Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease

Key Points

  • The proportion of women with predialysis chronic kidney disease (CKD) is higher than that of men; this difference is likely due to the longer life expectancy of women and possibly to CKD overdiagnosis with use of estimated glomerular filtration rate equations

  • Kidney function declines faster in men than women, possibly owing to unhealthier lifestyles in men and the protective effects of oestrogens or the damaging effects of testosterone

  • More men than women start renal replacement therapy (RRT) not only owing to faster CKD progression in men but also because elderly women are more likely to choose conservative care

  • Mortality is higher among men at all levels of predialysis CKD, whereas mortality among individuals on RRT is similar for men and women

  • Women have reduced access to deceased donor transplantation compared with men, likely owing to higher levels of preformed antibodies, whereas access to living donor kidney transplantation in some countries seems equal

  • The perceived health-related quality of life of women on RRT is poorer than that of men, and women report a higher symptom burden and greater symptom severity than men

Abstract

Improved understanding of sex and gender-specific differences in the aetiology, mechanisms and epidemiology of chronic kidney disease (CKD) could help nephrologists better address the needs of their patients. Population-based studies indicate that CKD epidemiology differs by sex, affecting more women than men, especially with regard to stage G3 CKD. The effects of longer life expectancy on the natural decline of glomerular filtration rate (GFR) with age, as well as potential overdiagnosis of CKD through the inappropriate use of GFR equations, might be in part responsible for the greater prevalence of CKD in women. Somewhat paradoxically, there seems to be a preponderance of men among patients starting renal replacement therapy (RRT); the protective effects of oestrogens in women and/or the damaging effects of testosterone, together with unhealthier lifestyles, might cause kidney function to decline faster in men than in women. Additionally, elderly women seem to be more inclined to choose conservative care instead of RRT. Dissimilarities between the sexes are also apparent in the outcomes of CKD. In patients with predialysis CKD, mortality is higher in men than women; however, this difference disappears for patients on RRT. Although access to living donor kidneys among men and women seems equal, women have reduced access to deceased donor transplantation. Lastly, health-related quality of life while on RRT is poorer in women than men, and women report a higher burden of symptoms. These findings provide insights into differences in the underlying pathophysiology of disease as well as societal factors that can be addressed to reduce disparities in access to care and outcomes for patients with CKD.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sex differences in the prevalence of CKD.
Figure 2: Hazard ratios of all-cause mortality according to estimated glomerular filtration rate by sex.
Figure 3: Sex and gender disparities in the epidemiology and outcomes of CKD.
Figure 4: Differences in quality of life domains between men and women on dialysis.
Figure 5: Causes of death among men and women on dialysis.

References

  1. 1

    Mosca, L., Barrett-Connor, E. & Wenger, N. K. Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation 124, 2145–2154 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Carrero, J. J. Gender differences in chronic kidney disease: underpinnings and therapeutic implications. Kidney Blood Pressure Res. 33, 383–392 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Cobo, G. et al. Sex and gender differences in chronic kidney disease: progression to end-stage renal disease and haemodialysis. Clin. Sci. (Lond.) 130, 1147–1163 (2016).

    Article  Google Scholar 

  4. 4

    National Kidney, F. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 39, S1–S266 (2002).

    Google Scholar 

  5. 5

    Nagata, M. et al. Trends in the prevalence of chronic kidney disease and its risk factors in a general Japanese population: the Hisayama Study. Nephrol. Dial. Transplant. 25, 2557–2564 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Lu, C. et al. Prevalence and risk factors associated with chronic kidney disease in a Uygur adult population from Urumqi. J. Huazhong Univ. Sci. Technolog Med. Sci. 30, 604–610 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Bongard, V. et al. [Assessment and characteristics of chronic renal insufficiency in France]. Ann. Cardiol. Angeiol. (Paris) 61, 239–244 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Roth, M., Roderick, P. & Mindell, J. (Kidney disease and renal function. (Health survey for England. Volume 1. Health and lifestyles) (The NHS Information Centre, 2010).

    Google Scholar 

  9. 9

    Murphy, D. et al. Trends in prevalence of chronic kidney disease in the United States. Ann. Intern. Med. 165, 473–481 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Otero, A. Gayoso, P., G. F. & de Francisco, A. EPIRCE Study Group. prevalence of chronic renal disease in Spain: results of the EPIRCE study. Nefrologia 30, 78–86 (2010).

    PubMed  PubMed Central  Google Scholar 

  11. 11

    Cirillo, M. et al. Low glomerular filtration in the population: prevalence, associated disorders, and awareness. Kidney Int. 70, 800–806 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Zdrojewski, L. et al. Prevalence of chronic kidney disease in a representative sample of the Polish population: results of the NATPOL 2011 survey. Nephrol. Dial. Transplant. 31, 433–439 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Ong-Ajyooth, L., Vareesangthip, K., Khonputsa, P. & Aekplakorn, W. Prevalence of chronic kidney disease in Thai adults: a national health survey. BMC Nephrol. 10, 35 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14

    Gasparini, A. et al. Prevalence and recognition of chronic kidney disease in Stockholm healthcare. Nephrol. Dial. Transplant. 31, 2086–2094 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Sahin, I. et al. Prevalence of chronic kidney disease in the Black Sea Region, Turkey, and investigation of the related factors with chronic kidney disease. Ren. Fail. 31, 920–927 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Tanamas, S. K. et al. AusDiab 2012: the Australian diabetes, obesity and lifestyle study (Baker IDI Heart and Diabetes Institute, 2013).

    Google Scholar 

  17. 17

    Vinhas, J. et al. Prevalence of chronic kidney disease and associated risk factors, and risk of end-stage renal disease: data from the PREVADIAB study. Nephron Clin. Pract. 119, c35–c40 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Anand, S. et al. Prevalence of chronic kidney disease in two major Indian cities and projections for associated cardiovascular disease. Kidney Int. 88, 178–185 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Arora, P. et al. Prevalence estimates of chronic kidney disease in Canada: results of a nationally representative survey. CMAJ 185, E417–E423 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Epidemiology & Disease Control Division, Ministry of Health, Singapore. National Health Survey 2010 (MOH Singapore, 2011).

  21. 21

    Suleymanlar, G. et al. A population-based survey of Chronic REnal Disease In Turkey—the CREDIT study. Nephrol. Dial. Transplant. 26, 1862–1871 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Shin, H. Y. & Kang, H. T. Recent trends in the prevalence of chronic kidney disease in Korean adults: Korean National Health and Nutrition Examination Survey from 1998 to 2013. J. Nephrol. 29, 799–807 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Chen, W. et al. Prevalence and risk factors associated with chronic kidney disease in an adult population from southern China. Nephrol. Dial. Transplant. 24, 1205–1212 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Juutilainen, A. et al. Trends in estimated kidney function: the FINRISK surveys. Eur. J. Epidemiol. 27, 305–313 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25

    Chen, W. et al. Prevalence and risk factors of chronic kidney disease: a population study in the Tibetan population. Nephrol. Dial. Transplant. 26, 1592–1599 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Zhang, L. et al. Prevalence and factors associated with CKD: a population study from Beijing. Am. J. Kidney Dis. 51, 373–384 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Zhang, L. et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379, 815–822 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Glassock, R. J., Warnock, D. G. & Delanaye, P. The global burden of chronic kidney disease: estimates, variability and pitfalls. Nat. Rev. Nephrol. 13, 104–114 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Glassock, R., Delanaye, P. & El Nahas, M. An age-calibrated classification of chronic kidney disease. JAMA 314, 559–560 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    O'Hare, A. M. et al. Age affects outcomes in chronic kidney disease. J. Am. Soc. Nephrol. 18, 2758–2765 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  31. 31

    Inker, L. A. et al. Effects of race and sex on measured GFR: the multi-ethnic study of atherosclerosis. Am. J. Kidney Dis. 68, 743–751 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Neugarten, J., Kasiske, B., Silbiger, S. R. & Nyengaard, J. R. Effects of sex on renal structure. Nephron 90, 139–144 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Inker, L. A. et al. Performance of glomerular filtration rate estimating equations in a community-based sample of Blacks and Whites: the multiethnic study of atherosclerosis. Nephrol. Dial. Transplant. https://doi.org/10.1093/ndt/gfx042 (2017).

  34. 34

    Wetzels, J. F., Willems, H. L. & den Heijer, M. Age- and gender-specific reference values of estimated glomerular filtration rate in a Caucasian population: results of the Nijmegen Biomedical Study. Kidney Int. 73, 657–658 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Elseviers, M. M., Verpooten, G. A., De Broe, M. E. & De Backer, G. G. Interpretation of creatinine clearance. Lancet 1, 457 (1987).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Neugarten, J., Acharya, A. & Silbiger, S. R. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J. Am. Soc. Nephrol. 11, 319–329 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Jafar, T. H. et al. The rate of progression of renal disease may not be slower in women compared with men: a patient-level meta-analysis. Nephrol. Dial. Transplant. 18, 2047–2053 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Eriksen, B. O. & Ingebretsen, O. C. The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age. Kidney Int. 69, 375–382 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Evans, M. et al. The natural history of chronic renal failure: results from an unselected, population-based, inception cohort in Sweden. Am. J. Kidney Dis. 46, 863–870 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Halbesma, N. et al. Gender differences in predictors of the decline of renal function in the general population. Kidney Int. 74, 505–512 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Grams, M. E., Chow, E. K., Segev, D. L. & Coresh, J. Lifetime incidence of CKD stages 3–5 in the United States. Am. J. Kidney Dis. 62, 245–252 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Turin, T. C. et al. Lifetime risk of ESRD. J. Am. Soc. Nephrol. 23, 1569–1578 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    van den Brand, J. et al. Lifetime risk of renal replacement therapy in Europe: a population-based study using data from the ERA-EDTA Registry. Nephrol. Dial. Transplant. 32, 348–355 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    ERA-EDTA Registry. ERA-EDTA Registry annual report 2015 (ERA-EDTA Registry, 2017).

  45. 45

    United States Renal Data System. USRDS annual data report: epidemiology of kidney disease in the United States (USRDS, 2016).

  46. 46

    De Nicola, L. et al. Prevalence and cardiovascular risk profile of chronic kidney disease in Italy: results of the 2008–2012 National Health Examination Survey. Nephrol. Dial. Transplant. 30, 806–814 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Sparke, C. et al. Estimating the total incidence of kidney failure in Australia including individuals who are not treated by dialysis or transplantation. Am. J. Kidney Dis. 61, 413–419 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48

    Nitsch, D. et al. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ 346, f324 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49

    Hemmelgarn, B. R. et al. Rates of treated and untreated kidney failure in older versus younger adults. JAMA 307, 2507–2515 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50

    Faruque, L. I. et al. Factors associated with initiation of chronic renal replacement therapy for patients with kidney failure. Clin. J. Am. Soc. Nephrol. 8, 1327–1335 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Morton, R. L., Turner, R. M., Howard, K., Snelling, P. & Webster, A. C. Patients who plan for conservative care rather than dialysis: a national observational study in Australia. Am. J. Kidney Dis. 59, 419–427 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Chandna, S. M. et al. Rate of decline of kidney function, modality choice, and survival in elderly patients with advanced kidney disease. Nephron 134, 64–72 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  53. 53

    Coresh, J. et al. Chronic kidney disease awareness, prevalence, and trends among U. S. adults, 1999 to 2000. J. Am. Soc. Nephrol. 16, 180–188 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  54. 54

    Kausz, A. T. et al. Late initiation of dialysis among women and ethnic minorities in the United States. J. Am. Soc. Nephrol. 11, 2351–2357 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Xue, J. L., Eggers, P. W., Agodoa, L. Y., Foley, R. N. & Collins, A. J. Longitudinal study of racial and ethnic differences in developing end-stage renal disease among aged medicare beneficiaries. J. Am. Soc. Nephrol. 18, 1299–1306 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Obrador, G. T. et al. Level of renal function at the initiation of dialysis in the U. S. end-stage renal disease population. Kidney Int. 56, 2227–2235 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    Stel, V. S. et al. Level of renal function in patients starting dialysis: an ERA-EDTA Registry study. Nephrol. Dial. Transplant. 25, 3315–3325 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Hecking, M. et al. Sex-specific differences in hemodialysis prevalence and practices and the male-to-female mortality rate: the Dialysis Outcomes and Practice Patterns Study (DOPPS). PLoS Med. 11, e1001750 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Stel, V. S. et al. Prevalence of co-morbidity in different European RRT populations and its effect on access to renal transplantation. Nephrol. Dial. Transplant. 20, 2803–2811 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  60. 60

    Carrero, J. J. et al. Sex differences in the impact of diabetes on mortality in chronic dialysis patients. Nephrol. Dialysis. Transplant. 26, 270–276 (2011).

    Article  Google Scholar 

  61. 61

    Palmer, B. F. & Clegg, D. J. Gonadal dysfunction in chronic kidney disease. Rev. Endocr. Metabol. Disord. 18, 117–130 (2017).

    CAS  Article  Google Scholar 

  62. 62

    Yu, J. et al. Association between testosterone and mortality risk among U.S. males receiving dialysis. Am. J. Nephrol. 46, 195–203 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Carrero, J. J. & Stenvinkel, P. The vulnerable man: impact of testosterone deficiency on the uraemic phenotype. Nephrol. Dial. Transplant. 27, 4030–4041 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64

    Carrero, J. J. et al. Low serum testosterone increases mortality risk among male dialysis patients. J. Am. Soc. Nephrol. 20, 613–620 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Carrero, J. J. et al. Testosterone deficiency is a cause of anaemia and reduced responsiveness to erythropoiesis-stimulating agents in men with chronic kidney disease. Nephrol. Dial. Transplant. 27, 709–715 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66

    Bello, A. K. et al. Serum testosterone levels and clinical outcomes in male hemodialysis patients. Am. J. Kidney Dis. 63, 268–275 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67

    Weisinger, J. R. & Bellorin-Font, E. Outcomes associated with hypogonadism in women with chronic kidney disease. Adv. Chronic Kidney Dis. 11, 361–370 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68

    Couchoud, C. et al. From registry data collection to international comparisons: examples of haemodialysis duration and frequency. Nephrol. Dial. Transplant. 24, 217–224 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69

    Daugirdas, J. T. et al. Surface-area-normalized Kt/V: a method of rescaling dialysis dose to body surface area-implications for different-size patients by gender. Semin. Dial. 21, 415–421 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  70. 70

    Spalding, E. M., Chandna, S. M., Davenport, A. & Farrington, K. Kt/V underestimates the hemodialysis dose in women and small men. Kidney Int. 74, 348–355 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  71. 71

    Eknoyan, G. et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N. Engl. J. Med. 347, 2010–2019 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Depner, T. et al. Dialysis dose and the effect of gender and body size on outcome in the HEMO Study. Kidney Int. 65, 1386–1394 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Port, F. K. et al. High dialysis dose is associated with lower mortality among women but not among men. Am. J. Kidney Dis. 43, 1014–1023 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Daugirdas, J. T., Greene, T., Chertow, G. M. & Depner, T. A. Can rescaling dose of dialysis to body surface area in the HEMO study explain the different responses to dose in women versus men? Clin. J. Am. Soc. Nephrol. 5, 1628–1636 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Noordzij, M. et al. Use of vascular access for haemodialysis in Europe: a report from the ERA-EDTA Registry. Nephrol. Dial. Transplant. 29, 1956–1964 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Caplin, N., Sedlacek, M., Teodorescu, V., Falk, A. & Uribarri, J. Venous access: women are equal. Am. J. Kidney Dis. 41, 429–432 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  77. 77

    Vogelzang, J. L. et al. Mortality from infections and malignancies in patients treated with renal replacement therapy: data from the ERA-EDTA registry. Nephrol. Dial. Transplant. 30, 1028–1037 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Ifudu, O. Patient characteristics determining rHuEPO dose requirements. Nephrol. Dial. Transplant. 17 (Suppl. 5), 38–41 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79

    Hsu, C. Y., Bates, D. W., Kuperman, G. J. & Curhan, G. C. Relationship between hematocrit and renal function in men and women. Kidney Int. 59, 725–731 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80

    Hsu, C. Y., McCulloch, C. E. & Curhan, G. C. Epidemiology of anemia associated with chronic renal insufficiency among adults in the United States: results from the Third National Health and Nutrition Examination Survey. J. Am. Soc. Nephrol. 13, 504–510 (2002).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  81. 81

    Ferrucci, L. et al. Low testosterone levels and the risk of anemia in older men and women. Arch. Intern. Med. 166, 1380–1388 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82

    Group, K. D. I. G. O. K. A. W. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int. Suppl. 2, 279–335 (2012).

    Article  Google Scholar 

  83. 83

    Locatelli, F. et al. Clinical practice guidelines for anemia in chronic kidney disease: problems and solutions. A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 74, 1237–1240 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  84. 84

    Frankenfield, D. L. et al. Racial/ethnic analysis of selected intermediate outcomes for hemodialysis patients: results from the 1997 ESRD Core Indicators Project. Am. J. Kidney Dis. 34, 721–730 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85

    Madore, F. et al. Anemia in hemodialysis patients: variables affecting this outcome predictor. J. Am. Soc. Nephrol. 8, 1921–1929 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Ifudu, O. et al. Gender modulates responsiveness to recombinant erythropoietin. Am. J. Kidney Dis. 38, 518–522 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87

    Kjellstrand, C. M. Age, sex, and race inequality in renal transplantation. Arch. Intern. Med. 148, 1305–1309 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88

    Held, P. J., Pauly, M. V., Bovbjerg, R. R., Newmann, J. & Salvatierra, O. Jr. Access to kidney transplantation. Has the United States eliminated income and racial differences? Arch. Intern. Med. 148, 2594–2600 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    Eggers, P. W. Effect of transplantation on the Medicare end-stage renal disease program. N. Engl. J. Med. 318, 223–229 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90

    Alexander, G. C. & Sehgal, A. R. Barriers to cadaveric renal transplantation among blacks, women, and the poor. JAMA 280, 1148–1152 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    Gaylin, D. S. et al. The impact of comorbid and sociodemographic factors on access to renal transplantation. JAMA 269, 603–608 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92

    Soucie, J. M., Neylan, J. F. & McClellan, W. Race and sex differences in the identification of candidates for renal transplantation. Am. J. Kidney Dis. 19, 414–419 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Bloembergen, W. E., Mauger, E. A., Wolfe, R. A. & Port, F. K. Association of gender and access to cadaveric renal transplantation. Am. J. Kidney Dis. 30, 733–738 (1997).

    CAS  Google Scholar 

  94. 94

    Schaubel, D. E. et al. Sex inequality in kidney transplantation rates. Arch. Intern. Med. 160, 2349–2354 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95

    Segev, D. L. et al. Age and comorbidities are effect modifiers of gender disparities in renal transplantation. J. Am. Soc. Nephrol. 20, 621–628 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Wolfe, R. A. et al. Differences in access to cadaveric renal transplantation in the United States. Am. J. Kidney Dis. 36, 1025–1033 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Kayler, L. K. et al. Gender imbalance in living donor renal transplantation. Transplantation 73, 248–252 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  98. 98

    Kayler, L. K. et al. Gender imbalance and outcomes in living donor renal transplantation in the United States. Am. J. Transplant. 3, 452–458 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Ojo, A. & Port, F. K. Influence of race and gender on related donor renal transplantation rates. Am. J. Kidney Dis. 22, 835–841 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100

    Bloembergen, W. E., Port, F. K., Mauger, E. A., Briggs, J. P. & Leichtman, A. B. Gender discrepancies in living related renal transplant donors and recipients. J. Am. Soc. Nephrol. 7, 1139–1144 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Roodnat, J. I. et al. Accumulation of unfavorable clinical and socioeconomic factors precludes living donor kidney transplantation. Transplantation 93, 518–523 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  102. 102

    Zimmerman, D., Donnelly, S., Miller, J., Stewart, D. & Albert, S. E. Gender disparity in living renal transplant donation. Am. J. Kidney Dis. 36, 534–540 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103

    Organ Procurement and Transplantation Network and Scientific Registry of Transplant Recipients. OPTN/SRTR 2012 annual data report (OPTN/SRTR, 2014).

  104. 104

    Rodrigue, J. R. et al. Living donor kidney transplantation: overcoming disparities in live kidney donation in the US — recommendations from a consensus conference. Clin. J. Am. Soc. Nephrol. 10, 1687–1695 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105

    Simmons, R. & Klein, S. The Social and Psychological Impact of Organ Transplantation (Wiley, 1977).

    Google Scholar 

  106. 106

    Khalifeh, N. & Horl, W. H. Gender and living donor kidney transplantation. Wien. Med. Wochenschr. 161, 124–127 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  107. 107

    Carrero, J. J., Hecking, M., Ulasi, I., Sola, L. & Thomas, B. Chronic kidney disease, gender, and access to care: a global perspective. Semin. Nephrol. 37, 296–308 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  108. 108

    Jindal, R. M., Ryan, J. J., Sajjad, I., Murthy, M. H. & Baines, L. S. Kidney transplantation and gender disparity. Am. J. Nephrol. 25, 474–483 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  109. 109

    Liu, G. et al. Gender disparity of living donor renal transplantation in East China. Clin. Transplant 27, 98–103 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110

    Soliman, Y., Shawky, S., Khedr, A.-E., Hassan, A. M. & Behairy, M. Incidence of acute renal allograft rejection in egyptian renal transplant recipients: a single center experience. Life Sci. J. 12, 9–15 (2015).

    Google Scholar 

  111. 111

    Bal, M. M. & Saikia, B. Gender bias in renal transplantation: are women alone donating kidneys in India? Transplant. Proc. 39, 2961–2963 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112

    Ramachandran, R. & Jha, V. Kidney transplantation is associated with catastrophic out of pocket expenditure in India. PLoS ONE 8, e67812 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113

    Ghods, A. J. & Nasrollahzadeh, D. Gender disparity in a live donor renal transplantation program: assessing from cultural perspectives. Transplant. Proc. 35, 2559–2560 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. 114

    Khajehdehi, P. Living non-related versus related renal transplantation—its relationship to the social status, age and gender of recipients and donors. Nephrol. Dial. Transplant. 14, 2621–2624 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115

    Malakoutian, T. et al. Socioeconomic status of Iranian living unrelated kidney donors: a multicenter study. Transplant. Proc. 39, 824–825 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116

    Naghibi, O., Naghibi, M. & Nazemian, F. Gender disparity in kidney transplantation. Saudi J. Kidney Dis. Transpl. 19, 545–550 (2008).

    PubMed  PubMed Central  Google Scholar 

  117. 117

    Kwon, O. J. & Kwak, J. Y. The impact of sex and age matching for long-term graft survival in living donor renal transplantation. Transplant. Proc. 36, 2040–2042 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118

    Chalise, P. R. et al. Renal transplantation in Nepal: the first year's experience. Saudi J. Kidney Dis. Transpl. 21, 559–564 (2010).

    PubMed  PubMed Central  Google Scholar 

  119. 119

    Arogundade, F. A. Kidney transplantation in a low-resource setting: Nigeria experience. Kidney Int. Suppl. (2011) 3, 241–245 (2013).

    Article  Google Scholar 

  120. 120

    Shaheen, F. A. et al. Experience of renal transplantation at the king fahd hospital, jeddah, saudi arabia. Saudi J. Kidney Dis. Transpl. 16, 562–572 (2005).

    PubMed  PubMed Central  Google Scholar 

  121. 121

    Bardi, R. et al. Kidney transplantation: Charles Nicolle Hospital experience. Transplant. Proc. 41, 651–653 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122

    Peracha, J., Hayer, M. K. & Sharif, A. Gender disparity in living-donor kidney transplant among minority ethnic groups. Exp. Clin. Transplant. 14, 139–145 (2016).

    PubMed  PubMed Central  Google Scholar 

  123. 123

    Biller-Andorno, N. Gender imbalance in living organ donation. Med. Health Care Philos. 5, 199–204 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  124. 124

    Goryainov, V. A. et al. [The effect of gender on the results of related kidney transplantation]. Khirurgiia (Mosk) https://doi.org/10.17116/hirurgia2016662-67 (in Russian) (2016).

  125. 125

    Thiel, G. T., Nolte, C. & Tsinalis, D. Gender imbalance in living kidney donation in Switzerland. Transplant. Proc. 37, 592–594 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126

    Noppakun, K. et al. A 25-year experience of kidney transplantation in Thailand: report from the Thai transplant registry. Nephrol. (Carlton) 20, 177–183 (2015).

    Article  Google Scholar 

  127. 127

    Barsky, A. J., Peekna, H. M. & Borus, J. F. Somatic symptom reporting in women and men. J. Gen. Intern. Med. 16, 266–275 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128

    H.Åvard Loge, J. & Kaasa, S. Short Form 36 (SF-36) health survey: normative data from the general Norwegian population. Scand. J. Social Med. 26, 250–258 (2016).

    Article  Google Scholar 

  129. 129

    Ong, L. et al. Gender differences and quality of life in atrial fibrillation: the mediating role of depression. J. Psychosom. Res. 61, 769–774 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  130. 130

    Vigneshwaran, E., Padmanabhareddy, Y., Devanna, N. & Alvarez-Uria, G. Gender differences in health related quality of life of people living with HIV/AIDS in the era of highly active antiretroviral therapy. N. Am. J. Med. Sci. 5, 102–107 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  131. 131

    Liu, W. J., Chew, T. F., Chiu, A. S. & Zaki, M. Quality of life of dialysis patients in Malaysia. Med. J. Malaysia 61, 540–546 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Germin-Petrovic, D. et al. Health-related quality of life in the patients on maintenance hemodialysis: the analysis of demographic and clinical factors. Coll. Antropol. 35, 687–693 (2011).

    PubMed  PubMed Central  Google Scholar 

  133. 133

    Kutner, N. G., Zhang, R. & Brogan, D. Race, gender, and incident dialysis patients' reported health status and quality of life. J. Am. Soc. Nephrol. 16, 1440–1448 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  134. 134

    Vazquez, I. et al. [Differences in health-related quality of life between male and female hemodialysis patients]. Nefrologia 24, 167–178 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Lopes, A. A. et al. Factors associated with health-related quality of life among hemodialysis patients in the DOPPS. Qual. Life Res. 16, 545–557 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  136. 136

    Poulsen, C. G., Kjaergaard, K. D., Peters, C. D., Jespersen, B. & Jensen, J. D. Quality of life development during initial hemodialysis therapy and association with loss of residual renal function. Hemodial. Int. 21, 409–421 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  137. 137

    Wight, J. P. et al. The SF36 as an outcome measure of services for end stage renal failure. Qual. Health Care 7, 209–221 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138

    Molarius, A. & Janson, S. Self-rated health, chronic diseases, and symptoms among middle-aged and elderly men and women. J. Clin. Epidemiol. 55, 364–370 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  139. 139

    Almutary, H., Bonner, A. & Douglas, C. Which patients with chronic kidney disease have the greatest symptom burden? A comparative study of advanced cKD stage and dialysis modality. 42, 73–82 (2016).

  140. 140

    Weisbord, S. D. et al. Prevalence, severity, and importance of physical and emotional symptoms in chronic hemodialysis patients. J. Am. Soc. Nephrol. 16, 2487–2494 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  141. 141

    Caplin, B., Kumar, S. & Davenport, A. Patients' perspective of haemodialysis-associated symptoms. Nephrol. Dial. Transplant. 26, 2656–2663 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  142. 142

    Lopes, G. B. et al. Depression as a potential explanation for gender differences in health-related quality of life among patients on maintenance hemodialysis. Nephron Clin. Pract. 115, c35–c40 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143

    Overbeck, I. et al. Changes in quality of life after renal transplantation. Transplant. Proc. 37, 1618–1621 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. 144

    Fiebiger, W., Mitterbauer, C. & Oberbauer, R. Health-related quality of life outcomes after kidney transplantation. Health Qual. Life Outcomes 2, 2 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  145. 145

    von der Lippe, N., Waldum, B., Osthus, T. B., Reisaeter, A. V. & Os, I. Health related quality of life in patients in dialysis after renal graft loss and effect of gender. BMC Womens Health 14, 34 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  146. 146

    Weissman, M. M. et al. Cross-national epidemiology of major depression and bipolar disorder. JAMA 276, 293–299 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  147. 147

    Abdel-Kader, K., Unruh, M. L. & Weisbord, S. D. Symptom burden, depression, and quality of life in chronic and end-stage kidney disease. Clin. J. Am. Soc. Nephrol. 4, 1057–1064 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  148. 148

    Norris, C. M., Hegadoren, K. & Pilote, L. Depression symptoms have a greater impact on the 1-year health-related quality of life outcomes of women post-myocardial infarction compared to men. Eur. J. Cardiovasc. Nurs. 6, 92–98 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  149. 149

    Lernmark, B., Persson, B., Fisher, L. & Rydelius, P. A. Symptoms of depression are important to psychological adaptation and metabolic control in children with diabetes mellitus. Diabet. Med. 16, 14–22 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. 150

    La Greca, A. M., Swales, T., Klemp, S., Madigan, S. & Skyler, J. Adolescents with diabetes: gender differences in psychosocial functioning and glycemic control. Children's Health Care 24, 61–78 (1995).

    Article  Google Scholar 

  151. 151

    Yeh, S. C. & Chou, H. C. Coping strategies and stressors in patients with hemodialysis. Psychosom. Med. 69, 182–190 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  152. 152

    Yeh, S. C. J., Huang, C. H., Chou, H. C. & Wan, T. T. H. Gender differences in stress and coping among elderly patients on hemodialysis. Sex Roles 60, 44–56 (2009).

    Article  Google Scholar 

  153. 153

    Tu, H. Y., Shao, J. H., Wu, F. J., Chen, S. H. & Chuang, Y. H. Stressors and coping strategies of 20–45-year-old hemodialysis patients. Collegian 21, 185–192 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  154. 154

    Lindqvist, R., Carlsson, M. & Sjoden, P. O. Coping strategies and quality of life among patients on hemodialysis and continuous ambulatory peritoneal dialysis. Scand. J. Caring Sci. 12, 223–230 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  155. 155

    Mendes de Leon, C. F. et al. Psychosocial characteristics after acute myocardial infarction: the ENRICHD pilot study. Enhancing Recovery in Coronary Heart Disease. J. Cardiopulm. Rehabil. 21, 353–362 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  156. 156

    Norris, C. M. et al. Women with coronary artery disease report worse health-related quality of life outcomes compared to men. Health Qual. Life Outcomes 2, 21 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  157. 157

    Yan, G. et al. Race/ethnicity, age, and risk of hospital admission and length of stay during the first year of maintenance hemodialysis. Clin. J. Am. Soc. Nephrol. 9, 1402–1409 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  158. 158

    Adams, S. V. et al. Sex differences in hospitalizations with maintenance hemodialysis. J. Am. Soc. Nephrol. 28, 2721–2728 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  159. 159

    Dalrymple, L. S. et al. Infection-related hospitalizations in older patients with ESRD. Am. J. Kidney Dis. 56, 522–530 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  160. 160

    Dalrymple, L. S. et al. Outcomes of infection-related hospitalization in Medicare beneficiaries receiving in-center hemodialysis. Am. J. Kidney Dis. 65, 754–762 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  161. 161

    Newman, K. L. et al. Hospitalization among individuals waitlisted for kidney transplant. Transplantation. 101, 2913–2923 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  162. 162

    Manteuffel, M. et al. Influence of patient sex and gender on medication use, adherence, and prescribing alignment with guidelines. J. Womens Health (Larchmt) 23, 112–119 (2014).

    Article  Google Scholar 

  163. 163

    Carrero, J. J. et al. Cardiovascular and noncardiovascular mortality among men and women starting dialysis. Clin. J. Am. Soc. Nephrol. 6, 1722–1730 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  164. 164

    Ros, S. et al. Increased risk of fatal infections in women starting peritoneal dialysis. Perit. Dial. Int. 33, 487–494 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  165. 165

    Koo, J. H. & Leong, R. W. Sex differences in epidemiological, clinical and pathological characteristics of colorectal cancer. J. Gastroenterol. Hepatol. 25, 33–42 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  166. 166

    Molife, R., Lorigan, P. & MacNeil, S. Gender and survival in malignant tumours. Cancer Treat. Rev. 27, 201–209 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  167. 167

    Ellwood, A. D. et al. Early dialysis initiation and rates and timing of withdrawal from dialysis in Canada. Clin. J. Am. Soc. Nephrol. 8, 265–270 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  168. 168

    Chan, H. W., Clayton, P. A., McDonald, S. P., Agar, J. W. & Jose, M. D. Risk factors for dialysis withdrawal: an analysis of the Australia and New Zealand Dialysis and Transplant (ANZDATA) Registry, 1999–2008. Clin. J. Am. Soc. Nephrol. 7, 775–781 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  169. 169

    Terasaki, P. I., Cecka, J. M., Gjertson, D. W. & Takemoto, S. High survival rates of kidney transplants from spousal and living unrelated donors. N. Engl. J. Med. 333, 333–336 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  170. 170

    Sanfilippo, F., Vaughn, W. K., Bollinger, R. R. & Spees, E. K. Comparative effects of pregnancy, transfusion, and prior graft rejection on sensitization and renal transplant results. Transplantation 34, 360–366 (1982).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  171. 171

    Iwaki, Y. & Terasaki, P. I. Sensitization effect. Clin. Transpl. 257–265 (1986).

  172. 172

    Bohmig, G. A. et al. Role of humoral immune reactions as target for antirejection therapy in recipients of a spousal-donor kidney graft. Am. J. Kidney Dis. 35, 667–673 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  173. 173

    Halloran, P. F., Schlaut, J., Solez, K. & Srinivasa, N. S. The significance of the anti-class I response. II. Clinical and pathologic features of renal transplants with anti-class I-like antibody. Transplantation 53, 550–555 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  174. 174

    Terasaki, P. I. Humoral theory of transplantation. Am. J. Transplant. 3, 665–673 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  175. 175

    Geneugelijk, K. et al. Predicted indirectly recognizable HLA epitopes presented by HLA-DRB1 are related to HLA antibody formation during pregnancy. Am. J. Transplant. 15, 3112–3122 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  176. 176

    Honger, G. et al. Frequency and determinants of pregnancy-induced child-specific sensitization. Am. J. Transplant. 13, 746–753 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  177. 177

    Bromberger, B. et al. Pregnancy-induced sensitization promotes sex disparity in living donor kidney transplantation. J. Am.Soc.Nephrol. 28, 3025–3033 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  178. 178

    Burlingham, W. J. et al. The effect of tolerance to noninherited maternal HLA antigens on the survival of renal transplants from sibling donors. N. Engl. J. Med. 339, 1657–1664 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  179. 179

    Claas, F. H., Gijbels, Y., van der Velden-de Munck, J. & van Rood, J. J. Induction of B cell unresponsiveness to noninherited maternal HLA antigens during fetal life. Science 241, 1815–1817 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  180. 180

    Owen, R. D., Wood, H. R., Foord, A. G., Sturgeon, P. & Baldwin, L. G. Evidence for actively acquired tolerance to Rh antigens. Proc. Natl Acad. Sci. USA 40, 420–424 (1954).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  181. 181

    Lim, W. H. et al. Maternal compared with paternal donor kidneys are associated with poorer graft outcomes after kidney transplantation. Kidney Int. 89, 659–665 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  182. 182

    Lepeytre, F. et al. Association of sex with risk of kidney graft failure differs by age. J. Am. Soc. Nephrol. 28, 3014–3023 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. 183

    Pfeffer, P. F. & Thorsby, E. HLA-restricted cytotoxicity against male-specific (H-Y) antigen after acute rejection of an HLA-identical sibling kidney: clonal distribution of the cytotoxic cells. Transplantation 33, 52–56 (1982).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  184. 184

    Tan, J. C. et al. H-Y antibody development associates with acute rejection in female patients with male kidney transplants. Transplantation 86, 75–81 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  185. 185

    Popli, R., Sahaf, B., Nakasone, H., Lee, J. Y. & Miklos, D. B. Clinical impact of H-Y alloimmunity. Immunol. Res. 58, 249–258 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  186. 186

    Giefing-Kroll, C., Berger, P., Lepperdinger, G. & Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14, 309–321 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  187. 187

    Bouman, A., Heineman, M. J. & Faas, M. M. Sex hormones and the immune response in humans. Hum. Reprod. Update 11, 411–423 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  188. 188

    Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. Nat. Rev. Immunol. 8, 737–744 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  189. 189

    Feldman, H. I. et al. Recipient body size and cadaveric renal allograft survival. J. Am. Soc. Nephrol. 7, 151–157 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190

    Oh, C. K. et al. Metabolic demand and renal mass supply affecting the early graft function after living donor kidney transplantation. Kidney Int. 67, 744–749 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  191. 191

    Denhaerynck, K. et al. Prevalence and risk factors of non-adherence with immunosuppressive medication in kidney transplant patients. Am. J. Transplant. 7, 108–116 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  192. 192

    Frazier, P. A., Davis-Ali, S. H. & Dahl, K. E. Correlates of noncompliance among renal transplant recipients. Clin. Transplant. 8, 550–557 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193

    Kiley, D. J., Lam, C. S. & Pollak, R. A study of treatment compliance following kidney transplantation. Transplantation 55, 51–56 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  194. 194

    Stringer, K. D. et al. Gender hormones and the progression of experimental polycystic kidney disease. Kidney Int. 68, 1729–1739 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  195. 195

    Elliot, S. J. et al. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis. Kidney Int. 72, 464–472 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  196. 196

    Maric, C., Sandberg, K. & Hinojosa-Laborde, C. Glomerulosclerosis and tubulointerstitial fibrosis are attenuated with 17beta-estradiol in the aging Dahl salt sensitive rat. J. Am. Soc. Nephrol. 15, 1546–1556 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  197. 197

    Catanuto, P. et al. 17 beta-estradiol and tamoxifen upregulate estrogen receptor beta expression and control podocyte signaling pathways in a model of type 2 diabetes. Kidney Int. 75, 1194–1201 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  198. 198

    Hutchens, M. P., Fujiyoshi, T., Komers, R., Herson, P. S. & Anderson, S. Estrogen protects renal endothelial barrier function from ischemia-reperfusion in vitro and in vivo. Am. J. Physiol. Renal Physiol. 303, F377–F385 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  199. 199

    Metcalfe, P. D. et al. Testosterone exacerbates obstructive renal injury by stimulating TNF-alpha production and increasing proapoptotic and profibrotic signaling. Am. J. Physiol. Endocrinol. Metab. 294, E435–E443 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  200. 200

    Reckelhoff, J. F., Zhang, H. & Srivastava, K. Gender differences in development of hypertension in spontaneously hypertensive rats: role of the renin-angiotensin system. Hypertension 35, 480–483 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  201. 201

    Filler, G. et al. Is Testosterone Detrimental to Renal Function?. Kidney Int. Rep. 1, 306–310 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  202. 202

    Baylis, C. & Corman, B. The aging kidney: insights from experimental studies. J. Am. Soc. Nephrol. 9, 699–709 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203

    Monster, T. B., Janssen, W. M., de Jong, P. E., de Jong-van den Berg, L. T. & Prevention of Renal and Vascular End Stage Disease Study Group. Oral contraceptive use and hormone replacement therapy are associated with microalbuminuria. Arch. Intern. Med. 161, 2000–2005 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  204. 204

    Ahmed, S. B. et al. Oral estrogen therapy in postmenopausal women is associated with loss of kidney function. Kidney Int. 74, 370–376 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  205. 205

    Yilmaz, M.I. et al. Endogenous testosterone, endothelial dysfunction, and cardiovascular events in men with nondialysis cronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 1617–1625 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  206. 206

    Haring, R. et al. Low serum testosterone is associated with increased mortality in men with stage 3 or greater nephropathy. Am. J. Nephrol. 33, 209–217 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  207. 207

    Khurana, K. K. et al. Serum testosterone levels and mortality in men with CKD stages 3–4. Am. J. Kidney Dis. 64, 367–374 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  208. 208

    Lapi, F. et al. Androgen deprivation therapy and risk of acute kidney injury in patients with prostate cancer. Jama 310, 289–296 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  209. 209

    Neugarten, J., Gallo, G., Silbiger, S. & Kasiske, B. Glomerulosclerosis in aging humans is not influenced by gender. Am. J. Kidney Dis. 34, 884–888 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  210. 210

    Baylis, C. Sexual dimorphism in the aging kidney: differences in the nitric oxide system. Nat. Rev. Nephrol. 5, 384–396 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  211. 211

    Baylis, C. Sexual dimorphism: the aging kidney, involvement of nitric oxide deficiency, and angiotensin II overactivity. J. Gerontol. A Biol. Sci. Med. Sci. 67, 1365–1372 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  212. 212

    Matsuda, T., Yamamoto, T., Muraguchi, A. & Saatcioglu, F. Cross-talk between transforming growth factor-beta and estrogen receptor signaling through Smad3. J. Biol. Chem. 276, 42908–42914 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  213. 213

    Moxley, G. et al. Premenopausal sexual dimorphism in lipopolysaccharide-stimulated production and secretion of tumor necrosis factor. J. Rheumatol. 31, 686–694 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. 214

    Ji, H. et al. Female protection in progressive renal disease is associated with estradiol attenuation of superoxide production. Gend. Med. 4, 56–71 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  215. 215

    Agondi, R. e. F., Gallani, M. C., Rodrigues, R. C. & Cornélio, M. E. Relationship between beliefs regarding a low salt diet in chronic renal failure patients on dialysis. J. Ren. Nutr. 21, 160–168 (2011).

    Article  Google Scholar 

  216. 216

    Crews, D. C. et al. Dietary habits, poverty, and chronic kidney disease in an urban population. J. Ren. Nutr. 25, 103–110 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  217. 217

    Ellam, T., Fotheringham, J. & Kawar, B. Differential scaling of glomerular filtration rate and ingested metabolic burden: implications for gender differences in chronic kidney disease outcomes. Nephrol. Dial Transplant 29, 1186–1194 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  218. 218

    Nitsch, D. Is there a difference in metabolic burden between men and women? Nephrol. Dial. Transplant. 29, 1110–1112 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  219. 219

    Verhave, J. C. et al. Cardiovascular risk factors are differently associated with urinary albumin excretion in men and women. J. Am. Soc. Nephrol. 14, 1330–1335 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  220. 220

    Coggins, C. H. et al. Differences between women and men with chronic renal disease. Nephrol. Dial. Transplant. 13, 1430–1437 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  221. 221

    Williams, D. & Davison, J. Chronic kidney disease in pregnancy. BMJ 336, 211–215 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  222. 222

    Dehmer, E. W. et al. Association between gestational diabetes and incident maternal CKD: the Coronary Artery Risk Development in Young Adults (CARDIA) study. https://doi.org/10.1053/j.ajkd.2017.08.015 (2017).

Download references

Acknowledgements

The authors thank P. Trocchi (Universitätsklinikum Essen, Germany) for providing sex-specific statistics from Germany and F. K. Port (Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA), as well as T. Stamm, G. Böhmig and G. Bond (all from Medical University of Vienna, Austria) for their helpful comments and revisions to this work. J.J.C. acknowledges grant support from the Swedish Heart and Lung Foundation and the Westman and Rind foundations. N.C.C. and K.J.J. acknowledge grant support from the European Renal Association–European Dialysis and Transplant Association (ERA-EDTA).

Author information

Affiliations

Authors

Contributions

All authors contributed equally to researching the data for the article, discussing its content and writing and editing the manuscript before submission.

Corresponding authors

Correspondence to Juan Jesus Carrero or Kitty J. Jager.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Kt/V

The preferred method for measuring the dialysis dose; defined as the dialyser clearance of urea (K) multiplied by the duration of the dialysis treatment (t, in minutes) divided by the volume of distribution of urea in the body (V, in ml), which is approximately equal to total body water, corrected for volume lost during ultrafiltration.

Prevalent dialysis patients

All patients treated by dialysis at a particular moment in time.

Incident dialysis patients

Patients starting dialysis for the first time.

HLA sensitization

Formation of alloantibodies against HLA antigens.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carrero, J., Hecking, M., Chesnaye, N. et al. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat Rev Nephrol 14, 151–164 (2018). https://doi.org/10.1038/nrneph.2017.181

Download citation

Further reading