Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renin cells in homeostasis, regeneration and immune defence mechanisms

Key Points

  • Renin-expressing cells are evolutionarily conserved and have retained features to contribute to the defence against threats to survival such as bleeding, dehydration, hypotension and/or hypoxia

  • In the embryo, renin-expressing cells populate diverse tissues where they might have a role in tissue morphogenesis and growth; in the developing kidney, they are progenitors for arteriolar and mesangial cells and are crucial for arteriolar branching morphogenesis

  • In adults, cells derived from progenitors that previously expressed renin retain their developmental memory and can regenerate injured glomeruli or re-express renin to achieve blood pressure and fluid–electrolyte homeostasis

  • Renin-expressing cells are linked to other fundamental homeostatic systems, such as the haematopoietic and circulating leukocyte renin–angiotensin systems, through which they might contribute to bone marrow development and the local control of inflammation or infections

  • Renin-expressing cells intersect with erythropoietin-producing cells and are therefore at the crossroads of two key life-sustaining systems involved in the control of fluid volume, perfusion pressure and oxygen delivery to tissues

Abstract

An accumulating body of evidence suggests that renin-expressing cells have developed throughout evolution as a mechanism to preserve blood pressure and fluid volume homeostasis as well as to counteract a number of homeostatic and immunological threats. In the developing embryo, renin precursor cells emerge in multiple tissues, where they differentiate into a variety of cell types. The function of those precursors and their progeny is beginning to be unravelled. In the developing kidney, renin-expressing cells control the morphogenesis and branching of the renal arterial tree. The cells do not seem to fully differentiate but instead retain a degree of developmental plasticity or molecular memory, which enables them to regenerate injured glomeruli or to alter their phenotype to control blood pressure and fluid–electrolyte homeostasis. In haematopoietic tissues, renin-expressing cells might regulate bone marrow differentiation and participate in a circulating leukocyte renin–angiotensin system, which acts as a defence mechanism against infections or tissue injury. Furthermore, renin-expressing cells have an intricate lineage and functional relationship with erythropoietin-producing cells and are therefore central to two endocrine systems — the renin–angiotensin and erythropoietin systems — that sustain life by controlling fluid volume and composition, perfusion pressure and oxygen delivery to tissues. However, loss of the homeostatic control of these systems following dysregulation of renin-expressing cells can be detrimental, with serious pathological events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution and origin of renin-expressing cells in renal and extrarenal sites.
Figure 2: Progenitor compartments and nephrovascular development.
Figure 3: Localization of renin-expressing cells throughout branching morphogenesis of the renal arterial tree.
Figure 4: The Notch/RBP-J signalling pathway controls the fate of stromal and renin cell precursors.
Figure 5: Major mechanisms controlling renin synthesis and release.
Figure 6: Mechanisms to increase the number of renin-expressing cells.
Figure 7: Interaction between renin-expressing cells and the erythropoietin–oxygen delivery system.
Figure 8: Vascular alterations upon ablation of the renin–angiotensin system.

Similar content being viewed by others

References

  1. Gomez, R. A. Fate of renin cells during development and disease. Hypertension 69, 387–395 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Gomez, R. A. & Sequeira-Lopez, M. L. Novel functions of renin precursors in homeostasis and disease. Physiology 31, 25–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Sequeira Lopez, M. L., Pentz, E. S., Nomasa, T., Smithies, O. & Gomez, R. A. Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev. Cell 6, 719–728 (2004). This paper presents the first genetic lineage tracing study showing that renin cells are precursors for renal and extrarenal cells.

    Article  PubMed  Google Scholar 

  4. Lee, G. et al. Homeostatic responses in the adrenal cortex to the absence of aldosterone in mice. Endocrinology 146, 2650–2656 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Makhanova, N., Sequeira-Lopez, M. L., Gomez, R. A., Kim, H. S. & Smithies, O. Disturbed homeostasis in sodium-restricted mice heterozygous and homozygous for aldosterone synthase gene disruption. Hypertension 48, 1151–1159 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Naruse, M., Naruse, K., Inagaki, T. & Inagami, T. Immunoreactive renin in mouse adrenal gland. Localization in the inner cortical region. Hypertension 6, 275–280 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Gomez, R. A. & Lopez, M. L. Plasticity of renin cells in the kidney vasculature. Curr. Hypertens. Rep. 19, 14 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sequeira Lopez, M. L., Pentz, E. S., Robert, B., Abrahamson, D. R. & Gomez, R. A. Embryonic origin and lineage of juxtaglomerular cells. Am. J. Physiol. Renal Physiol. 281, F345–F356 (2001). This study shows that precursors for the kidney vasculature, including renin-expressing cells, are present in the embryonic kidney and assemble in situ to generate the kidney arterioles.

    Article  CAS  PubMed  Google Scholar 

  9. Belyea, B. C. et al. Identification of renin progenitors in the mouse bone marrow that give rise to B-cell leukaemia. Nat. Commun. 5, 3273 (2014). This study shows that the bone marrow possesses B lymphocytes that express renin, which are the cell of origin of a highly penetrant form of leukaemia.

    Article  PubMed  CAS  Google Scholar 

  10. Sequeira Lopez, M. L. & Gomez, R. A. Development of the renal arterioles. J. Am. Soc. Nephrol. 22, 2156–2165 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sequeira-Lopez, M. L. et al. The earliest metanephric arteriolar progenitors and their role in kidney vascular development. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R138–R149 (2015). This study shows that the FOXD1+ stromal cell is a progenitor for renin-expressing cells in the kidney.

    Article  CAS  PubMed  Google Scholar 

  12. Hu, Y., Li, M., Gothert, J. R., Gomez, R. A. & Sequeira-Lopez, M. L. Hemovascular progenitors in the kidney require sphingosine-1-phosphate receptor 1 for vascular development. J. Am. Soc. Nephrol. 27, 1984–1995 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Robert, B., St John, P. L., Hyink, D. P. & Abrahamson, D. R. Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts. Am. J. Physiol. 271, F744–F753 (1996).

    CAS  PubMed  Google Scholar 

  14. Lin, E. E., Sequeira-Lopez, M. L. & Gomez, R. A. RBP-J in FOXD1+ renal stromal progenitors is crucial for the proper development and assembly of the kidney vasculature and glomerular mesangial cells. Am. J. Physiol. Renal Physiol. 306, F249–258 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Reddi, V., Zaglul, A., Pentz, E. S. & Gomez, R. A. Renin-expressing cells are associated with branching of the developing kidney vasculature. J. Am. Soc. Nephrol. 9, 63–71 (1998).

    CAS  PubMed  Google Scholar 

  16. Gomez, R. A. et al. Distribution of renin mRNA and its protein in the developing kidney. Am. J. Physiol. 257, F850–F858 (1989).

    CAS  PubMed  Google Scholar 

  17. Gomez, R. A. et al. Renin and angiotensinogen gene expression in maturing rat kidney. Am. J. Physiol. 254, F582–F587 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Gomez, R. A. Molecular biology of components of the renin-angiotensin system during development. Pediatr. Nephrol. 4, 421–423 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Gomez, R. A. et al. Renin and angiotensinogen gene expression and intrarenal renin distribution during ACE inhibition. Am. J. Physiol. 254, F900–F906 (1988).

    CAS  PubMed  Google Scholar 

  20. Taugner, R. et al. in The Juxtaglomerular Apparatus: Structure and Function (eds Taugner, R. & Hackenthal, E.) 103–126 (Springer Verlag, 1989). This is an excellent monograph on the juxtaglomerular apparatus.

    Book  Google Scholar 

  21. Celio, M. R., Groscurth, P. & Inagami, T. Ontogeny of renin immunoreactive cells in the human kidney. Anat. Embryol. 173, 149–155 (1985).

    Article  CAS  Google Scholar 

  22. Celio, M. R. & Inagami, T. Renin in the human kidney. Immunohistochemical localization. Histochemistry 72, 1–10 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Egerer, G., Taugner, R. & Tiedemann, K. Renin immunohistochemistry in the mesonephros and metanephros of the pig embryo. Histochemistry 81, 385–390 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. Nishimura, H. Renin-angiotensin system in vertebrates: phylogenetic view of structure and function. Anat. Sci. Int. 92, 215–247 (2017). This is an excellent review of the phylogeny of the RAS.

    Article  PubMed  Google Scholar 

  25. Nishimura, H., Ogawa, M. & Sawyer, W. H. Renin-angiotensin system in primitive bony fishes and a holocephalian. Am. J. Physiol. 224, 950–956 (1973).

    Article  CAS  PubMed  Google Scholar 

  26. Rider, S. A., Mullins, L. J., Verdon, R. F., MacRae, C. A. & Mullins, J. J. Renin expression in developing zebrafish is associated with angiogenesis and requires the Notch pathway and endothelium. Am. J. Physiol. Renal Physiol. 309, F531–F539 (2015). This study demonstrates conservation of the roles of renin-expressing cells in mammals and fish.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rider, S. A. et al. Zebrafish mesonephric renin cells are functionally conserved and comprise two distinct morphological populations. Am. J. Physiol. Renal Physiol. 312, F778–F790 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gomez, R. A., Pentz, E. S., Jin, X., Cordaillat, M. & Sequeira Lopez, M. L. CBP and p300 are essential for renin cell identity and morphological integrity of the kidney. Am. J. Physiol. Heart Circ. Physiol. 296, H1255–H1262 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neubauer, B. et al. Development of vascular renin expression in the kidney critically depends on the cyclic AMP pathway. Am. J. Physiol. Renal Physiol. 296, F1006–F1012 (2009). This study shows that the cAMP pathway is crucial for the development of the renin-expressing cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pentz, E. S. et al. Histone acetyl transferases CBP and p300 are necessary for maintenance of renin cell identity and transformation of smooth muscle cells to the renin phenotype. Am. J. Physiol. Heart Circ. Physiol. 302, H2545–H2552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pentz, E. S., Lopez, M. L., Cordaillat, M. & Gomez, R. A. Identity of the renin cell is mediated by cAMP and chromatin remodeling: an in vitro model for studying cell recruitment and plasticity. Am. J. Physiol. Heart Circ. Physiol. 294, H699–H707 (2008). This study shows that the identity of the renin phenotype is mediated by cAMP and epigenetic changes.

    Article  CAS  PubMed  Google Scholar 

  32. Chen, L. et al. Regulation of renin in mice with Cre recombinase-mediated deletion of G protein Gsalpha in juxtaglomerular cells. Am. J. Physiol. Renal Physiol. 292, F27–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Castellanos-Rivera, R. M. et al. Recombination signal binding protein for Ig-kappaJ region regulates juxtaglomerular cell phenotype by activating the myo-endocrine program and suppressing ectopic gene expression. J. Am. Soc. Nephrol. 26, 67–80 (2015). This study demonstrates that the Notch transducer RBP-J is crucial for the acquisition and preservation of the endocrine-contractile phenotype of renin cells.

    Article  CAS  PubMed  Google Scholar 

  34. Everett, A. D., Carey, R. M., Chevalier, R. L., Peach, M. J. & Gomez, R. A. Renin release and gene expression in intact rat kidney microvessels and single cells. J. Clin. Invest. 86, 169–175 (1990). This study demonstrates that cAMP controls the number of renin-releasing cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klar, J., Sandner, P., Muller, M. W. & Kurtz, A. Cyclic AMP stimulates renin gene transcription in juxtaglomerular cells. Pflugers Arch. 444, 335–344 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Borensztein, P. et al. cis-regulatory elements and trans-acting factors directing basal and cAMP-stimulated human renin gene expression in chorionic cells. Circ. Res. 74, 764–773 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Keeton, T. K. & Campbell, W. B. The pharmacologic alteration of renin release. Pharmacol Rev. 32, 81–227 (1980).

    CAS  PubMed  Google Scholar 

  38. Lin, E. E., Pentz, E. S., Sequeira-Lopez, M. L. & Gomez, R. A. Aldo-keto reductase 1b7, a novel marker for renin cells, is regulated by cyclic AMP signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R576–R584 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brunskill, E. W. et al. Genes that confer the identity of the renin cell. J. Am. Soc. Nephrol. 22, 2213–2225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, L. et al. Renal failure in mice with Gsα deletion in juxtaglomerular cells. Am. J. Nephrol. 32, 83–94 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Artavanis-Tsakonas, S., Matsuno, K. & Fortini, M. E. Notch signaling. Science 268, 225–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Castellanos Rivera, R. M. et al. Transcriptional regulator RBP-J regulates the number and plasticity of renin cells. Physiol. Genom. 43, 1021–1028 (2011).

    Article  CAS  Google Scholar 

  44. Yosypiv, I. V. Prorenin receptor in kidney development. Pediatr. Nephrol. 32, 383–392 (2017).

    Article  PubMed  Google Scholar 

  45. Peters, J. The (pro)renin receptor and its interaction partners. Pflugers Arch. 469, 1245–1256 (2017). This is an excellent review on the prorenin receptor and its interacting partners.

    Article  CAS  PubMed  Google Scholar 

  46. Sun, Y., Danser, A. H. J. & Lu, X. (Pro)renin receptor as a therapeutic target for the treatment of cardiovascular diseases? Pharmacol Res. 125, 48–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Krop, M., Lu, X., Danser, A. H. & Meima, M. E. The (pro)renin receptor. A decade of research: what have we learned? Pflugers Arch. 465, 87–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Sealey, J. E. et al. Specific prorenin/renin binding (ProBP). Identification and characterization of a novel membrane site. Am. J. Hypertens. 9, 491–502 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Glorioso, N., Atlas, S. A., Laragh, J. H., Jewelewicz, R. & Sealey, J. E. Prorenin in high concentrations in human ovarian follicular fluid. Science 233, 1422–1424 (1986).

    Article  CAS  PubMed  Google Scholar 

  50. Nguyen, G. et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J. Clin. Invest. 109, 1417–1427 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oshima, Y. et al. Prorenin receptor is essential for normal podocyte structure and function. J. Am. Soc. Nephrol. 22, 2203–2212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Song, R. et al. Prorenin receptor is critical for nephron progenitors. Dev. Biol. 409, 382–391 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Hunt, M. K. et al. Colocalization and release of angiotensin and renin in renal cortical cells. Am. J. Physiol. 263, F363–373 (1992).

    CAS  PubMed  Google Scholar 

  54. Geary, K. M., Hunt, M. K., Peach, M. J., Gomez, R. A. & Carey, R. M. Effects of angiotensin converting enzyme inhibition, sodium depletion, calcium, isoproterenol, and angiotensin II on renin secretion by individual renocortical cells. Endocrinology 131, 1588–1594 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Matsusaka, T. et al. Chimeric mice carrying 'regional' targeted deletion of the angiotensin type 1A receptor gene. Evidence against the role for local angiotensin in the in vivo feedback regulation of renin synthesis in juxtaglomerular cells. J. Clin. Invest. 98, 1867–1877 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cantin, M., Araujo-Nascimento, M. D., Benchimol, S. & Desormeaux, Y. Metaplasia of smooth muscle cells into juxtaglomerular cells in the juxtaglomerular apparatus, arteries, and arterioles of the ischemic (endocrine) kidney. An ultrastructural-cytochemical and autoradiographic study. Am. J. Pathol. 87, 581–602 (1977). This paper presents the first description of the ability of renal arteriolar cells to switch phenotype into renin-expressing cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tufro-McReddie, A., Chevalier, R. L., Everett, A. D. & Gomez, R. A. Decreased perfusion pressure modulates renin and ANG II type 1 receptor gene expression in the rat kidney. Am. J. Physiol. 264, R696–R702 (1993).

    CAS  PubMed  Google Scholar 

  58. Tufro-McReddie, A. et al. Effect of CsA on the expression of renin and angiotensin type 1 receptor genes in the rat kidney. Kidney Int. 43, 615–622 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. el-Dahr, S. S. et al. Expression of renin and its mRNA in the adult rat kidney with chronic ureteral obstruction. Am. J. Kidney Dis. 15, 575–582 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Kim, H. S. et al. Homeostasis in mice with genetically decreased angiotensinogen is primarily by an increased number of renin-producing cells. J. Biol. Chem. 274, 14210–14217 (1999). This study demonstrates that the number of renin-producing cells determines blood pressure and fluid–electrolyte homeostasis.

    Article  CAS  PubMed  Google Scholar 

  61. Norwood, V. F. et al. Neonatal ureteral obstruction stimulates recruitment of renin-secreting renal cortical cells. Kidney Int. 45, 1333–1339 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Berg, A. C., Chernavvsky-Sequeira, C., Lindsey, J., Gomez, R. A. & Sequeira-Lopez, M. L. Pericytes synthesize renin. World J. Nephrol. 2, 11–16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gomez, R. A. et al. Recruitment of renin gene-expressing cells in adult rat kidneys. Am. J. Physiol. 259, F660–F665 (1990). This study shows that the increase in renin cells along the kidney vasculature is due to increased renin gene expression by smooth muscle cells and not to absorption of the circulating protein.

    Article  CAS  PubMed  Google Scholar 

  64. Ray, P. E. et al. Renal vascular induction of TGF-beta 2 and renin by potassium depletion. Kidney Int. 44, 1006–1013 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, M. et al. Renin and renin mRNA in proximal tubules of the rat kidney. J. Clin. Invest. 94, 237–243 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rohrwasser, A. et al. Renin and kallikrein in connecting tubule of mouse. Kidney Int. 64, 2155–2162 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Prieto-Carrasquero, M. C. et al. Collecting duct renin is upregulated in both kidneys of 2-kidney, 1-clip goldblatt hypertensive rats. Hypertension 51, 1590–1596 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Kang, J. J. et al. The collecting duct is the major source of prorenin in diabetes. Hypertension 51, 1597–1604 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Gomez, R. A., Belyea, B., Medrano, S., Pentz, E. S. & Sequeira-Lopez, M. L. Fate and plasticity of renin precursors in development and disease. Pediatr. Nephrol. 29, 721–726 (2014).

    Article  PubMed  Google Scholar 

  70. Kurt, B., Karger, C., Wagner, C. & Kurtz, A. Control of renin secretion from kidneys with renin cell hyperplasia. Am. J. Physiol. Renal Physiol. 306, F327–F332 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Cantin, M. et al. Metaplastic and mitotic activity of the ischemic (endocrine) kidney in experimental renal hypertension. Am. J. Pathol. 96, 545–566 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wagner, C. et al. Selective deletion of Connexin 40 in renin-producing cells impairs renal baroreceptor function and is associated with arterial hypertension. Kidney Int. 78, 762–768 (2010). This study demonstrates the mislocation of renin cells and malignant hypertension in CX40 deficient mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sequeira Lopez, M. L. & Gomez, R. A. Novel mechanisms for the control of renin synthesis and release. Curr. Hypertens. Rep. 12, 26–32 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sequeira-Lopez, M. L. et al. The microRNA-processing enzyme dicer maintains juxtaglomerular cells. J. Am. Soc. Nephrol. 21, 460–467 (2010). This study demonstrates that microRNAs are required for the acquisition and maintenance of renin-expressing cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Medrano, S., Monteagudo, M. C., Sequeira-Lopez, M. L., Pentz, E. S. & Gomez, R. A. Two microRNAs, miR-330 and miR-125b-5p, mark the juxtaglomerular cell and balance its smooth muscle phenotype. Am. J. Physiol. Renal Physiol. 302, F29–F37 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Hickmann, L. et al. Persistent and inducible neogenesis repopulates progenitor renin lineage cells in the kidney. Kidney Int. 92, 1419–1432 (2017). This paper presents the first description of neogenesis, a mechanism to repopulate renin cell progenitors during development, adult life and in response to homeostatic challenge.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, H. et al. Adult renal mesenchymal stem cell-like cells contribute to juxtaglomerular cell recruitment. J. Am. Soc. Nephrol. 24, 1263–1273 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Yang, Y. et al. Salt restriction leads to activation of adult renal mesenchymal stromal cell-like cells via prostaglandin E2 and E-prostanoid receptor 4. Hypertension 65, 1047–1054 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Peti-Peterdi, J. Newly stemming functions of macula densa-derived prostanoids. Hypertension 65, 987–988 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Qian, H., Le Blanc, K. & Sigvardsson, M. Primary mesenchymal stem and progenitor cells from bone marrow lack expression of CD44 protein. J. Biol. Chem. 287, 25795–25807 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lattion, A. L., Michel, J. B., Arnauld, E., Corvol, P. & Soubrier, F. Myocardial recruitment during ANF mRNA increase with volume overload in the rat. Am. J. Physiol. 251, H890–H896 (1986).

    CAS  PubMed  Google Scholar 

  83. Gerber, H. et al. Transformation of normal thyroids into colloid goiters in rats and mice by diphenylthiohydantoin. Endocrinology 135, 2688–2699 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Gerber, H., Peter, H. J., Bachmeier, C., Kaempf, J. & Studer, H. Progressive recruitment of follicular cells with graded secretory responsiveness during stimulation of the thyroid gland by thyrotropin. Endocrinology 120, 91–96 (1987).

    Article  CAS  PubMed  Google Scholar 

  85. Schuit, F. C., In' t Veld, P. A. & Pipeleers, D. G. Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc. Natl Acad. Sci. USA 85, 3865–3869 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Eckardt, K. U. et al. Distribution of erythropoietin producing cells in rat kidneys during hypoxic hypoxia. Kidney Int. 43, 815–823 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Starke, C. et al. Renin lineage cells repopulate the glomerular mesangium after injury. J. Am. Soc. Nephrol. 26, 48–54 (2015). This study demonstrates mesangial cell regeneration by renin-expressing cells.

    Article  CAS  PubMed  Google Scholar 

  88. Kaverina, N. V. et al. Tracking the stochastic fate of cells of the renin lineage after podocyte depletion using multicolor reporters and intravital imaging. PLoS ONE 12, e0173891 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Pippin, J. W. et al. Cells of renin lineage are progenitors of podocytes and parietal epithelial cells in experimental glomerular disease. Am. J. Pathol. 183, 542–557 (2013). This study demonstrates that juxtaglomerular cells repopulate podocytes in experimental glomerulonephritis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lahiri, S., Cherniack, N. S. & Fitzgerald, R. S. Response and Adaptation to Hypoxia: Organ to Organelle. (Oxford Univ. Press, 1991).

    Book  Google Scholar 

  91. Ritthaler, T., Schricker, K., Kees, F., Kramer, B. & Kurtz, A. Acute hypoxia stimulates renin secretion and renin gene expression in vivo but not in vitro. Am. J. Physiol. 272, R1105–R1111 (1997).

    CAS  PubMed  Google Scholar 

  92. Kurtz, A. Endocrine functions of the renal interstitium. Pflugers Arch. 469, 869–876 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Haase, V. H. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 27, 41–53 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zeisberg, M. & Kalluri, R. Physiology of the renal interstitium. Clin. J. Am. Soc. Nephrol. 10, 1831–1840 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stefanska, A. et al. Cells of renin lineage express hypoxia inducible factor 2alpha following experimental ureteral obstruction. BMC Nephrol. 17, 5 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Stefanska, A. et al. Human kidney pericytes produce renin. Kidney Int. 90, 1251–1261 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kurt, B. et al. Deletion of von Hippel-Lindau protein converts renin-producing cells into erythropoietin-producing cells. J. Am. Soc. Nephrol. 24, 433–444 (2013). This paper presents an extreme example of plasticity — the transformation of one endocrine cell into another.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kurt, B., Gerl, K., Karger, C., Schwarzensteiner, I. & Kurtz, A. Chronic hypoxia-inducible transcription factor-2 activation stably transforms juxtaglomerular renin cells into fibroblast-like cells in vivo. J. Am. Soc. Nephrol. 26, 587–596 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Lundby, C. & Olsen, N. V. Effects of recombinant human erythropoietin in normal humans. J. Physiol. 589, 1265–1271 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Olsen, N. V. et al. Erythropoietin down-regulates proximal renal tubular reabsorption and causes a fall in glomerular filtration rate in humans. J. Physiol. 589, 1273–1281 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Gomez, R. A. et al. Leukocytes synthesize angiotensinogen. Hypertension 21, 470–475 (1993).

    Article  CAS  PubMed  Google Scholar 

  102. Haznedaroglu, I. C. & Beyazit, Y. Local bone marrow renin-angiotensin system in primitive, definitive and neoplastic haematopoiesis. Clin. Sci. 124, 307–323 (2013).

    Article  CAS  Google Scholar 

  103. Bernstein, K. E. et al. Overexpression of angiotensin-converting enzyme in myelomonocytic cells enhances the immune response. F1000Res 5, 393 (2016).

    Article  Google Scholar 

  104. Harrison, D. G. The immune system in hypertension. Trans. Am. Clin. Climatol Assoc. 125, 130–140 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. Harrison, D. G. et al. Inflammation, immunity, and hypertension. Hypertension 57, 132–140 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Harrison, D. G., Marvar, P. J. & Titze, J. M. Vascular inflammatory cells in hypertension. Front. Physiol. 3, 128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Okwan-Duodu, D. et al. Angiotensin-converting enzyme overexpression in mouse myelomonocytic cells augments resistance to Listeria and methicillin-resistant Staphylococcus aureus. J. Biol. Chem. 285, 39051–39060 (2010). This study demonstrates that ACE overexpression in monocytes confers resistance to major infectious agents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Klickstein, L. B., Kaempfer, C. E. & Wintroub, B. U. The granulocyte-angiotensin system. Angiotensin I-converting activity of cathepsin G. J. Biol. Chem. 257, 15042–15046 (1982).

    CAS  PubMed  Google Scholar 

  109. Wintroub, B. U., Klickstein, L. B., Dzau, V. J. & Watt, K. W. Granulocyte-angiotensin system. Identification of angiotensinogen as the plasma protein substrate of leukocyte cathepsin G. Biochemistry 23, 227–232 (1984).

    Article  CAS  PubMed  Google Scholar 

  110. Gomez, D. & Owens, G. K. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc. Res. 95, 156–164 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Khan, Z. et al. Angiotensin-converting enzyme enhances the oxidative response and bactericidal activity of neutrophils. Blood 130, 328–339 (2017). This study demonstrates that ACE in neutrophils confers enhanced resistance to infection independently of angiotensin generation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fournier, D., Luft, F. C., Bader, M., Ganten, D. & Andrade-Navarro, M. A. Emergence and evolution of the renin-angiotensin-aldosterone system. J. Mol. Med. 90, 495–508 (2012). This paper is an excellent review on the evolution of the RAS.

    Article  PubMed  Google Scholar 

  113. Sokabe, H. & Ogawa, M. Comparative studies of the juxtaglomerular apparatus. Int. Rev. Cytol. 37, 271–327 (1974).

    Article  CAS  PubMed  Google Scholar 

  114. Hilgers, K. F., Reddi, V., Krege, J. H., Smithies, O. & Gomez, R. A. Aberrant renal vascular morphology and renin expression in mutant mice lacking angiotensin-converting enzyme. Hypertension 29, 216–221 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Oka, M., Medrano, S., Sequeira-Lomicronpez, M. L. S. & Gomez, R. A. Chronic stimulation of renin cells leads to vascular pathology. Hypertension 70, 119–128 (2017). This study demonstrates that cells of the renin lineage contribute to concentric renal arteriolar hypertrophy when overly and chronically stimulated.

    Article  CAS  PubMed  Google Scholar 

  116. Okubo, S. et al. Angiotensinogen gene null-mutant mice lack homeostatic regulation of glomerular filtration and tubular reabsorption. Kidney Int. 53, 617–625 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Takahashi, N. et al. Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J. Am. Soc. Nephrol. 16, 125–132 (2005).

    Article  PubMed  Google Scholar 

  118. Tanimoto, K. et al. Angiotensinogen-deficient mice with hypotension. J. Biol. Chem. 269, 31334–31337 (1994).

    CAS  PubMed  Google Scholar 

  119. Tsuchida, S. et al. Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J. Clin. Invest. 101, 755–760 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tufro-McReddie, A., Romano, L. M., Harris, J. M., Ferder, L. & Gomez, R. A. Angiotensin II regulates nephrogenesis and renal vascular development. Am. J. Physiol. 269, F110–F115 (1995). This paper presents the first experimental demonstration that administration of angiotensin-receptor inhibitors in early life results in serious vascular abnormalities both in rodents and frogs.

    Article  CAS  PubMed  Google Scholar 

  121. Gribouval, O. et al. Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis. Hum. Mutat. 33, 316–326 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Esther, C. R. et al. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest. 74, 953–965 (1996).

    CAS  PubMed  Google Scholar 

  123. Krege, J. H. et al. Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature 375, 146–148 (1995).

    Article  CAS  PubMed  Google Scholar 

  124. Yanai, K. et al. Regulated expression of human angiotensinogen gene by hepatocyte nuclear factor 4 and chicken ovalbumin upstream promoter-transcription factor. J. Biol. Chem. 274, 34605–34612 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Nagata, M. et al. Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab. Invest. 75, 745–753 (1996).

    CAS  PubMed  Google Scholar 

  126. Moniwa, N. et al. Hemodynamic and hormonal changes to dual renin-angiotensin system inhibition in experimental hypertension. Hypertension 61, 417–424 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Sequeira-Lopez, M. L., Nagalakshmi, V. K., Li, M., Sigmund, C. D. & Gomez, R. A. Vascular versus tubular renin: role in kidney development. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R650–R657 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pentz, E. S., Moyano, M. A., Thornhill, B. A., Sequeira Lopez, M. L. & Gomez, R. A. Ablation of renin-expressing juxtaglomerular cells results in a distinct kidney phenotype. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R474–R483 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Gomez, R. A. & Sequeira Lopez, M. L. Who and where is the renal baroreceptor?: the connexin hypothesis. Kidney Int. 75, 460–462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank H. Watanabe, B. Belyea and E. Brown (University of Virginia, Charlottesville, USA) for their comments on the manuscript and figures. Studies were funded by the US National Institutes of Health, Grants DK-096373 and HL-096735 to R.A.G. and DK-091330 and DK-096373 to M.L.S.S.-L.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching data for the article, discussion of the content, writing the article and revising and/or editing the manuscript before submission.

Corresponding author

Correspondence to R. Ariel Gomez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Juxtaglomerular cells

A specialized group of renin-producing, myo-epithelioid, granulated cells located at the tip of the afferent arterioles at the entrance to the glomeruli.

Juxtaglomerular apparatus

The functional sensory and responding unit of the renin–angiotensin system; it is composed of the afferent and efferent arterioles, the macula densa and the extraglomerular mesangium.

Plasticity

The ability of cells to switch phenotypes.

Metanephros

The definitive kidney of adult mammals.

Fetal zone

A large, eosinophilic steroidogenic group of cells of the fetal adrenal gland, which is believed to involute after birth.

Mural cells

Cells located within the wall(s) of the renal arterioles, including smooth muscle cells and renin-expressing cells such as juxtaglomerular cells. In larger arteries, adventitial cells such as fibroblasts and perivascular pericytes are sometimes considered mural cells. Although part of the arterial wall, endothelial cells are not usually considered mural cells.

Stromal compartment

One of the three main compartments of the developing kidney; it contains FOXD1+ progenitors of vascular smooth muscle cells, renin-expressing cells, mesangial cells and pericytes as well as SCL+ progenitors of endothelial cells of arteries and arterioles, glomeruli and interstitial capillaries.

Vasculogenesis

De novo, local differentiation and assembly of blood vessels from resident progenitor cells that are usually derived from multiple clones.

Angiogenesis

The formation of new blood vessels, usually by sprouting of new branches from pre-existing vessels. This process usually involves the proliferation and/or elongation of cells from single clones. In the case of arterioles, it is followed by the recruitment of perivascular smooth muscle cells.

Fractal

A shape or structure made of smaller parts or units that repeat themselves and resemble the whole.

Developmental memory

The ability of cells to expressly re-acquire a phenotype previously expressed during development.

Metaplastic transformation

Pathological transformation of one cell type into another not related by lineage.

Hyperplasia

Increase in cell number, usually due to increased cell proliferation.

Neogenesis

De novo expression of a gene (for example, renin) in a cell that has not previously expressed the gene.

Direct transdifferentiation

Transformation of one cell into another without reprogramming into induced pluripotent stem cells.

Erythrocytosis

Increase in red cell mass.

Leukaemic blast cells

Immature forms of white blood cells that fail to differentiate normally and proliferate in an uncontrolled manner, leading to tissue infiltration and, if untreated, death.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, R., Sequeira-Lopez, M. Renin cells in homeostasis, regeneration and immune defence mechanisms. Nat Rev Nephrol 14, 231–245 (2018). https://doi.org/10.1038/nrneph.2017.186

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing