Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases

Key Points

  • Nicotinamide adenine dinucleotide (NAD+) is a coenzyme with roles in several cardiac and renal metabolic processes

  • NAD+ depletion is emerging as a major contributor to the pathogenesis of cardiac and renal disease

  • Preclinical data suggest that NAD+ repletion strategies have the potential to restore healthy renal and cardiac metabolism and physiology

  • The mitochondrial sirtuins mediate some of the beneficial effects of NAD+ supplementation

  • NAD+ supplementation can directly enhance metabolism and improve cellular redox reactions in the setting of cardiac and renal disease

  • NAD+ is also a substrate for enzymes involved in DNA damage repair and calcium signalling pathways; NAD+ supplementation could alter these pathways to influence cell viability, organ function and disease outcomes

Abstract

The coenzyme nicotinamide adenine dinucleotide (NAD+) has key roles in the regulation of redox status and energy metabolism. NAD+ depletion is emerging as a major contributor to the pathogenesis of cardiac and renal diseases and NAD+ repletion strategies have shown therapeutic potential as a means to restore healthy metabolism and physiological function. The pleotropic roles of NAD+ enable several possible avenues by which repletion of this coenzyme could have therapeutic efficacy. In particular, NAD+ functions as a co-substrate in deacylation reactions carried out by the sirtuin family of enzymes. These NAD+-dependent deacylases control several aspects of metabolism and a wealth of data suggests that boosting sirtuin activity via NAD+ supplementation might be a promising therapy for cardiac and renal pathologies. This Review summarizes the role of NAD+ metabolism in the heart and kidney, and highlights the mitochondrial sirtuins as mediators of some of the beneficial effects of NAD+-boosting therapies in preclinical animal models. We surmise that modulating the NAD+–sirtuin axis is a clinically relevant approach to develop new therapies for cardiac and renal diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cardiac and renal biosynthesis and the metabolome of nicotinamide adenine dinucleotide (NAD+).
Figure 2: The potential effects of nicotinamide adenine dinucleotide (NAD+) therapy on cardiac and renal pathophysiology.

Similar content being viewed by others

References

  1. Forbes, J. M. Mitochondria-power players in kidney function? Trends Endocrinol. Metab. 27, 441–442 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Tran, M. T. et al. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531, 528–532 (2016). This study demonstrates that NAM treatment improves renal function in a mouse model of AKI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cantó, C., Menzies, K. J. & Auwerx, J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31–53 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. He, W., Newman, J. C., Wang, M. Z., Ho, L. & Verdin, E. Mitochondrial sirtuins: regulators of protein acylation and metabolism. Trends Endocrinol. Metab. 23, 467–476 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Mericskay, M. Nicotinamide adenine dinucleotide homeostasis and signalling in heart disease: pathophysiological implications and therapeutic potential. Arch. Cardiovasc. Dis. 109, 207–215 (2015).

    Article  PubMed  Google Scholar 

  6. Ebrahimkhani, M. R. et al. Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney. Proc. Natl Acad. Sci. USA 111, E4878–E4886 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Braidy, N. et al. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS ONE 6, e19194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mori, V. et al. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues. PLoS ONE 9, e113939 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. Lin, L. F. & Henderson, L. M. Pyridinium precursors of pyridine nucleotides in perfused rat kidney and in the testis. J. Biol. Chem. 247, 8023–8030 (1972).

    CAS  PubMed  Google Scholar 

  10. Ikeda, M. et al. Studies on the biosynthesis of nicotinamide adenine dinucleotide. II. A role of picolinic carboxylase in the biosynthesis of nicotinamide adenine dinucleotide from tryptophan in mammals. J. Biol. Chem. 240, 1395–1401 (1965).

    CAS  PubMed  Google Scholar 

  11. Shibata, K., Morita, N., Shibata, Y. & Fukuwatari, T. Enzymes that control the conversion of L-tryptophan-nicotinamide and the urinary excretion ratio (N1-methyl-2-pyridone-5-carboxamide + N1-methyl-4-pyridone-3-carboxamide)/N1-methylnicotinamide in mice. Biosci. Biotechnol. Biochem. 77, 2105–2111 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Eto, N., Miyata, Y., Ohno, H. & Yamashita, T. Nicotinamide prevents the development of hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure. Nephrol. Dial. Transplant. 20, 1378–1384 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Kempson, S. A., Colon-Otero, G., Ou, S. Y., Turner, S. T. & Dousa, T. P. Possible role of nicotinamide adenine dinucleotide as an intracellular regulator of renal transport of phosphate in the rat. J. Clin. Invest. 67, 1347–1360 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gopal, E. et al. Sodium-coupled and electrogenic transport of B-complex vitamin nicotinic acid by slc5a8, a member of the Na/glucose co-transporter gene family. Biochem. J. 388, 309–316 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trueblood, N. A., Ramasamy, R., Wang, L. F. & Schaefer, S. Niacin protects the isolated heart from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 279, H764–H771 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Collins, P. B. & Chaykin, S. The management of nicotinamide and nicotinic acid in the mouse. J. Biol. Chem. 247, 778–783 (1972).

    CAS  PubMed  Google Scholar 

  17. Corr, P. B. & May, D. G. Renal mechanisms for the excretion of nicotinic acid. J. Pharmacol. Exp. Ther. 192, 195–200 (1975).

    CAS  PubMed  Google Scholar 

  18. Nomura, K. et al. Hepatectomy-related hypophosphatemia: a novel phosphaturic factor in the liver–kidney axis. J. Am. Soc. Nephrol. 25, 761–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Grozio, A. et al. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. J. Biol. Chem. 288, 25938–25949 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ratajczak, J. et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat. Commun. 7, 13103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trammell, S. A. J. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun. 7, 12948 (2016). The first clinical study of nicotinamide riboside supplementation; shows a dose-dependent increase in NAD+ with nicotinamide riboside, demonstrating the potential of NAD+ boosting therapies in a clinical setting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karamanlidis, G. et al. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell. Metab. 18, 239–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, C. F. et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation 134, 883–894 (2016). This study demonstrates that NMN and cardiac NAMPT increase NAD+, reduce protein hyperacetylation, and improve cardiac function in a mouse model of heart failure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamamoto, T. et al. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS ONE 9, e98972 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Berger, F., Lau, C., Dahlmann, M. & Ziegler, M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 280, 36334–36341 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Yamamoto, M. et al. Nmnat3 is dispensable in mitochondrial NAD level maintenance in vivo. PLoS ONE 11, e0147037 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hsu, C.-P., Yamamoto, T., Oka, S. & Sadoshima, J. The function of nicotinamide phosphoribosyltransferase in the heart. DNA Repair (Amst.) 23, 64–68 (2014).

    Article  CAS  Google Scholar 

  28. Wang, P. & Miao, C.-Y. NAMPT as a therapeutic target against stroke. Trends Pharmacol. Sci. 36, 891–905 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Aboud, O. A. et al. Dual and specific inhibition of NAMPT and PAK4 by KPT-9274 decreases kidney cancer growth. Mol. Cancer Ther. 15, 2119–2129 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Benito-Martin, A. et al. Endogenous NAMPT dampens chemokine expression and apoptotic responses in stressed tubular cells. Biochim. Biophys. Acta 1842, 293–303 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Pillai, V. B. et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3–LKB1–AMP-activated kinase pathway. J. Biol. Chem. 285, 3133–3144 (2010). Study showing that exogenous NAD+ supplementation blocked agonist-induced hypertrophic responses in cardiomyocytes and mouse models; implicates SIRT3 deacetylase activity in the mechanism of this cardioprotection.

    Article  CAS  PubMed  Google Scholar 

  32. Hsu, C.-P., Oka, S., Shao, D., Hariharan, N. & Sadoshima, J. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ. Res. 105, 481–491 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhuo, L. et al. NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins–AMPK–mTOR pathway. Cell. Physiol. Biochem. 27, 681–690 (2011). This study shows that exogenous NAD+ maintains SIRT1 and SIRT3 activity in the setting of high-glucose-induced mesangial hypertrophy and provides a mechanism for how sirtuin activity protects against mesangial hypertrophy.

    Article  CAS  PubMed  Google Scholar 

  34. Morigi, M. et al. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Invest. 125, 715–726 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Anderson, K. A., Green, M. F., Huynh, F. K., Wagner, G. R. & Hirschey, M. D. SnapShot: mammalian sirtuins. Cell 159, 956–956.e1 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Denu, J. M. The Sir2 family of protein deacetylases. Curr. Opin. Chem. Biol. 9, 431–440 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Peng, C. et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 10, M111.012658 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Du, J. et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tan, M. et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell. Metab. 19, 605–617 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Feldman, J. L., Baeza, J. & Denu, J. M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 288, 31350–31356 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sundaresan, N. R. et al. The sirtuin SIRT6 blocks IGF–Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat. Med. 18, 1643–1650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gupta, M., Samant, S., Bao, R. & Pillai, V. The sirtuin SIRT6 represses expression of cachexia-associated cytokine myostatin by blocking its NF-kB-dependent gene transcription. FASEB J. 30, 1009.11 (2016).

    Google Scholar 

  43. Hirschey, M. D. et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121–125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haigis, M. C. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126, 941–954 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Michishita, E., Park, J. Y. & Burneskis, J. M. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623–4635 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mathias, R. A. et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159, 1615–1625 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jeong, S. M. et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23, 450–463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wagner, G. R. & Payne, R. M. Mitochondrial acetylation and diseases of aging. J. Aging Res. 2011, 1–13 (2011).

    Article  Google Scholar 

  49. Wagner, G. R. & Hirschey, M. D. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol. Cell 54, 5–16 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ghanta, S., Grossmann, R. E. & Brenner, C. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: biocehmical and metabolic logic of acetyl-lysine modifications. Crit. Rev. Biochem. Mol. Biol. 48, 1–42 (2013).

    Article  CAS  Google Scholar 

  51. Chhoy, P. et al. in Sirtuins Vol. 10 (ed. Houtkooper, R.) 105–138 (Sirtuins, 2016).

    Book  Google Scholar 

  52. Park, J. et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50, 919–930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Anderson, R. M. et al. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J. Biol. Chem. 277, 18881–18890 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Belenky, P. et al. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 129, 473–484 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M. & Sinclair, D. A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277, 45099–45107 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S.-I. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell 14, 528–536 (2011).

    CAS  Google Scholar 

  59. Imai, S. & Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Giblin, W., Skinner, M. E. & Lombard, D. B. Sirtuins: guardians of mammalian healthspan. Trends Genet. 30, 271–286 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ma, L. & Li, Y. SIRT1: role in cardiovascular biology. Clin. Chim. Acta 440, 8–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Winnik, S., Auwerx, J., Sinclair, D. A. & Matter, C. M. Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur. Heart J. 36, 3404–3412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kong, L. et al. Sirtuin 1: a target for kidney diseases. Mol. Med. 21, 87–97 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dong, Y.-J. et al. Renal protective effect of sirtuin 1. J. Diabetes Res. 2014, 843786 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kitada, M., Kume, S. & Koya, D. Role of sirtuins in kidney disease. Curr. Opin. Nephrol. Hypertens. 23, 75–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Ahn, B.-H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA 105, 14447–14452 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sundaresan, N. R. et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 119, 2758–2771 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hafner, A. V. et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) 2, 914–923 (2010).

    Article  CAS  Google Scholar 

  69. Porter, G., Urciuoli, W. R., Brookes, P. S. & Nadtochiy, S. M. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am. J. Physiol. Heart Circ. Physiol. 306, H1602–H1609 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Horton, J. L. et al. Mitochondrial protein hyperacetylation in the failing heart. JCI Insight 1, 1–14 (2016).

    Article  Google Scholar 

  71. Alrob, O. A. et al. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovasc. Res. 103, 485–497 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cantó, C. et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell. Metab. 15, 838–847 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Liu, B. et al. SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells. Cell. Physiol. Biochem. 32, 655–662 (2013).

    Article  PubMed  CAS  Google Scholar 

  74. Luo, Y.-X. et al. Sirt4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehw138 (2016).

  75. Yu, J. et al. Metabolic characterization of a Sirt5 deficient mouse model. Sci. Rep. 3, 2806 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Boylston, J. A. et al. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 88, 73–81 (2015). The first publication of the cardiac succinylome; the data suggest a role of SIRT5 in the response to ischaemia–reperfusion injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nishida, Y. et al. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell 59, 321–332 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sadhukhan, S. et al. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc. Natl Acad. Sci. USA 113, 4320–4325 (2016). This study shows that SIRT5-knockout hearts have impaired fatty acid oxidation that contributes to cardiac hypertrophy with ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Koyama, T. et al. SIRT3 attenuates palmitate-induced ROS production and inflammation in proximal tubular cells. Free Radic. Biol. Med. 51, 1258–1267 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Yang, H. et al. Green tea polyphenols attenuate high-fat diet-induced renal oxidative stress through SIRT3-dependent deacetylation. Biomed. Environ. Sci. 28, 455–459 (2015).

    PubMed  Google Scholar 

  81. Ugur, S. et al. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Renal Fail. 37, 332–336 (2014).

    Article  CAS  Google Scholar 

  82. Nakagawa, T., Lomb, D. J., Haigis, M. C. & Guarente, L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Mol. Cell 137, 560–570 (2009).

    CAS  Google Scholar 

  83. Polletta, L. et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 11, 253–270 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Hall, A. M. & Unwin, R. J. The not so 'mighty chondrion': emergence of renal diseases due to mitochondrial dysfunction. Nephron Physiol. 105, 1–10 (2007).

    Article  Google Scholar 

  85. Fosslien, E. Mitochondrial medicine — molecular pathology of defective oxidative phosphorylation. Ann. Clin. Lab. Sci. 31, 25–67 (2001).

    CAS  PubMed  Google Scholar 

  86. Fung Lee, C., Garcia-Menendez, L., Karamanlidis, G. & Tian, R. Restoration of NAD redox balance ameliorates pressure overload-induced cardiac hypertrophy and dysfunction via regulation of mitochondrial protein acetylation and permeability transition. Free Radic. Biol. Med. 65, S75 (2013).

    Article  Google Scholar 

  87. Madsen, A. S. et al. Investigating the sensitivity of NAD+-dependent sirtuin deacylation activities to NADH. J. Biol. Chem. 291, 7128–7141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Aksoy, P., White, T. A., Thompson, M. & Chini, E. N. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem. Biophys. Res. Commun. 345, 1386–1392 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Rouleau, M., Patel, A., Hendzel, M. J., Kaufmann, S. H. & Poirier, G. G. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer 10, 293–301 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Malavasi, F. et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev. 88, 841–886 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Xiao, C.-Y. et al. Poly(ADP-ribose) polymerase promotes cardiac remodeling, contractile failure, and translocation of apoptosis-inducing factor in a murine experimental model of aortic banding and heart failure. J. Pharmacol. Exp. Ther. 312, 891–898 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Andrabi, S. A. et al. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc. Natl Acad. Sci. USA 111, 10209–10214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Devalaraja-Narashimha, K. & Padanilam, B. J. PARP-1 inhibits glycolysis in ischemic kidneys. J. Am. Soc. Nephrol. 20, 95–103 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Pirinen, E. et al. Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell. Metab. 19, 1034–1041 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ying, W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid. Redox Signal. 10, 179–206 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Rizzuto, R., De Stefani, D., Raffaello, A. & Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13, 566–578 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Kim, S.-Y., Park, K.-H., Gul, R., Jang, K. Y. & Kim, U.-H. Role of kidney ADP-ribosyl cyclase in diabetic nephropathy. Am. J. Physiol. Renal Physiol. 296, F291–F297 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Stockand, J. D. & Sansom, S. C. Glomerular mesangial cells: electrophysiology and regulation of contraction. Physiol. Rev. 78, 723–744 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Thai, T. L. & Arendshorst, W. J. Mice lacking the ADP ribosyl cyclase CD38 exhibit attenuated renal vasoconstriction to angiotensin II, endothelin-1, and norepinephrine. Am. J. Physiol. Renal Physiol. 297, F169–F176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kannt, A., Sicka, K., Kroll, K., Kadereit, D. & Gögelein, H. Selective inhibitors of cardiac ADPR cyclase as novel anti-arrhythmic compounds. Naunyn Schmiedebergs Arch. Pharmacol. 385, 717–727 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gan, L. et al. Disruption of CD38 gene enhances cardiac functions by elevating serum testosterone in the male null mice. Life Sci. 89, 491–497 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Rajakumar, S. V. et al. Deficiency or inhibition of CD73 protects in mild kidney ischemia-reperfusion injury. Transplantation 90, 1260–1264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Young, G. S., Choleris, E., Lund, F. E. & Kirkland, J. B. Decreased cADPR and increased NAD+ in the Cd38−/− mouse. Biochem. Biophys. Res. Commun. 346, 188–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Guan, X.-H. et al. CD38 deficiency protects the heart from ischemia/reperfusion injury through activating SIRT1/FOXOs-mediated antioxidative stress pathway. Oxid. Med. Cell. Longev. 2016, 7410257 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02300740 (2015).

  106. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02191462 (2014).

  107. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02689882 (2016).

  108. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02712593 (2017).

  109. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02303483 (2016).

  110. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02835664 (2016).

  111. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02812238 (2016).

  112. Harden, A. & Young, W. J. The alcoholic ferment of yeast-juice. Part II. — the conferment of yeast-juice. Proc. R. Soc. Lond. B 78, 369–375 (1906).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the scientists whose discoveries were the basis for this review, thank the anonymous peer-reviewers for helpful comments, and apologize to our colleagues whose work we could not cite. We acknowledge funding support from the American Heart Association grants 12SDG8840004 and 12IRG9010008, The Ellison Medical Foundation, Friedreich's Ataxia Research Alliance, the NIH and the NIA grant R01AG045351, the NIH and the NIAAA grant R01AA022146, the Duke Pepper Older Americans Independence Center (OAIC) Program in Ageing Research supported by the National Institute of Ageing (P30AG028716-01), the Duke O'Brien Center for Kidney Research (5P30DK096493-02). K.A.H. was supported by an NIH/NIGMS training grant to Duke University Pharmacological Sciences Training Program (5T32GM007105-40) and is supported by an NIH pre-doctoral fellowship 1F31HL127959. A.S.M. is supported by an NIH pre-doctoral fellowship 1F31HL123275-31.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, discussed the content, wrote the text and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Matthew D. Hirschey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Nicotinamide adenine dinucleotide

(NAD+). A pyridine dinucleotide and important metabolic cofactor.

ADPR cyclases

Effector molecules that generate calcium-mobilizing second messengers.

ADP ribosyltransferases

Enzymes that transfer the ADPR group of NAD+ as a signal to repair damaged DNA.

Sirtuins

NAD+-dependent protein deacylases that consume NAD+ to remove post-translational acyl modifications from proteins.

Biosynthetic precursors

The biosynthetic precursors of NAD+ are dietary vitamin B3 compounds, including nicotinic acid, nicotinamide, and nicotinamide riboside. These precursors are recycled from the diet and used by tissues to generate NAD+.

Nicotinamide phosphoribosyltransferase

(NAMPT). An enzyme that converts nicotinamide into NMN in the NAD+ salvage pathway.

Oxidative phosphorylation

(OXPHOS). The electron transport pathway that is used by cells to generate ATP.

Parthanatos

A form of programmed cell death that is induced by accumulation of poly(ADP)ribose and the nuclear translocation of apoptosis-inducing factor from mitochondria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hershberger, K., Martin, A. & Hirschey, M. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nat Rev Nephrol 13, 213–225 (2017). https://doi.org/10.1038/nrneph.2017.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing