D. C. & Taub, K. J. The economics of end-stage renal disease care in Canada: incentives and impact on delivery of care. Int. J. Health Care Finance Econ. 7, 149–169 (2007).

    Article  PubMed  Google Scholar 

  18. Tomson, C. R. Recent advances: nephrology. BMJ 320, 98–101 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    Article  PubMed  Google Scholar 

  20. Vanholder, R., Van Biesen, W. & Lameire, N. Renal replacement therapy: how can we contain the costs? Lancet 383, 1783–1785 (2014).

    Article  PubMed  Google Scholar 

  21. Vanholder, R., Lameire, N., Annemans, L. & Van Biesen, W. Cost of renal replacement: how to helpas many as possible while keeping expenses reasonable? Nephrol. Dial. Transplant. 31, 251–1261 (2016).

    Google Scholar 

  22. United States Renal Data System. US Renal Data System 2016 Annual Data Report. Chapter 13: international comparisons. https://www.usrds.org/2016/view/v2_13.aspx (2016)

  23. Heckman, J. J. The developmental origins of health. Health Econ. 21, 24–29 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Grossman, M. Concept of health capital and demand for health. J. Polit. Econ. 80, 223–225 (1972).

    Article  Google Scholar 

  25. Hennessy, D. A. et al. The Population Health Model (POHEM): an overview of rationale, methods and applications. Popul. Health Metr. 13, 24 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Flanagan, W. M. et al. Potential impact of population-based colorectal cancer screening in Canada. Chronic Dis. Can. 24, 81–88 (2003).

    PubMed  Google Scholar 

  27. Turin, T. C. et al. Chronic kidney disease and life expectancy. Nephrol. Dial. Transplant. 27, 3182–3186 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Shinzawa, M. et al. Maternal smoking during pregnancy, household smoking after the child's birth, and childhood proteinuria at age 3 years. Clin. J. Am. Soc. Nephrol. 12, 253–260 (2017).

    Article  PubMed  Google Scholar 

  29. Haller, M., Gutjahr, G., Kramar, R., Harnoncourt, F. & Oberbauer, R. Cost-effectiveness analysis of renal replacement therapy in Austria. Nephrol. Dial. Transplant. 26, 2988–2995 (2011).

    Article  PubMed  Google Scholar 

  30. Wong, G. et al. Comparative survival and economic benefits of deceased donor kidney transplantation and dialysis in people with varying ages and co-morbidities. PLoS ONE 7, e29591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laupacis, A. et al. A study of the quality of life and cost-utility of renal transplantation. Kidney Int. 50, 235–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Tonelli, M. et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am. J. Transplant. 11, 2093–2109 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Schold, J. D. & Segev, D. L. Increasing the pool of deceased donor organs for kidney transplantation. Nat. Rev. Nephrol. 8, 325–331 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Friedman, A. L. & Friedman, E. A. A step toward solving the long-term care dilemma for living kidney donors. Transplantation 94, 988–989 (2012).

    Article  PubMed  Google Scholar 

  35. Van Biesen, W., van der Veer, S. N., Murphey, M., Loblova, O. & Davies, S. Patients' perceptions of information and education for renal replacement therapy: an independent survey by the European Kidney Patients' Federation on information and support on renal replacement therapy. PLoS ONE 9, e103914 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. International Summit on Transplant Tourism and Organ Trafficking. The Declaration of Istanbul on organ trafficking and transplant tourism. Clin. J. Am. Soc. Nephrol. 3, 1227–1231 (2008).

  37. Shepherd, L., O'Carroll, R. E. & Ferguson, E. An international comparison of deceased and living organ donation/transplant rates in opt-in and opt-out systems: a panel study. BMC Med. 12, 131 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Howard, K. et al. Preferences for policy options for deceased organ donation for transplantation: a discrete choice experiment. Transplantation 100, 1136–1148 (2016).

    Article  PubMed  Google Scholar 

  39. Abadie, A. & Gay, S. The impact of presumed consent legislation on cadaveric organ donation: a cross-country study. J. Health Econ. 25, 599–620 (2006).

    Article  PubMed  Google Scholar 

  40. SwissInfo. Government rejects presumed consent. http://www.swissinfo.ch/directdemocracy/organ-transplants_government-rejects-presumed-consent/35180768 (2013).

  41. Dutch News. Dutch MPs vote for 'yes unless' organ donor register. http://www.dutchnews.nl/news/archives/2016/09/dutch-mps-vote-for-yes-unless-organ-donation-register/ (2016).

  42. Ministry of Health Singapore. Increasing Singapore's organ transplant rate. https://www.moh.gov.sg/content/moh_web/home/pressRoom/Parliamentary_QA/2016/increasing-singapore-s-organ-transplant-rate.html (2016).

  43. Zivcic-Cosic, S. et al. Development of the Croatian model of organ donation and transplantation. Croat. Med. J. 54, 65–70 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Metzger, R. A. et al. Expanded criteria donors for kidney transplantation. Am. J. Transplant. 3 (Suppl. 4), 114–125 (2003).

    Article  PubMed  Google Scholar 

  45. Abramowicz, D. et al. Does pre-emptive transplantation versus post start of dialysis transplantation with a kidney from a living donor improve outcomes after transplantation? A systematic literature review and position statement by the Descartes Working Group and ERBP. Nephrol. Dial. Transplant. 31, 691–697 (2016).

    Article  PubMed  Google Scholar 

  46. Horvat, L. D. et al. Global trends in the rates of living kidney donation. Kidney Int. 75, 1088–1098 (2009).

    Article  PubMed  Google Scholar 

  47. Haller, M. C., Kainz, A., Baer, H. & Oberbauer, R. Dialysis vintage and outcomes after kidney transplantation: a retrospective cohort study. Clin. J. Am. Soc. Nephrol. 12, 122–130 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mandelbrot, D. A. & Pavlakis, M. Living donor practices in the United States. Adv. Chronic Kidney Dis. 19, 212–219 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vanholder, R. et al. Reimbursement of dialysis: a comparison of seven countries. J. Am. Soc. Nephrol. 23, 1291–1298 (2012).

    Article  PubMed  Google Scholar 

  50. Medicare. Dialysis information for people with end-stage renal disease. https://www.medicare.gov/people-like-me/esrd/dialysis-information.html (2017)

  51. Ludlow, M. J., Lauder, L. A., Mathew, T. H., Hawley, C. M. & Fortnum, D. Australian consumer perspectives on dialysis: first national census. Nephrology (Carlton) 17, 703–709 (2012).

    Article  Google Scholar 

  52. Golper, T. A. The possible impact of the US prospective payment system (“bundle”) on the growth of peritoneal dialysis. Perit. Dial. Int. 33, 596–599 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Van Biesen, W., Lameire, N., Peeters, P. & Vanholder, R. Belgium's mixed private/public health care system and its impact on the cost of end-stage renal disease. Int. J. Health Care Finance Econ. 7, 133–148 (2007).

    Article  PubMed  Google Scholar 

  54. van de Luijtgaarden, M. W. et al. Global differences in dialysis modality mix: the role of patient characteristics, macroeconomics and renal service indicators. Nephrol. Dial. Transplant. 28, 1264–1275 (2013).

    Article  PubMed  Google Scholar 

  55. Karopadi, A. N., Mason, G., Rettore, E. & Ronco, C. Cost of peritoneal dialysis and haemodialysis across the world. Nephrol. Dial. Transplant. 28, 2553–2569 (2013).

    Article  PubMed  Google Scholar 

  56. Swanepoel, C. R., Wearne, N. & Okpechi, I. G. Nephrology in Africa — not yet uhuru. Nat. Rev. Nephrol. 9, 610–622 (2013).

    Article  PubMed  Google Scholar 

  57. Walker, R. C. et al. The economic considerations of patients and caregivers in choice of dialysis modality. Hemodial. Int. 20, 634–642 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chow, K. M. & Li, P. K. Dialysis: Choice of dialysis — what to do with economic incentives. Nat. Rev. Nephrol. 8, 495–496 (2012).

    Article  PubMed  Google Scholar 

  59. Kleophas, W. & Reichel, H. International study of health care organization and financing: development of renal replacement therapy in Germany. Int. J. Health Care Finance Econ. 7, 185–200 (2007).

    Article  PubMed  Google Scholar 

  60. Mendelssohn, D. C., Langlois, N. & Blake, P. G. Peritoneal dialysis in Ontario: a natural experiment in physician reimbursement methodology. Perit. Dial. Int. 24, 531–537 (2004).

    PubMed  Google Scholar 

  61. Tantivess, S., Werayingyong, P., Chuengsaman, P. & Teerawattananon, Y. Universal coverage of renal dialysis in Thailand: promise, progress, and prospects. BMJ 346, f462 (2013).

    Article  PubMed  Google Scholar 

  62. van de Luijtgaarden, M. W. et al. Effects of comorbid and demographic factors on dialysis modality choice and related patient survival in Europe. Nephrol. Dial. Transplant. 26, 2940–2947 (2011).

    Article  PubMed  Google Scholar 

  63. Chazot, C. et al. Pro and con arguments in using alternative dialysis regimens in the frail and elderly patients. Int. Urol. Nephrol. 47, 1809–1816 (2015).

    Article  PubMed  Google Scholar 

  64. Oliver, M. J. Home care assistance and the utilization of peritoneal dialysis. Kidney Int. 71, 673–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Brown, E. A. & Wilkie, M. Assisted peritoneal dialysis as an alternative to in-center hemodialysis. Clin. J. Am. Soc. Nephrol. 11, 1522–1524 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Iyasere, O. U. et al. Quality of life and physical function in older patients on dialysis: a comparison of assisted peritoneal dialysis with hemodialysis. Clin. J. Am. Soc. Nephrol. 11, 423–430 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Bechade, C., Lobbedez, T., Ivarsen, P. & Povlsen, J. V. Assisted peritoneal dialysis for older people with end-stage renal disease: the French and Danish experience. Perit. Dial. Int. 35, 663–666 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Farrington, K. et al. Clinical practice guideline on management of older patients with chronic kidney disease stage 3b or higher (eGFR <45 ml/min/1.73 m2). Nephrol. Dial. Transplant. 31 (Suppl. 2), ii1–ii66 (2016).

    Article  PubMed  Google Scholar 

  69. Huisman, R. M. The deadly risk of late referral. Nephrol. Dial. Transplant. 19, 2175–2180 (2004).

    Article  PubMed  Google Scholar 

  70. Levin, A. Consequences of late referral on patient outcomes. Nephrol. Dial. Transplant. 15 (Suppl. 3), 8–13 (2000).

    Article  PubMed  Google Scholar 

  71. Blunt, I., Bardsley, M. & Strippoli, G. F. Pre-dialysis hospital use and late referrals in incident dialysis patients in England: a retrospective cohort study. Nephrol. Dial. Transplant. 30, 124–129 (2015).

    Article  PubMed  Google Scholar 

  72. Wauters, J. P., Lameire, N., Davison, A. & Ritz, E. Why patients with progressing kidney disease are referred late to the nephrologist: on causes and proposals for improvement. Nephrol. Dial. Transplant. 20, 490–496 (2005).

    Article  PubMed  Google Scholar 

  73. Spillman, B. C. & Lubitz, J. The effect of longevity on spending for acute and long-term care. N. Engl. J. Med. 342, 1409–1415 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Wiener, J. M. & Tilly, J. Population ageing in the United States of America: implications for public programmes. Int. J. Epidemiol. 31, 776–781 (2002).

    Article  PubMed  Google Scholar 

  75. Drey, N., Roderick, P., Mullee, M. & Rogerson, M. A population-based study of the incidence and outcomes of diagnosed chronic kidney disease. Am. J. Kidney Dis. 42, 677–684 (2003).

    Article  PubMed  Google Scholar 

  76. Canaud, B. et al. Clinical practices and outcomes in elderly hemodialysis patients: results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Clin. J. Am. Soc. Nephrol. 6, 1651–1662 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ellwood, A. D. et al. Early dialysis initiation and rates and timing of withdrawal from dialysis in Canada. Clin. J. Am. Soc. Nephrol. 8, 265–270 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Carson, R. C., Juszczak, M., Davenport, A. & Burns, A. Is maximum conservative management an equivalent treatment option to dialysis for elderly patients with significant comorbid disease? Clin. J. Am. Soc. Nephrol. 4, 1611–1619 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jassal, S. V. & Watson, D. Dialysis in late life: benefit or burden. Clin. J. Am. Soc. Nephrol. 4, 2008–2012 (2009).

    Article  PubMed  Google Scholar 

  80. Johansen, K. L., Chertow, G. M., Jin, C. & Kutner, N. G. Significance of frailty among dialysis patients. J. Am. Soc. Nephrol. 18, 2960–2967 (2007).

    Article  PubMed  Google Scholar 

  81. Kurella Tamura, M. et al. Functional status of elderly adults before and after initiation of dialysis. N. Engl. J. Med. 361, 1539–1547 (2009).

    Article  PubMed  Google Scholar 

  82. Chandna, S. M. et al. Survival of elderly patients with stage 5 CKD: comparison of conservative management and renal replacement therapy. Nephrol. Dial. Transplant. 26, 1608–1614 (2011).

    Article  PubMed  Google Scholar 

  83. Wong, S. P. et al. Decisions about renal replacement therapy in patients with advanced kidney disease in the US Department of Veterans Affairs, 2000–2011. Clin. J. Am. Soc. Nephrol. 11, 1825–1833 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Morton, R. L. et al. Factors influencing patient choice of dialysis versus conservative care to treat end-stage kidney disease. CMAJ 184, E277–E283 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Murtagh, F. E., Burns, A., Moranne, O., Morton, R. L. & Naicker, S. Supportive care: comprehensive conservative care in end-stage kidney disease. Clin. J. Am. Soc. Nephrol. 11, 1909–1914 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Muthalagappan, S., Johansson, L., Kong, W. M. & Brown, E. A. Dialysis or conservative care for frail older patients: ethics of shared decision-making. Nephrol. Dial. Transplant. 28, 2717–2722 (2013).

    Article  PubMed  Google Scholar 

  87. Cooper, B. A. et al. A randomized, controlled trial of early versus late initiation of dialysis. N. Engl. J. Med. 363, 609–619 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Tattersall, J. et al. When to start dialysis: updated guidance following publication of the Initiating Dialysis Early and Late (IDEAL) study. Nephrol. Dial. Transplant. 26, 2082–2086 (2011).

    Article  PubMed  Google Scholar 

  89. Lameire, N. & Van Biesen, W. The initiation of renal-replacement therapy — just-in-time delivery. N. Engl. J. Med. 363, 678–680 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Harris, A. et al.: Cost-effectiveness of initiating dialysis early: a randomized controlled trial. Am. J. Kidney Dis. 57, 707–715 (2011).

    Article  PubMed  Google Scholar 

  91. Manns, B. J. & Quinn, R. R. Early dialysis of no benefit to the patient or the health care system. Am. J. Kidney Dis. 57, 649–650 (2011).

    Article  PubMed  Google Scholar 

  92. Bello, A. K. et al. Effective CKD care in European countries: challenges and opportunities for health policy. Am. J. Kidney Dis. 65, 15–25 (2015).

    Article  PubMed  Google Scholar 

  93. Satcher, D. The prevention challenge and opportunity. Health Aff. (Millwood) 25, 1009–1011 (2006).

    Article  Google Scholar 

  94. Woolf, S. H. A closer look at the economic argument for disease prevention. JAMA 301, 536–538 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Maciosek, M. V. et al. Priorities among effective clinical preventive services: methods. Am. J. Prev. Med. 31, 90–96 (2006).

    Article  PubMed  Google Scholar 

  96. Vandevijvere, S., Annemans, L., Van Oyen, H., Tafforeau, J. & Moreno-Reyes, R. Projected reduction in healthcare costs in Belgium after optimization of iodine intake: impact on costs related to thyroid nodular disease. Thyroid 20, 1301–1306 (2010).

    Article  PubMed  Google Scholar 

  97. Meier, T. et al. Healthcare costs associated with an adequate intake of sugars, salt and saturated fat in Germany: a health econometrical analysis. PLoS ONE 10, e0135990 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Smith-Spangler, C. M., Juusola, J. L., Enns, E. A., Owens, D. K. & Garber, A. M. Population strategies to decrease sodium intake and the burden of cardiovascular disease: a cost-effectiveness analysis. Ann. Intern. Med. 152, 481–487 (2010).

    Article  PubMed  Google Scholar 

  99. Selmer, R. M. et al. Cost and health consequences of reducing the population intake of salt. J. Epidemiol. Community Health 54, 697–702 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brouwer, W. B., Niessen, L. W., Postma, M. J. & Rutten, F. F. Need for differential discounting of costs and health effects in cost effectiveness analyses. BMJ 331, 446–448 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Parouty, M. B., Le, H. H., Krooshof, D. & Postma, M. J. Differential time preferences for money and quality of life. Pharmacoeconomics 32, 411–419 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Bonneux, L., Barendregt, J. J., Nusselder, W. J. & der Maas, P. J. Preventing fatal diseases increases healthcare costs: cause elimination life table approach. BMJ 316, 26–29 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Divajeva, D. et al. Economics of chronic diseases protocol: cost-effectiveness modelling and the future burden of non-communicable disease in Europe. BMC Public Health 14, 456 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment. Lancet Diabetes Endocrinol. 2, 634–647 (2014).

  105. Gerovasili, V., Agaku, I. T., Vardavas, C. I. & Filippidis, F. T. Levels of physical activity among adults 18–64 years old in 28 European countries. Prev. Med. 81, 87–91 (2015).

    Article  PubMed  Google Scholar 

  106. de Vroome, E. M. et al. Burden of sickness absence due to chronic disease in the Dutch workforce from 2007 to 2011. J. Occup. Rehabil. 25, 675–684 (2015).

    Article  PubMed  Google Scholar 

  107. Danaei, G. et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 6, e1000058 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Strong, K., Mathers, C., Leeder, S. & Beaglehole, R. Preventing chronic diseases: how many lives can we save? Lancet 366, 1578–1582 (2005).

    Article  PubMed  Google Scholar 

  110. Asaria, P., Chisholm, D., Mathers, C., Ezzati, M. & Beaglehole, R. Chronic disease prevention: health effects and financial costs of strategies to reduce salt intake and control tobacco use. Lancet 370, 2044–2053 (2007).

    Article  PubMed  Google Scholar 

  111. Parrott, S. & Godfrey, C. Economics of smoking cessation. BMJ 328, 947–949 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ejerblad, E. et al. Association between smoking and chronic renal failure in a nationwide population-based case-control study. J. Am. Soc. Nephrol. 15, 2178–2185 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Yacoub, R. et al. Association between smoking and chronic kidney disease: a case control study. BMC Public Health 10, 731 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Orth, S. R. et al. Smoking as a risk factor for end-stage renal failure in men with primary renal disease. Kidney Int. 54, 926–931 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Lu, J. L. et al. Association of age and BMI with kidney function and mortality: a cohort study. Lancet Diabetes Endocrinol. 3, 704–714 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Dunkler, D. et al. Population-attributable fractions of modifiable lifestyle factors for CKD and mortality in individuals with type 2 diabetes: a cohort study. Am. J. Kidney Dis. 68, 29–40 (2016).

    Article  PubMed  Google Scholar 

  117. McCullough, M. L. et al. Diet quality and major chronic disease risk in men and women: moving toward improved dietary guidance. Am. J. Clin. Nutr. 76, 1261–1271 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Dunkler, D. et al. Modifiable lifestyle and social factors affect chronic kidney disease in high-risk individuals with type 2 diabetes mellitus. Kidney Int. 87, 784–791 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Soderland, P., Lovekar, S., Weiner, D. E., Brooks, D. R. & Kaufman, J. S. Chronic kidney disease associated with environmental toxins and exposures. Adv. Chronic Kidney Dis. 17, 254–264 (2010).

    Article  PubMed  Google Scholar 

  120. Lubitz, J., Cai, L., Kramarow, E. & Lentzner, H. Health, life expectancy, and health care spending among the elderly. N. Engl. J. Med. 349, 1048–1055 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Glass, T. A., de Leon, C. M., Marottoli, R. A. & Berkman, L. F. Population based study of social and productive activities as predictors of survival among elderly Americans. BMJ 319, 478–483 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Scitovsky, A. A. “The high cost of dying”: what do the data show? 1984. Milbank Q. 83, 825–841 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zweifel, P., Felder, S. & Meiers, M. Ageing of population and health care expenditure: a red herring? Health Econ. 8, 485–496 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Mozaffarian, D. et al. Global sodium consumption and death from cardiovascular causes. N. Engl. J. Med. 371, 624–634 (2014).

    Article  PubMed  Google Scholar 

  125. He, J. et al. Urinary sodium and potassium excretion and CKD progression. J. Am. Soc. Nephrol. 27, 1202–1212 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Humalda, J. K. & Navis, G. Dietary sodium restriction: a neglected therapeutic opportunity in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 23, 533–540 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Thomas, M. C. et al. The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care 34, 861–866 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu, N. et al. Association between sodium intakes with the risk of chronic kidney disease: evidence from a meta-analysis. Int. J. Clin. Exp. Med. 8, 20939–20945 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Vegter, S. et al. Sodium intake, ACE inhibition, and progression to ESRD. J. Am. Soc. Nephrol. 23, 165–173 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Chrysant, G. S., Bakir, S. & Oparil, S. Dietary salt reduction in hypertension — what is the evidence and why is it still controversial? Prog. Cardiovasc. Dis. 42, 23–38 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Mente, A. et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet 388, 465–475 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. O'Donnell, M. et al. Dietary sodium and cardiovascular disease risk. N. Engl. J. Med. 375, 2404–2408 (2016).

    Article  PubMed  Google Scholar 

  133. Cogswell, M. E., Mugavero, K., Bowman, B. A. & Frieden, T. R. Dietary sodium and cardiovascular disease risk — measurement matters. N. Engl. J. Med. 375, 580–586 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Joffres, M. R., Campbell, N. R., Manns, B. & Tu, K. Estimate of the benefits of a population-based reduction in dietary sodium additives on hypertension and its related health care costs in Canada. Can. J. Cardiol. 23, 437–443 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  135. European Commission. Survey on Members' States implementation of the EU salt reduction framework. http://ec.europa.eu/health/nutrition_physical_activity/docs/salt_report1_en.pdf.

  136. Garrett, S. et al. Are physical activity interventions in primary care and the community cost-effective? A systematic review of the evidence. Br. J. Gen. Pract. 61, e125–e133 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Isaacs, A. J. et al. Exercise Evaluation Randomised Trial (EXERT): a randomised trial comparing GP referral for leisure centre-based exercise, community-based walking and advice only. Health Technol. Assess. 11, 1–165 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Anis, A. H. et al. Obesity and overweight in Canada: an updated cost-of-illness study. Obes. Rev. 11, 31–40 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Schmid, A., Schneider, H., Golay, A. & Keller, U. Economic burden of obesity and its comorbidities in Switzerland. Soz. Praventivmed. 50, 87–94 (2005).

    Article  PubMed  Google Scholar 

  140. Verhaeghe, N., De Greve, O. & Annemans, L. The potential health and economic effect of a body mass index decrease in the overweight and obese population in Belgium. Public Health 134, 26–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Neubauer, S. et al. Mortality, morbidity and costs attributable to smoking in Germany: update and a 10-year comparison. Tob. Control 15, 464–471 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Cohen, D., Alam, M. F. & Jarvis, P. S. An analysis of the economic impact of smoking cessation in Europe. BMC Public Health 13, 390 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  143. van Baal, P. H. et al. Lifetime medical costs of obesity: prevention no cure for increasing health expenditure. PLoS Med. 5, e29 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Vanholder, R. et al. Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol. Dial. Transplant. 20, 1048–1056 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Matsushita, K. et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 3, 514–525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Matsushita, K. et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375, 2073–2081 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Pignone, M., Earnshaw, S., Tice, J. A. & Pletcher, M. J. Aspirin, statins, or both drugs for the primary prevention of coronary heart disease events in men: a cost-utility analysis. Ann. Intern. Med. 144, 326–336 (2006).

    Article  PubMed  Google Scholar 

  148. Smith, D. H., Gullion, C. M., Nichols, G., Keith, D. S. & Brown, J. B. Cost of medical care for chronic kidney disease and comorbidity among enrollees in a large HMO population. J. Am. Soc. Nephrol. 15, 1300–1306 (2004).

    Article  PubMed  Google Scholar 

  149. Parving, H. H. et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 345, 870–878 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Palmer, A. J. et al. Cost-effectiveness of early irbesartan treatment versus control (standard antihypertensive medications excluding ACE inhibitors, other angiotensin-2 receptor antagonists, and dihydropyridine calcium channel blockers) or late irbesartan treatment in patients with type 2 diabetes, hypertension, and renal disease. Diabetes Care 27, 1897–1903 (2004).

    Article  PubMed  Google Scholar 

  151. Adarkwah, C. C., Gandjour, A., Akkerman, M. & Evers, S. To treat or not to treat? Cost-effectiveness of ace inhibitors in non-diabetic advanced renal disease — a Dutch perspective. Kidney Blood Press. Res. 37, 168–180 (2013).

    Article  PubMed  Google Scholar 

  152. Hogan, T. J., Elliott, W. J., Seto, A. H. & Bakris, G. L. Antihypertensive treatment with and without benazepril in patients with chronic renal insufficiency: a US economic evaluation. Pharmacoeconomics 20, 37–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Asselbergs, F. W. et al. Effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. Circulation 110, 2809–2816 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Hillege, H. L. et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 106, 1777–1782 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Atthobari, J. et al. Cost-effectiveness of screening for albuminuria with subsequent fosinopril treatment to prevent cardiovascular events: a pharmacoeconomic analysis linked to the prevention of renal and vascular endstage disease (PREVEND) study and the prevention of renal and vascular endstage disease intervention trial (PREVEND IT). Clin. Ther. 28, 432–444 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Komenda, P. et al. Cost-effectiveness of primary screening for CKD: a systematic review. Am. J. Kidney Dis. 63, 789–797 (2014).

    Article  PubMed  Google Scholar 

  157. Manns, B. et al. Population based screening for chronic kidney disease: cost effectiveness study. BMJ 341, c5869 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Boulware, L. E., Jaar, B. G., Tarver-Carr, M. E., Brancati, F. L. & Powe, N. R. Screening for proteinuria in US adults: a cost-effectiveness analysis. JAMA 290, 3101–3114 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Boersma, C. et al. Screen-and-treat strategies for albuminuria to prevent cardiovascular and renal disease: cost-effectiveness of nationwide and targeted interventions based on analysis of cohort data from the Netherlands. Clin. Ther. 32, 1103–1121 (2010).

    Article  PubMed  Google Scholar 

  160. Boersma, C. et al. Baseline albuminuria predicts the efficacy of blood pressure-lowering drugs in preventing cardiovascular events. Br. J. Clin. Pharmacol. 65, 723–732 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sharma, P. et al. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for adults with early (stage 1 to 3) non-diabetic chronic kidney disease. Cochrane Database Syst. Rev. 10, CD007751 (2011).

    Google Scholar 

  162. O'Hare, A. M. The management of older adults with a low eGFR: moving toward an individualized approach. Am. J. Kidney Dis. 53, 925–927 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Akizawa, T. et al. Effect of a carbonaceous oral adsorbent on the progression of CKD: a multicenter, randomized, controlled trial. Am. J. Kidney Dis. 54, 459–467 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Hayashino, Y. et al. Cost-effectiveness of administering oral adsorbent AST-120 to patients with diabetes and advance-stage chronic kidney disease. Diabetes Res. Clin. Pract. 90, 154–159 (2010).

    Article  PubMed  Google Scholar 

  165. Schulman, G. et al. Randomized placebo-controlled EPPIC trials of AST-120 in CKD. J. Am. Soc. Nephrol. 26, 1732–1746 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Cha, R. H. et al. A randomized, controlled trial of oral intestinal sorbent AST-120 on renal function deterioration in patients with advanced renal dysfunction. Clin. J. Am. Soc. Nephrol. 11, 559–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Baigent, C. et al.: The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377, 2181–2192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mihaylova, B. et al. Cost-effectiveness of simvastatin plus ezetimibe for cardiovascular prevention in CKD: results of the Study of Heart and Renal Protection (SHARP). Am. J. Kidney Dis. 67, 576–584 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Trivedi, H. S., Pang, M. M., Campbell, A. & Saab, P. Slowing the progression of chronic renal failure: economic benefits and patients' perspectives. Am. J. Kidney Dis. 39, 721–729 (2002).

    Article  PubMed  Google Scholar 

  170. Erickson, K. F., Chertow, G. M. & Goldhaber-Fiebert, J. D. Cost-effectiveness of tolvaptan in autosomal dominant polycystic kidney disease. Ann. Intern. Med. 159, 382–389 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  171. National Institute for Health and Care Excellence. Tolvaptan for treating autosomal dominant polycystic kidney disease. https://www.nice.org.uk/guidance/ta358/resources/tolvaptan-for-treating-autosomal-dominant-polycystic-kidney-disease-82602675026629 (2015).

  172. Gansevoort, R. T. et al. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA Working Groups on Inherited Kidney Disorders and European Renal Best Practice. Nephrol. Dial. Transplant. 31, 337–348 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Fink, H. A. et al. Screening for, monitoring, and treatment of chronic kidney disease stages 1 to 3: a systematic review for the U.S. Preventive Services Task Force and for an American College of Physicians Clinical Practice Guideline. Ann. Intern. Med. 156, 570–581 (2012).

    Article  PubMed  Google Scholar 

  174. Hoerger, T. J. et al. A health policy model of CKD: 2. The cost-effectiveness of microalbuminuria screening. Am. J. Kidney Dis. 55, 463–473 (2010).

    Article  PubMed  Google Scholar 

  175. Moyer, V. A. Screening for chronic kidney disease: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 157, 567–570 (2012).

    Article  PubMed  Google Scholar 

  176. Stevens, L. A. & Levey, A. S. Measured GFR as a confirmatory test for estimated GFR. J. Am. Soc. Nephrol. 20, 2305–2313 (2009).

    Article  PubMed  Google Scholar 

  177. Miller, W. G. et al. Current issues in measurement and reporting of urinary albumin excretion. Clin. Chem. 55, 24–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Vart, P., Reijneveld, S. A., Bultmann, U. & Gansevoort, R. T. Added value of screening for CKD among the elderly or persons with low socioeconomic status. Clin. J. Am. Soc. Nephrol. 10, 562–570 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Qaseem, A., Hopkins, R. H. Jr, Sweet, D. E., Starkey, M. & Shekelle, P. Screening, monitoring, and treatment of stage 1 to 3 chronic kidney disease: a clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 159, 835–847 (2013).

    Article  PubMed  Google Scholar 

  180. Molitoris, B. A. Screening: screening for kidney disease — a lost opportunity. Nat. Rev. Nephrol. 10, 6–8 (2014).

    Article  PubMed  Google Scholar 

  181. Levin, A., Stevens, P. E., Coresh, J. & Levey, A. Screening, monitoring, and treatment of stage 1 to 3 chronic kidney disease. Ann. Intern. Med. 161, 81–82 (2014).

    Article  PubMed  Google Scholar 

  182. Lambers Heerspink, H. J., Gaillard, C. J. & Gansevoort, R. T. Screening, monitoring, and treatment of stage 1 to 3 chronic kidney disease. Ann. Intern. Med. 161, 82–83 (2014).

    Article  PubMed  Google Scholar 

  183. Dunkler, D. et al. Risk prediction for early CKD in type 2 diabetes. Clin. J. Am. Soc. Nephrol. 10, 1371–1379 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Rombach, S. M., Hollak, C. E., Linthorst, G. E. & Dijkgraaf, M. G. Cost-effectiveness of enzyme replacement therapy for Fabry disease. Orphanet. J. Rare Dis. 8, 29 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Barrett, A., Roques, T., Small, M. & Smith, R. D. How much will Herceptin really cost? BMJ 333, 1118–1120 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Haller, M. C., Vanholder, R., Oberbauer, R., Zoccali, C. & Van Biesen, W. Health economics and European Renal Best Practice — is it time to bring health economics into evidence-based guideline production in Europe? Nephrol. Dial. Transplant. 29, 1994–1997 (2014).

    Article  PubMed  Google Scholar 

  187. Broce, J. C., Price, L. L., Liangos, O., Uhlig, K. & Jaber, B. L. Hospital-acquired acute kidney injury: an analysis of nadir-to-peak serum creatinine increments stratified by baseline estimated GFR. Clin. J. Am. Soc. Nephrol. 6, 1556–1565 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Lameire, N. H. et al. Acute kidney injury: an increasing global concern. Lancet 382, 170–179 (2013).

    Article  PubMed  Google Scholar 

  189. Hoste, E. A. et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 41, 1411–1423 (2015).

    Article  PubMed  Google Scholar 

  190. Rewa, O. & Bagshaw, S. M. Acute kidney injury — epidemiology, outcomes and economics. Nat. Rev. Nephrol. 10, 193–207 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. Kerr, M., Bedford, M., Matthews, B. & O'Donoghue, D. The economic impact of acute kidney injury in England. Nephrol. Dial. Transplant. 29, 1362–1368 (2014).

    Article  PubMed  Google Scholar 

  192. Chawla, L. S., Eggers, P. W., Star, R. A. & Kimmel, P. L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371, 58–66 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Heung, M. et al. Acute kidney injury recovery pattern and subsequent risk of CKD: an analysis of Veterans Health Administration data. Am. J. Kidney Dis. 67, 742–752 (2016).

    Article  PubMed  Google Scholar 

  194. Rifkin, D. E., Coca, S. G. & Kalantar-Zadeh, K. Does AKI truly lead to CKD? J. Am. Soc. Nephrol. 23, 979–984 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Hsu, R. K. & Hsu, C. Y. The role of acute kidney injury in chronic kidney disease. Semin. Nephrol. 36, 283–292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Silver, S. A. & Wald, R. Improving outcomes of acute kidney injury survivors. Curr. Opin. Crit. Care 21, 500–505 (2015).

    PubMed  Google Scholar 

  197. Monteiro, C. A., Levy, R. B., Claro, R. M., de Castro, I. R. & Cannon, G. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr. 14, 5–13 (2011).

    Article  PubMed  Google Scholar 

  198. Weaver, C. M. et al. Processed foods: contributions to nutrition. Am. J. Clin. Nutr. 99, 1525–1542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Langellier, B. A. et al. Corner store inventories, purchases, and strategies for intervention: a review of the literature. Calif. J. Health Promot. 11, 1–13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Juul, F. & Hemmingsson, E. Trends in consumption of ultra-processed foods and obesity in Sweden between 1960 and 2010. Public Health Nutr. 18, 3096–3107 (2015).

    Article  PubMed  Google Scholar 

  201. Rao, M., Afshin, A., Singh, G. & Mozaffarian, D. Do healthier foods and diet patterns cost more than less healthy options? A systematic review and meta-analysis. BMJ Open 3, e004277 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Storcksdieck Genannt Bonsmann, S. & Wills, J. M. Nutrition labeling to prevent obesity: reviewing the evidence from Europe. Curr. Obes. Rep. 1, 134–140 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Dalstra, J. A. et al. Socioeconomic differences in the prevalence of common chronic diseases: an overview of eight European countries. Int. J. Epidemiol. 34, 316–326 (2005).

    Article  CAS  PubMed  Google Scholar 

  204. Rijksoverheid. Roadmap for action on food product improvement. https://www.rijksoverheid.nl/documenten/formulieren/2016/02/22/roadmap-for-action-on-food-product-improvement (2016).

  205. Office of Disease Prevention and Health Promotion. Nutrition and weight status. https://www.healthypeople.gov/2020/topics-objectives/topic/nutrition-and-weight-status (2014).

  206. Cowburn, G. & Stockley, L. Consumer understanding and use of nutrition labelling: a systematic review. Public Health Nutr. 8, 21–28 (2005).

    Article  PubMed  Google Scholar 

  207. Campos, S., Doxey, J. & Hammond, D. Nutrition labels on pre-packaged foods: a systematic review. Public Health Nutr. 14, 1496–1506 (2011).

    Article  PubMed  Google Scholar 

  208. Neuhouser, M. L., Kristal, A. R. & Patterson, R. E. Use of food nutrition labels is associated with lower fat intake. J. Am. Diet. Assoc. 99, 45–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  209. Euractiv. Mediterranean diet could suffer from UK 'traffic light' labels, Italy claims. https://www.euractiv.com/section/agriculture-food/news/mediterranean-diet-could-suffer-from-uk-traffic-light-labels-italy-claims/ (2013).

  210. Garcia-Fernandez, E., Rico-Cabanas, L., Rosgaard, N., Estruch, R. & Bach-Faig, A. Mediterranean diet and cardiodiabesity: a review. Nutrients 6, 3474–3500 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Eat for Health. How to understand food labels. https://www.eatforhealth.gov.au/eating-well/how-understand-food-labels (2015).

  212. US Food and Drug Administration. Changes to the nutrition facts label. https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/LabelingNutrition/ucm385663.htm#dates (2017).

  213. Roodenburg, A. J., Popkin, B. M. & Seidell, J. C. Development of international criteria for a front of package food labelling system: the International Choices Programme. Eu. J. Clin. Nutr. 65, 1190–1200 (2011).

    Article  CAS  Google Scholar 

  214. Roodenburg, A. J., van Ballegooijen, A. J., Dotsch-Klerk, M., van der Voet, H. & Seidell, J. C. Modelling of usual nutrient intakes: potential impact of the choices programme on nutrient intakes in young Dutch adults. PLoS ONE 8, e72378 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Lewis, J. E. et al. Food label use and awareness of nutritional information and recommendations among persons with chronic disease. Am. J. Clin. Nutr. 90, 1351–1357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Grunert, K. G. et al. Use and understanding of nutrition information on food labels in six European countries. Z. Gesundh. Wiss. 18, 261–277 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Palmer, S. C. et al. Dietary and fluid restrictions in CKD: a thematic synthesis of patient views from qualitative studies. Am. J. Kidney Dis. 65, 559–573 (2015).

    Article  PubMed  Google Scholar 

  218. Devraj, R. et al. Relationship between health literacy and kidney function. Nephrology 20, 360–367 (2015).

    Article  PubMed  Google Scholar 

  219. Ricardo, A. C. et al. Limited health literacy is associated with low glomerular filtration in the Chronic Renal Insufficiency Cohort (CRIC) study. Clin. Nephrol. 81, 30–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  220. Lantz, P. M. et al. Investing in youth tobacco control: a review of smoking prevention and control strategies. Tob. Control 9, 47–63 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lam, M. H. & Leung, A. Y. The effectiveness of health literacy oriented programs on physical activity behaviour in middle aged and older adults with type 2 diabetes: a systematic review. Health Psychol. Res. 4, 5595 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  222. van Ansem, W. J., Schrijvers, C. T., Rodenburg, G., Schuit, A. J. & van de Mheen, D. School food policy at Dutch primary schools: room for improvement? Cross-sectional findings from the INPACT study. BMC Public Health 13, 339 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Sharma, L. L., Teret, S. P. & Brownell, K. D. The food industry and self-regulation: standards to promote success and to avoid public health failures. Am. J. Public Health 100, 240–246 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Smed, S., Scarborough, P., Rayner, M. & Jensen, J. D. The effects of the Danish saturated fat tax on food and nutrient intake and modelled health outcomes: an econometric and comparative risk assessment evaluation. Eur. J. Clin. Nutr. 70, 681–686 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. Torjesen, I. BMA calls for 20% sugar tax to subsidise cost of fruit and vegetables. BMJ 351, h3803 (2015).

    Article  PubMed  Google Scholar 

  226. WHO Regional Committee for Europe 66th Session. Action plan for the prevention and control of noncommunicable diseases in the WHO European region. http://www.euro.who.int/__data/assets/pdf_file/0011/315398/66wd11e_NCDActionPlan_160522.pdf?ua=1 (2016).

  227. Engstrom, H. et al. Reinvesting in health post-2015. Lancet 382, 1861–1864 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The European Kidney Health Alliance (EKHA) is a strategic alliance of European nonprofit organizations representing all European key stakeholders in kidney health: patients, nephrologists, researchers and allied health workers. Its full members are the European Kidney Patient's Federation (EKPF) (formerly CEAPIR); European Dialysis & Transplant Nurses Association/European Renal Care Association (EDTNA-ERCA); the International Federation of Kidney Foundations (IFKF); and European Renal Association–European Dialysis and Transplant Association (ERA-EDTA). In addition, several European national and other non-profit kidney organizations are Associate Members. EKHA's principal aims are to raise awareness of the importance of kidney health and the growing societal burden of CKD at the European level, and to influence European strategies for early detection and prevention, and for scientific research into chronic kidney disease. The 2016 EKHA Kidney Forum was supported financially by an unrestricted grant from Baxter Health Care, B. Braun, Amgen, Astra-Zeneca and Vifor Fresenius Medical Care Renal Pharma. The remaining activities of EKHA are funded by the member societies. The Management Committee of EKHA is currently composed of: R. Vanholder (chair); N. Lameire (past Chair); M. Murphy, L. Skar (EKPF); M. Eleftheroudi, A. Gorke (EDTNA-ERCA); T. Oostrom, M. Ubbink (IFKF); and A. Wiecek and M. Fontana (ERA-EDTA).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors contributed to researching data for the article, discussing the article's content, and revising or editing the manuscript before submission. R.V. wrote the first draft of the article, and then coordinated subsequent versions with input from the other authors.

Corresponding author

Correspondence to Raymond Vanholder.

Ethics declarations

Competing interests

R.V. has received speakers' and consultancy honoraria and travel support from Nikisho, Nipro, Fresenius Medical Care, Bayer and Astra-Zeneca. L.A. has received speakers' and consultancy honoraria from Sanofi, Bayer, Novartis and Astra-Zeneca. E.B. has received speakers' honoraria from Fresenius Medical Care and Baxter Health Care. R.G. is member of steering committees of randomized controlled trials (co)sponsored by Bayer, Genzyme-Sanofi, Ipsen and Otsuka, and has received research grants from these companies as well as from Abbvie, Baxter and the Dutch Kidney Foundation. R.O. has consulted for Astellas, Fresenius Medical Care, TEVA and Pfizer and his unit has received research grants from Astellas, TEVA, Pfizer, Amgen and Novartis. M.J.P. has received grant funding from Sigma Tau, GSK, Boehringer Ingelheim, Pfizer, MundiPharma, GMASOL, Ingress Health, Bayer, Bristol-Myers Squibb, AbbVie, MSD, Sanofi and Astra, and received honoraria from Vertex, Pfizer, Quintiles, Mapi, Astellas, Novartis, OptumInsight, Swedish Orphan, Innoval, Jansen, Sanofi, Intercept, Pharmerit, GSK and MSD, and has stocks in Ingress Health. W.V.B. has received honoraria from Fresenius Medical Care, Gambro and Baxter Healthcare, and is a member of the steering committee of clinical studies sponsored by Fresenius Medical Care and Baxter Healthcare. J.J.G.-Z., N.L., R.L.M, M.T. and C.Z declare no competing interests.

Supplementary information

Supplementary information S1 (table)

Summary of health-economic studies on CKD and conditions leading to CKD (DOC 62 kb)

Supplementary information S2 (box)

Explanation of Quality of Health Economic Studies (QHES) scoring of included models (DOC 31 kb)

PowerPoint slides

Glossary

Opportunity costs

The health benefits that could have been achieved had the money been spent on the best alternative option.

Benefit

Any intervention for which the results offer added financial or health-related value.

Quality-adjusted life year

(QALY) A life year adjusted for its utility. The plural (QALYs) is a measure of the utility of individual life years lived multiplied by duration (survival).

Discounting

The reduction in the value of a future cost or benefit at a prespecified 'discount rate', which depends on its temporal distance from the starting point.

Cost-effectiveness

An economic evaluation in which the incremental costs of an intervention are compared with the incremental benefits.

Incremental cost-effectiveness ratio

The difference between costs of two interventions divided by the difference in the outcomes.

Direct medical costs

Costs of resources in the health-care sector (for example, drugs).

Indirect medical costs

Medical costs that arise from the life years gained.

Markov model

A decision model that enables transitions between different health states over a period of time (often defined as life long).

Utility

The measure of the preference or value that an individual or society attribute to a health state. This is a quality of life score that ranges from 0 for death to 1 for perfect health, with negative scores being allowed for states considered worse than death.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanholder, R., Annemans, L., Brown, E. et al. Reducing the costs of chronic kidney disease while delivering quality health care: a call to action. Nat Rev Nephrol 13, 393–409 (2017). https://doi.org/10.1038/nrneph.2017.63

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.63

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing